
Using Axiomatic Speci�cations for HardwareSystem DesignMarc Aiguier, Stefan Bero�, Laurent Freund, Gilles Bernot and Michel Isra�elLa.M.I.Laboratoire de Math�ematiques et d'InformatiqueUniversit�e d'Evry Val d'EssonneBd des CoquibusF-91025 Evry Cedex, Francee-mail: faiguier,bero�,freund,bernot,israelg@lami.univ-evry.fr1 IntroductionAs complexity of Hardware/Software systems increases, it becomes impossibleto manage this complexity without formal methods. Formal speci�cation allowsto rigorously prove that the �nal implementation behaves in the manner speci-�ed. Today, computer systems involve a strong imbrication between Hardwareand Software parts. For example, a processor is not only a hardware resource,software is a plain part of it, and we have to be able to do a well partitioning ofhardware and software parts. For some applications (e.g. telecommunications), itis important not to induce any constraint on the Hardware/Software partitioningat the speci�cation level. Consequently, it is of �rst interest to use an homo-geneous speci�cation language for the system as a whole. Formal approacheshave already been studied, particularly the speci�cation of the IEEE
oat usingthe language Z [Spi92] [Jon90]. Approaches such as Z or VDM are \model ori-ented" languages. We decided to use a \property oriented" language, algebraicspeci�cation with exception handling [BGA94] , which allows to reach a very ab-stract speci�cation style where no hypotheses about the future implementationare made.Algebraic speci�cations allow: checking coherence and completeness of a spec-i�cation, proof: before and after re�nement, stepwise enrichment: specify andprove step by step all along the development process, successive re�nements upto code generation. The usefulness of algebraic speci�cations is widely recog-nized for Software, the main purpose of the work reported here was to check ifalgebraic speci�cations are also able to specify Hardware.We focused on the speci�cation of the RISC architecture. For that purpose, wedecided to choose the DLX processor as a case study, because it is a representa-tive example of the RISC technology (see [HP90] and [HP94]). Our approach wasto �rst write a full abstract speci�cation based on well established mathemati-cal abstractions of the real-life data structures (integers, natural numbers, ...)and the observational behavior of the execution unit. Then we wrote a low levelspeci�cation where DLX is described by its lower level data structures (array of1

Booleans). Lastly, we performed the most relevant proofs of the correctness ofthis abstract implementation. Proofs are possible at all levels of speci�cationsand during the abstract implementation.2 The advantages of rigorous formal methods2.1 The role of formal speci�cationsOne of principal targets of all methods and technics of hardware / software systemdesign is to obtain
exible (i.e. one can easily have a system advanced) reusable(i.e. either for simpler purposes or like a basis of some larger system) and correctsystems (i.e. the system does what it is supposed to do). Formal speci�cationsare good means to reach these three properties for two reasons:� Formal speci�cations are written according to rigorously and mathemati-cally established syntax (i.e. what a speci�er is allowed to write) and seman-tics (i.e. what is a correct system behavior with respect to the speci�cation).Consequently, they never contain ambiguities. So, the understanding of thespeci�cation by the reader and the veri�cation of its correctness are betterachieved. Then, the mistakes of speci�cations fraught with consequencesare avoided.� Formal speci�cations allow to rigorously write speci�cations in describing\what the system is supposed to do" without to be interested by \how it isdone". It is true that it is not easy to make the most abstract speci�cationeven if well known mathematical structures facilitated this issue. Indeed, itis a strong discipline, a kind of \pedagogical e�ort." However, this e�ort ispro�table, especially if the speci�ed component is used (or reused) severaltimes: the abstraction e�ort to understand the purpose of the componenthas not to be done by the readers. Moreover, resulting speci�cations areclearer, terser and more legible. Consequently, the use, the reuse and themaintenance of system are facilitated.Moreover, formal speci�cations, to be fully usable, should o�er a set of rules (alsocalled calculus) allowing to prove if certain properties are ensured by a givenspeci�cation. The set of rules has to be sound (i.e. all properties proved fromthese rules must semantically be true) and may be complete (i.e. all propertiessemantically true can be proved from the set of rules). The interest of such acalculus is to be able to directly and syntactically reason on a given speci�cation.Consequently, in practice, a speci�er is not obliged to understand all the \so-complicated mathematical considerations" involved by the semantics. It is onlysu�cient that the speci�er has an intuitive idea of what his or her speci�cation2

means, provided that the speci�er can check the required properties by using thecalculus.Lastly, as a speci�er can write very abstract speci�cation, most of speci�cationsthat he or she manipulates, are often not executable. It is not always possibleto directly obtain a program which veri�es the speci�cation or a prototype ofthe speci�cation (e.g. by a rewriting system obtained from the speci�cation byusing the Knuth-Bendix algorithm [KB70]). Consequently, it may be necessaryto perform re�nement steps before to obtain such a prototype (see Figure 2.1).In the formal speci�cation frameworks, these steps of re�nement are often calledabstract implementation. The aim of abstract implementations is to introduce ateach step of re�nement new design decisions. These decisions may be the choice ofa special algorithm, or the implementation of some abstract operations by lowerlevel ones, or the implementation of some data types (e.g. the implementation ofstacks by an array and a natural number). The formal approaches give means toprove the implementation correctness for each re�nement step.Impl 1
Impl NN Specif 2High-Level
PrototypelevelsProof

Proof Figure 2.1All these steps can be aided by graphic editors, formula editors, libraries of al-ready implemented speci�cations, browsers, etc.3

2.2 General algebraic speci�cation frameworkWe may distinguish two classes of formal speci�cation frameworks: the �rst oneis called \model oriented" and the second one is called \property oriented" or\axiomatic".In the model oriented approaches (VDM [Jon90], Z [Spi92], B [Abr94],...) we buildan unique model from a lot of built-in data structures and construction primitivesthat the speci�cation language o�ers (thus, model oriented approaches more orless induce several choices of implementation from the beginning of the speci�ca-tion stage). Consequently, a program is correct with respect to its speci�cationif it has the \same behavior" that the model speci�ed.In the property oriented approaches, the speci�er gives a set of \functionalitynames" (also called a signature) and a set of properties on these functionalities(often called axioms). These properties describe the abstract behavior of thefunctionalities. Consequently, the semantics associated to a speci�cation in adeclarative style is de�ned by a set of models which is a subset of models thatone can build on the signature. Each one represents a possible implementation offunctionalities of the system under speci�cation. Then, a program is correct withrespect to the speci�cation if the model associated to this program is a model ofthe speci�cation under consideration. Also, a speci�cation is consistent if thereexists at least one model which satis�es this speci�cation.So, unlike model oriented approaches, speci�cations in an axiomatic style areallowed to be incomplete, without loosing a rigorous semantics.Among property oriented formal speci�cations, the most popular approachesare based on algebraic semantics (also called algebraic speci�cations) ([GTW78],[EM85]). The paradigm of algebraic speci�cations is rather a way of thinkingsemantics, with a common set of mathematical tools (based on category theory)to establish basic properties of the proposed speci�cation formalism, and with asyntax mainly based on equalities. The main advantages of algebraic speci�ca-tions is that it is a good mean to deal with proof, stepwise re�nement, typingissues, exception handling, test, modularity, object oriented, reusability, etc.This approach is new in the hardware design, but already experimented in thesoftware domain (e.g. algebraic speci�cation of embedded software of a sub-way [DG94], algebraic speci�cation of a Pascal compiler [DS83], algebraic speci-�cation of a subset of the UNIX �le system [BGM89] or on the data base of theenvironment speci�cations ASSPEGIQUE [Cap87], telephone switching [BH85],...). 4

3 Introduction to axiomatic speci�cations3.1 Algebraic speci�cations without exception handlingSuccinctly, an algebraic speci�cation Spec is de�ned by a signature � and a setof axioms Ax.A signature � is a set of type names S (often called sorts) with a set of functionsymbols F , each one provided with a pro�le of the form: s1 � : : : � sn ! swhere si 2 S and s 2 S (n may be equal to 0). For example, the booleanssignature is de�ned by the set of sorts: S = fBOOLg and the set of operations:F = ftrue; false : BOOL; or; and : BOOL �BOOL! BOOL; :::g.An algebraic model A on a signature �, also called �-algebras, is de�ned by:� a family of sets of values indexed by S, also denoted by A, (i.e. A =fAsgs2S). Each set As is called the carrier of the sort s. For example, wemay associate the following carrier for the sort BOOL: ABOOL = f0; 1g.� a set of functions fA : As1 � : : : � Asn ! As, one for each operationf : s1 � : : :� sn ! s belonging to F . For example, we associate the usualsemantics to boolean operations: trueA = 1, falseA = 0, x y x andA y0 0 00 1 01 0 01 1 1and x y x orA y0 0 00 1 11 0 11 1 1From all signature �, we can build a special algebraic model: the model of groundterms, denoted by T�, where the family of carriers contains all terms inductivelyde�ned from the functionalities in �: a term of T� can be represented by a treewhere leaves are constants (operations \c" with a pro�le of the form: c : s)of the signature. For example, the ground term \(true and false) or true" isrepresented by: ortrue trueandfalseLet � be a signature over a set of sorts S. Let X be a family of sets indexed byS (i.e. X = fXsgs2S). For each s belonging to S, Xs contains variables of type5

s. We denote T�(X), the model of terms built on the signature � by consideringthe variables belonging to Xs as additional constants of the type s. We callan element belonging to T�(X), a term with variables in X: a term of T�(X)can be represented by a tree where leaves are either constants of the signature orvariables. For example, the term with variables \(x and y) or true" is representedby: or trueandx yAn axiom is a well-formed formula inductively builds from equations \t = u"where t and u are terms with variables of the same type, connectives in f^;_;:;)g and quanti�ers in f8;9g (free variables are supposed universally quanti�ed).For example, we may want the following axiom for booleans structure:x and false = falseAn algebraic model satis�es an equation \t = u" if for every assignment � :T�(X)! A, we have: �(t) = �(u). The satisfaction of the formulas is inductivelyde�ned from the satisfaction of equations and the usual truth tables associatedto connectives and quanti�ers.The semantics of a speci�cation Spec = (�; Ax) is represented by the class of�-algebras which satisfy each axiom of Ax.Example 3.1: Let us give the complete arrays speci�cation (it will be used lateron):S = fARRAY;RANG;ELEMg = � Names of sorts � =F = create : �! ARRAY = � initial array � =store : ARRAY RANG ELEM �! ARRAY = � assignement � =[] : ARRAY RANG �! ELEM = � access � =The sort RANG is the sort of array positions and the sort Elem, the sort ofarray elements.By convention, we will denote by t the variable of sort Array, i and j those ofthe sort Rang, and x and y those of the sort Elem.6

Ax =create = store(create; i; e)i = j =) store(store(t; i; x); j; y) = store(t; j; y)i 6= j =) store(store(t; i; x); j; y) = store(store(t; j; y); i; x)store(t; i; x)[i] = xThe �rst axiom means that the empty array contains the constant e everywhere.The second and third axioms mean that the assignment in an array is commuta-tive except for equal positions. In this case, the last assignment removes the �rstone. Lastly, the last one means that taking an element at a given position givesthe last element put at this position.3.2 Algebraic speci�cations with exception handlingFrom the general algebraic framework, a lot of formalism have been developed(uni�ed algebras [Mos89], typed algebras [MSS89], order sorted algebras [Gog78],partial algebras [BW82]...).In this article, we choose to use the formalism of algebraic speci�cations with ex-ception handling [BGA94]. It is suitable to specify the DLX processor which hasconstraints on the data representation (e.g. we consider some data represented on32 bits). This formalism is able to treat all the exceptional cases and exceptionhandling features, including the following ones: implicit propagation of excep-tions, \intrinsic" exceptions which are related to the underlying data structure(for instance, popping an empty stack or applying the predecessor operation onzero for natural numbers), exceptions which are relied on \dynamic" properties(as an access to a non-initialized array cell), exceptions which are due to certainlimitations (mainly bounded data structures), recovery (as the exception handlerthat recovers every over
ow value on maxint).The main idea underlying to the theory of exception algebras is that two termscan result on the same value whilst being di�erently labeled.An exception signature �L is an usual signature � (see Section 3.1) to which weadd a set of labels L and a special label Ok. The label Ok characterizes thenormal cases. Exception names and error messages are re
ected by the labelsbelonging to L.An exception algebra A on an exception signature (�; L) is a �-algebra A providedwith, a set of terms, denoted lA (t 2 lA means that the term is labeled by l).An axiom is inductively de�ned as previously but we add labeling atoms of theform \w � l" where w is a term with variables (i.e. an element of T�(X)) and lis a label belonging to L. Such an atom means that w is labeled by the exceptionl (see example below).As consequence of this approach, (labeled) terms must also be considered as \�rstcitizen objects." An exception algebra A satis�es a labeling atom \w � l" if for7

every assignment � : T�(X) ! T�, we have: �(w) 2 lA. Intuitively, �(w) 2 lAwith l 6= Ok means that the calculation de�ned by �(w) leads to the exceptionname l. The satisfaction of general formulas is de�ned from the satisfaction ofatoms as above (see Section 3.1) .An exception speci�cation is a quadruple (�; L;GenAx;DefAx) where GenAx isa set of axioms, called \generalized axioms", and DefAx a set of axioms, called\default axioms". The axioms of an exception speci�cation are separated in twoparts in order to preserve clarity and terness.� GenAx is devoted to exception handling. The purpose of GenAx is tospecify the exceptional cases: when to raise exceptions and how to recoverthem.� DefAx is entirely devoted to the normal cases (when no exception hasbeen raised). These axioms are called default axioms because terms underconsideration in this part are by default labeled by Ok and �(w) 2 OkAmeans that the calculation de�ned by �(w) is a \normal" calculation (i.e.it does not need an exceptional treatment).Example 3.2:Let us consider the bounded natural number speci�cation with the successorand sum operations. Let us assume that every calculation of the form succi(0)(i � Maxint) is labeled by Overflow. Lastly, let us consider an exceptionhandler that recovers every Overflow-value onMaxint. We obtain the followingexception signature:S = fNATBg = � Name of the sort � =F = 0 : �! NATBsucc ; : NATB �! NATB = � successor � =+ : NATB NATB �! NATB = � sum � =L = fOverflowgand following speci�cation:GenAx:succMaxint(0) � Overflowsucc(n) � Overflow =) succ(n) = n(succ(n) + m) � Overflow =) (n + succ(m)) � Overflown + m = m + nDefAx:n + 0 = nn + succ(m) = succ(n + m) 8

The �rst axiom of GenAx speci�es the Overflow domain. The second axiomspeci�es the exception handler which consists to recover every Over
ow-valueinto Maxint-value. Lastly, the last two axioms describe general properties onevery terms (i.e. both terms labeled by Ok or Overflow).DefAx speci�es the usual operation \+" in all normal cases. As we have al-ready seen, every axiom belonging to DefAx is implicitly labeled by Ok. Con-sequently, in both DefAx-axioms above, we implicitly have: n � Ok, m � Ok,n + succ(m) � Ok and succ(n + m) � Ok.According to the speci�cation de�ned above, we can consider the exception alge-bra A = (A; flAgl2L[fOkg) de�ned by: A = [0 : : :Maxint].The operations 0A, succA and +A are de�ned as usual on integers with thefollowing restriction: succA(Maxint) =Maxint.4 An informal speci�cation of the DLXDLX has been chosen because of its architecture. It is characteristic of all theRISC architectures. Before formally specifying DLX, let us consider a DLX'sinformal description.\What informations do we need to informally specify DLX ?" As every architec-tural description, relevant informations are:� the instruction set� data used, their format and their addressing modes� exceptions� general resourcesIn the four next sections, we informally describe the DLX's behavior (see [HP90]and [HP94] for more complete description).4.1 The instructions setAs usual, the instruction set contains two kinds of information:� The operations{ memory access (Load, Store){ ALU operations (integer and
oating point){ Control operations (branches and jump)� The instruction format 9

{ register-register (destination, operand1, operand2){ register-instructions and short branch (destination, source, immediate){ Branches and jump (immediate)In a pedagogical purpose, we only consider a subset of the whole instruction setin this article (see [HP90] and [HP94] for more details).4.2 The data format and addressing modesTo correctly de�ne registers and the memory (and also the whole set of buses),we have to describe all data types manipulated by DLX:� Integer data type is encoded by either word of 8, 16 or 32 bits.� Floating-point data type is encoded by either word of 32 bits for simpleprecision or word of 64 bits for double precision.There is only one addressing mode, de�ned by:Address = Register + o�set4.3 The exceptionsExceptions occur in the following cases:� Hardware or software Interruptions� ALU exceptions� Instruction errors� ...4.4 The general resourcesAt this description level, we only de�ne the registers �les: GPR and FPR. Otherspeci�c registers (e.g. the program counter) can be deduced from the instructionset.In order to simplify the speci�cation process, the following resources are used:10

GPR 32 register to store integersFPR 32 register for
oating-point numbers.R0 1 register coded to the 0 value.SR 1 status register.IR 1 instruction register.MDR 1 memory data register.MAR 1 memory address register.IAR 1 interruption register.IAR 1 interruption register.PC 1 program counter.TVR 1 TRAP value register.5 The DLX algebraic exception speci�cationFrom the DLX's informal description, we formally specify it, using the exceptionspeci�cation framework.In a pedagogical purpose, we only specify a part of the actual DLX's behaviordescribed above.As we have seen, the interest of axiomatic speci�cations is to formally describethe most abstract behavior of a system. Thus, we have to determine the funda-mental DLX properties. Let us notice that the DLX's informal description above,is composed of architectural data (e.g. the pipeline), external characteristics (e.g.the memory is 32-bits addressable) and functionalities (e.g. integers operations).From the user point of view, the fundamental DLX properties only concern ex-ternal characteristics and functionalities. The reason why architectural data donot belong to these properties is that they describe the \how part" and not the\what part" of DLX. Consequently, to completely specify the DLX behavior, wehave to consider two levels of speci�cation:� a high level speci�cation where concrete implementation is not considered.� a low level speci�cation for which some implementation choices are takeninto account.The mean to link both speci�cations is de�ned by abstract implementation theo-ries (see Section 5.2.1).The approach followed is to write a fully abstract speci�cation based on theabstraction of the real-life data structures (integers, natural numbers...) and theobservational behavior of the DLX processor (Section 5.1). Then, we give a lowlevel speci�cation where the DLX processor is described by its lower level datastructures (typically arrays of Booleans) (see Section 5.2). This is indeed onestep of implementation. 11

5.1 The high level speci�cationThe high level speci�cation will only express what DLX users need: the DLX'sinstruction set and the linking of instructions. Consequently, we need to specifyboth to reach our purpose 1.At this level of description, well known abstract data types provide the basis ofthe speci�cations. They are typically used to describe user-de�ned data typescreated to represent some abstraction of a real-life entities. The high level spec-i�cation may seem to be very abstract regardless to what we want to specify.However, we should not forget that an abstract speci�cation speci�es a set ofrequirements to describe the system properties. For the sake of clarity, relationsbetween abstract data types and DLX entities are given in Figure 5.1. For eachentity of the DLX processor, a corresponding abstract data type speci�es thebehavior of the operations existing in real-life. For example, a unsigned registeris a bounded structure (due to the �nite representation used to memorize itsvalue). The operations which can be performed on such a structure are sum,subtraction, comparison, and so on. So, it is obvious that the bounded naturalnumber data type represents a good abstraction of unsigned integers. In fact, thisone just keeps the interesting properties of unsigned registers (see the boundednatural numbers speci�cation in Example 3.2). The high level DLX speci�cationis composed of 5 modules:� RELB, NATBSigned and unsigned integers.� FLOAT
oating-point numbers.� REGMemorization element.� MEMA list of memorization elements: extern memory and register �le.� INSTRInstruction scheduling.Each one is representative of the classical speci�cations which can be found whentrying to specify Hardware.Schematically, DLX is represented by the following �gure.1In fact, to keep our pedagogical way, we only describe a subset of the complete instructionset. This subset has been chosen to represent all di�erent types of instructions.12

Instr, dataREGInstr, dataREG ExecutionExt. memory PCGPRINSTR REGMEMMEMRELB
Basic element of the DLXIts corresponding type in speci�cationFloatFLOATBGraph of the speci�cationNot speci�edSigned integer NATBUnsigned integerFigure 5.1We do not specify the signed integers data type because it is similar to unsignedintegers speci�cation with respect to the operation predecessor (pred) and thelabel Underflow.5.1.1 Speci�cation of the
oat registers: FLOATClassically, a
oat register is de�ned by: a sign, a mantissa and an exponent. Werepresent signs by booleans , mantissas by natural numbers, and exponents byintegers (BOOL, NATB, RELB speci�cations). Consequently, it is unnecessaryto specify new data types. Likewise, we do not need to specify new operations.For example, a sum of two exponents is de�ned by the integer sum. Thus, weonly focus on the speci�cation of
oat registers:S = fFLOATg = � Name of the sort (type) � =F = = � beginning of the signature � =float : BOOL �RELB � NATB �! FLOAT = � float format � =infinite : FLOAT �! BOOL = � test if value is infinite � =zero : FLOAT �! BOOL = � test if value is nul � =L = fOverF loat; UnderF loat;NaN= � errors; Not A Number � =� The generator \
oat" means that a
oat register is de�ned by the concate-nation of a Boolean (i.e. sort BOOL), a bounded integer (i.e. sort RELB),and a bounded natural numbers (sort NATB).� The set of operations \in�nite" and \zero" are observators on the
oatregister. 13

The second part of the speci�cation is de�ned by the following set of axioms.GenAx:eq(fract; 0) = falseeq(exp;EMax) = true �=) float(sign; exp; fract) � NaN = � Not a Number � =Emax < exp = true =) float(sign; exp; fract) � OverF loatexp < Emin = true =) float(sign; exp; fract) � UnderF loatDefAx:Emax = succEMax(0)Emin = predEMax�1(0)Fmax = succFMax(0)eq(fract; 0) = trueeq(exp;EMax) = true �=) infinite(float(sign; exp; fract)) = trueeq(fract; 0) = trueeq(exp;EMin) = true �=) zero(sign; exp; fract)) = trueThe GenAx-axioms are devoted to describe the domain of each label (i.e. excep-tion name) of the signature (i.e. terms labeled byNaN , Overfloat or UnderF loat).Concerning DefAx-axioms, the operation \in�nite" takes a
oat register andchecks whether its value is in�nite or not regardless of the IEEE 754 norm.5.1.2 The register speci�cationBy analyzing the instruction set, let us notice that DLX's registers contain eitherinstructions or, signed and unsigned integers, or
oating-point numbers. More-over, instructions are encoded into three di�erent formats:RDOPCODE RTRSOPCODEOPCODE RS RDRT / IMD 16 bitsIMD 26 bitsNATB NATB NATB NATB NATBNATB NATB NATBNATBI / F 032 RELB 16, NATB 16RELB 26, NATB 16Instruction formats with their corresponding speci�cation type.REG: RegisterREG: RegisterREG: Register
Notation: The I / F stands for the integer or
oating-point instruction.14

Every information above are respected in the following register exception speci-�cation:S = fREGg = � Name of the sort (type) � =F = = � begin of the signature � =instr : NATB � NATB �NATB � NATB � NATB �! REG = � Reg-Reg instruction format � =instr : NATB �NATB �NATB � RELB16 �! REG = � Reg; branches; 16 bits imd � =instr : NATB � RELB26 �! REG = � Jump; branches; 26 bits imd � =: FLOAT �! REG = � FLOAT to REG conversion � =: RELB �! REG = � RELB to REG conversion � =: NATB �! REG = � NATB to REG conversion � =L = fUNDEFINSTR; = � unknown unspecified instructions � =TBSLg = � instructions specified later � =The number of bits used to represent the instruction set allows to encode morethan the DLX's 90 instructions. Consequently, some binary codes have no corre-sponding instruction; their label is \UNDEFINSTR".\TBSL" (To Be Speci�ed Later) is another label indicating that the instructionwill be speci�ed later (e.g. in another re�nement step). Thus, the high levelspeci�cation becomes more legible.The set of general axioms is de�ned by:GenAx:Unused Code-opinstr(0; succ1(0); x; y; z) � UNDEFINSTR = � 000001 has no associated instruction � =instr(0; succ5(0); x; y; z) � UNDEFINSTR = � 000101 has no associated instruction � =instr(0; succ8::15(0); x; y; z) � UNDEFINSTR = � 001000 to 001111 have no associated instructions � =:::/* Instruction not yet speci�ed */SLL = � shift left logical (000100) � =instr(0; succ4(0); x; y; z) � TBSLMULTF = � floating � point multiplication (000010) � =instr(1; succ2(0); x; y; z) � TBSL:::The label \TBSL" prevents incomplete speci�cations. For example, let us take a\TBSL"
oating-point unit; its label will only be removed if we �nally want tospecify a complex processor with
oating-point and integer units. If we want tospecify a simpler processor, the label will be kept. In both cases, speci�cationsare complete.The reason why the SLL (shift logical left) and MULTF instruction are labeledby \TBSL" is that it is easier and more legible to specify the shift operation usingarray of booleans rather than integers. 15

Remark: Let us notice that there is no speci�c DefAx part for the registersignature. The reason why is that Ok-Axioms contained in registers speci�cations(i.e. natural numbers, integers and
oating points) are su�cient.5.1.3 The memorisation elementsThere are two di�erent memorisation elements in DLX:� the external memory� the register setWithin the high level speci�cation, both behave in the same way as they arecomposed of a set of registers. So, we have only one global exception speci�cation,called the \MEM" speci�cation. The corresponding signature is de�ned by:S = fMEMg = � Sort correponding to the extern memory and the register file � =F =write : REG�MEMSIZE � NATB �!MEMSIZE = �write REG in MEMSIZE [NATB] � =read : MEMSIZE � NATB �! REG = � read the content of MEMSIZE [NATB] � =create : NATB �!MEMNATB = � Creation of a memory of NATB size � =L = fOutOfMemoryg = � memory access forbidden � =The set of axioms is de�ned by:GenAx:ind < 0 = true =) write(r; br; ind) � OutOfMemory = write forbidden at negative index � =SIZE < ind = true =) write(r; br; ind) � OutOfMemory = � the index exceed the memory size � =ind < 0 = true =) read(br; ind) � OutOfMemory = � negative index � =SIZE < ind = true =) read(br; ind) � OutOfMemory = � index too big � =DefAx:write(r1; write(r2; br; ind); ind) = write(r1; br; ind) = � Rewrite on a 00REG00 will overwrite value � =eq(ind1; ind2) = false = � write order in two different cases is undiferrent � ==) write(r1; write(r2; br; ind2); ind1) = write(r2; write(r1; br; ind1); ind2)read(write(r; br; ind); ind) = r = � Read operation give the last written value � =From now on, we can specify the execution of the instructions contained in thememory.5.1.4 The instruction schedulingThe entity Execution Unit is quite special; it is not a real-life entity of the DLXprocessor. In our speci�cations, it represents a virtual execution unit, includingdi�erent steps of the DLX's pipeline: fetch, decode, execute...16

The instruction scheduling speci�cation allows the introduction of dynamic as-pects in the DLX speci�cation. Let us give the speci�cation of the ExecutionUnit:S = fINSTRg = � instruction scheduling sort � =F =[; ;] : REG�MEM �MEM �! INSTR = � static state (PC;GPR;Memory) � =exe : INSTR �! INSTR = � go to the next state (next instruction) � =L = fERRORINFETCHg = � execution; instruction error � =The �rst operation represents a state of the DLX at a given step: this staticstate is composed of a memory, a register set and a counter program. The secondone allows to go from one state to the next. In practice, the description consistsin executing an instruction and fetching the next one. The label \ERRORIN-FETCH" is used to represent either a code operation which does not match anyinstruction or an error which occurs during the execution of an instruction.GenAx:= � propagation of errors occured in the register � register instruction format � =instr(x; y; z; t; u) � TBSL = � Instruction specified latter � ==) exe([pc; br;mem]) � ERRORINFETCHinstr(x; y; z; t; u) � UNDEFINSTR = � Undefined instruction co � op � ==) exe([pc; br;mem]) � ERRORINFETCH::: = � other instruction format � =The label \ERRORINFETCH" means that the execution of the instructionunder consideration is either not yet implemented or an invalid instruction.The exception raising \ERRORINFETCH" is caused by the propagation of ex-ceptions occuring on previous terms of the sort "MEM".The DefAx part is de�ned by:
17

DefAx:NOP = � no operation ; just start the next instruction � =read(mem; pc) = instr(0; 0; x; y; z) = � 000000 code� op � ==) exe([pc; br;mem]) = [pc+ 1; br;mem] = � next instruction � =ADD = � z = x+ y � =read(mem; pc) = instr(0; succ32(0); x; y; z)(a = read(br; x))^ (b = read(br; y)) � = � code� op 100000 � == � load x and y from the file register � ==) exe([pc; br;mem]) = [pc+ 1; write(a+ b; br; z);mem] = � store the sum; next instrution � =LW = � load word from memory and store it in register � =read(men; pc) = instr(succ35(0); x; y; z)) = � code� op 100011 � ==) exe([pc; br;mem]) = [pc+ 1; write(read(mem; y + z); br; x);mem]= � read memory[y + z]; next instr � =SW = � load word from file register and store it in mem � =read(men; pc) = instr(succ43(0); x; y; z)) = � code� op 101011 � ==) exe([pc; br;mem]) = [pc+ 1; br; write(read(br; x);mem; y+ z)] = � write in mem[y + z]; next inst � =BNEZ = � conditional branch � =read(men; pc) = instr(succ5(0); x; y; z))eq(x; 0) = false � = � code� op 000101 � == � case : value of register x ! = 0 � ==) exe([pc; br;mem]) = [pc+ z; br;mem] = � branch at pc+ z adress � =read(men; pc) = instr(succ5(0); x; y; z))eq(x; 0) = true � = � code� op 000101 � == � case : value of register x == 0 � ==) exe([pc; br;mem]) = [pc+ 1; br;me] = � next instruction � =JR = � jump with target addressed by register � =read(men; pc) = instr(succ2(0); x)) = � code� op 000011 � ==) exe([pc; br;mem]) = [read(br; x); br;mem] = � jump at address x � == � Where pc : NATB; a; b : RELB; �=Let us notice that the pipeline is underlying:� Fetch and decode of the instructionread(men,pc) = instr(succ5(0),x,y,z)).� Registers fetcha = read(br, x)� Execution step and memory access. exe[, ,] = [, ,]We do not consider it in this paper to simplify the DLX speci�cation. Neverthe-less, it is possible to describe such an architectural structure into our speci�cationframework. 18

5.2 Low Level Speci�cation of the DLX Processor5.2.1 Abstract implementationThe aim of an abstract implementation is to specify a higher level abstract datatype by another lower level data type and to give:� an axiomatic speci�cation describing how the lower level data types are usedto implement (simulate) the higher level data type under consideration.� semantics for this speci�cation.� means to prove its correctness.The main advantage of such an approach is that the formalism used for all thespeci�cations (the lower level data types, the higher level data type and the ab-stract implementation) is the same. Thus, they share the same proof techniques.Consequently, correctness proofs for abstract implementations are easier becausethey can be performed according to a homogeneous logic. We can prove that theimplementation of the higher level speci�cation by the lower level speci�cation iscorrect. Consequently, the �nal speci�cation behaves in the manner speci�ed.In this article, we use the [EKMP80]'s abstract implementation formalism ex-tended to exception handling [Ber89]. In this framework, the abstraction methodis used to algebraically specify the implementation. The aim of this method isto abstract tuples of lower level data types into higher level abstract data types.To reach this purpose, we use an abstraction operation, denoted by \< : : : >".From this approach, we have to consider two problems:1. two tuples of lower level data may be abstracted into only one higher levelabstract data (e.g. when we implement stacks by the couple array�nat, alltuples <t; 0> belonging to array � nat represent the same empty stack).2. some tuples of lower level data implement nothing (e.g. from the sameimplementation than above, the tuple<create; 4> belonging to array�natwhere create represents the uninitialized array, does not represent a possiblestack because the four �rst places must be initialized).As we will see below, in the [EKMP80]'s formalism, these di�culties are solvedat semantic level.5.2.2 Formalism presentationThe main idea of this formalism is to distinguish between the syntactical leveland semantic level of implementations:19

� At the syntactical level, �rst of all, we dispose of two exception speci�ca-tions:1. the speci�cation of the lower level data types, denoted by:Spec0 =< �0; L0; GenAx0 ;DefAx0 >.2. the speci�cation of the higher level data type that we want to imple-ment, denoted by: Spec1 =< �1; L1; GenAx1 ;DefAx1 >.Moreover, we can specify an intermediate hidden speci�cation SpecH .Thus, a syntactical implementation is de�ned by an tuple:Impl =< FAbs; SpecH; GenAxop ;DefAxop >where:{ FAbs is the set of abstraction operations provided with a co-domainbelonging to S1`SH .{ SpecH =< �H ; LH; GenAxH;DefAxH > is the speci�cation describ-ing the behavior of hidden operations of the implementation. Theseones are only used to specify the implementation. They are not visibleoutside.{ GenAxop (resp. DefAxop) is the set of generalized axioms (resp. de-fault axioms) describing the \constructive" implementation of higherlevel operations.� The semantic level is composed by three successive applications: synthesis,identi�cation and restriction2.{ the synthesis application turns each algebra satisfying the residentalgebras (i.e. the speci�cation Spec0) into only one algebra satisfyingthe implementation (i.e. the speci�cation Impl).{ the identi�cation application identi�es all tuples which implement thesame higher level data. Consequently, it allows to semantically solvethe �rst di�culty mentioned above.{ the restriction application prunes all tuples which implement nothing.So, it semantically solves the second di�culty mentioned above.2As the class of algebras which satisfy a given speci�cation, de�nes a category (for moredetail, see [BW90]), the synthesis, identi�cation and restriction applications are generally calledfunctors (i.e. applications which preserve morphisms between algebras).20

5.3 The DLX abstract implementationWhat we intend to implement in DLX concerns data types described in the highlevel speci�cation (natural numbers, integers and
oating-point numbers). Weuse the array data type (see the ARRAY speci�cation of Example 3.1 with thesort ELEM instantiated by BOOL) to implement bounded natural numbers inbinary representation. Consequently, the only element of FAbs is:< >: Array! NATBSo, given an array t for which the size is n, the corresponding natural numberval is obtained by the following formulas: val = succn(0) where n = nXi=1t[i]� 2i.3To implement bounded natural numbers from arrays, supplementary operationson the already implemented structures (i.e. Array and Boolean) are useful tospecify the �nal implementation. The behavior of these operations is de�nedinto the hidden speci�cation of the implementation SpecH. They are speci�ed asfollows:S = fARRAY;BOOL;NATBg = � Names of sorts � =F = Wide : �! NATBunif : ARRAY �BOOL �NATB �! BOOLplus : ARRAY �ARRAY �ARRAY �BOOL �NATB �! ARRAYIntuitively, unif(t; b; n) is true if all cells of t between 0 and n uniformly containthe value b, Wide gives the size of arrays under consideration in the speci�cationand plus(t1; t2; ts; ret; n) is the classical binary addition (using n full adders, retis the carry) of the arrays t1 and t2 from the cell 0 to the cell n. The array ts isthe addition result.For the sake clarity, we only specify the operation plus. So, we obtain the fol-lowing axioms:3Let us remark that the identi�cation and restriction applications are only identity appli-cations. The reason for it is that the abstraction operation < > is bijective (this property iseasy to show). At each array we have only one natural number which is implemented by it.Conversely, at each natural number, it corresponds only one array which implemented it.
21

GenAx:= � sum of numbers too big � =(t1[Wide� 1] and t2[Wide� 1])or (carry and (t1[Wide� 1] or t2[Wide� 1])) �) plus(t1; t2; t3; carry;Wide) � OverflowDefAx:= � description of the sum with logical operators � =plus(t1; t2; t3; carry;Wide) = store(t3;W ide; ((t1[Wide] xor t2[Wide]) xor carry))plus(t1; t2; t3; carry; n) = plus(t1; t2; store(t3; n; ((t1[n] xor t2[n]) xor carry);(t1[n] and t2[n]) or (carry and (t1[n] xor t2[n]); succ(n))= � Where WIDE is the array size: � =Remark: The description into a hardware language such as VHDL is very closeto the description above.procedure plus (t1; t2 : in bit vector;t3 : out bit vector) isvariable result : bit vector(t10range);variable carry : bit := 000;beginfor n in result0reverse range loopresult(n) := t1(n) xor t2(n) xor carry;carry := (t1(n) and t2(n)) or (carry and (t1(n) xor t2(n)));end loop;t3 := result;end plus;Here, the abstract implementation of operations belonging to bounded naturalnumbers speci�cation is de�ned by:GenAx:unif(t; true;Wide) = true =) succ(< t >) � Overflow = � succ(0111:::111) give an overflow � =succ(< t1 >) � Overflow =) succ(< t1 >) =< t1 > = � succ do nothing on a too big number � =succ < t1 > + < t2 > � Overflow =) < t1 > +succ < t2 > � OverflowDefAx:unif(t; false;Wide) = true =) 0 =< t > = � element 0 definition � =< t1 >= 0 =) succ(< t >=<plus(t; store(t1; 0; true); t2; false; 0)>succ(< t >) =< plus(t; store(< nul >; 0; true); t2; false; 0) > = � succ(n) = n + (000::::001) � =< t1 > + < t2 >=< plus(t1; t2; t3; false;Wide) > = � integer sum conversion into bit array sum � =� � � and so on for operations: �; eq; <We assume that the maxint-value is represented by the array where each cellcontains true. So, when we apply the operation succ on it, we obtain a highervalue. Consequently, such a term has to be labeled by Overflow. The secondaxiom de�nes the exception handler. Lastly, as previously, the last two axiomsdescribe general properties on every term.22

The DefAx part de�nes the constructive speci�cation. It describes how the op-erations 0, succ and + of the higher level speci�cation are implemented fromresident speci�cation operations, the hidden operation plus and abstraction op-eration < >.As previously, we do not consider integers and
oat implementation.5.3.1 SLL instructionAs we mentioned before, the SLL instruction has not been speci�ed in the high-level speci�cation (this has been made possible by using the label "TBSL"). Thereason for it is that it is easier to specify a shift with the ARRAY structure inthe implementation than with RELB and NATB data types. Now, at this levelof description, we get the following speci�cation:F = = � left logical shift � =sll : ARRAY � ARRAY � NATB �NATB �! ARRAY: : :DefAx:0 < n� count = false = � fill the 00count00 less significants bits with 0 � ==) sll(< t1 >;< t2 >; count; n) = sll(< t1 >;< store(t2; n; 0) >; count; pred(n))0 < n� count = true = � shift the content of t[n� count] to t[n] � ==) sll(< t1 >< t2 >; count; n) = sll(< t1 >;< store(t2; n; t1[n� count]) >; count; pred(n))sll(< t1 >;< t2 >; count; 0) =< t2 > = � return t2 when all shifted � =5.4 Implementation of the instruction setThis section is devoted to the implementation of the subset of the DLX instruc-tions set, previously de�ned.Let us assume that some constants like nop, add, sll, j, nul4 ... are speci�ed inthe hidden part of the implementation speci�cation.4null is the array where each cell is at false.
23

DefAx :NOPmem[pc] = instr(nul; nop; < t1 >; < t2 >; < t3 >) =) exe[< pc >; < br >; < mem >]= [< pc > + < store(nul; 0; 1) >; < br >; < mem >]ADDmem[pc] = instr(UE; add; < t1 >; < t2 >; < t3 >) =) exe[< pc >; < br >; < mem >][< pc > + < store(nul; 0; 1) >; < store(br;< t3 >;< t1 > + < t2 >) >; < mem >]SLLmem[pc] = instr(UE; sll; < t1 >; < t2 >; < t3 >) =) exe[< pc >; < br >; < mem >]= [< pc > + < store(nul; 0; 1) >; < store(br;< t3 >; sll(< t1 >; < t2 >; < t3 >; Wide)); < mem >]Jmem[pc] = instr(j; < t >) =) exe[< pc >; < br >; < mem >]= [< pc > + < t >; < br >; < mem >]LWmem[pc] = instr(lw; < t1 >; < t2 >; < t3 >) =) exe[< pc >; < br >; < mem >]= [< pc > + < store(null; 0; 1) >; < store(br;< t3 >;mem[< t1 > + < t2 >]) >; < mem >]SWmem[pc] = instr(sw; < t1 >; < t2 >; < t3 >) =) exe[< pc >; < br >; < mem >]= [< pc > + < store(nul; 0; 1) >; < br >; store(mem;< t2 > + < t3 >;< br[< t1 >] >)]5.4.1 Implementation correctnessAs mentioned before, the high-level, low-level and implementation speci�ca-tions are written in the same formalism. Consequently, correctness proofs forabstract implementation are easier because they can be performed according toan homogeneous logic.Intuitively, an implementation will be correct provided that the behavior of theimplementation is indistinguishable from the behavior of the higher level speci�-cation under consideration.Formally, [EKMP80] de�nes the correctness of an abstract implementation bythe following two conditions:1. The �rst condition, called op-completude, means that every ground termbelonging to the higher level speci�cation is (recursively) de�ned by theimplementation. Consequently, such a condition means that every opera-tion in higher level speci�cation is completely speci�ed. This condition is24

easy to verify. It is often su�cient to inductively reason on operations be-longing to the higher level speci�cation. For example, our implementationof natural numbers by the arrays data type trivially veri�es this condi-tion. The reason is that the abstraction operation < >: Array ! Nat issurjective (in fact, as we have seen before, it is bijective).2. The second one means that the implementation completely simulates thehigher level speci�cation. Such a condition means that we can prove everyaxioms belonging to the higher level speci�cation from the axioms of theimplementation.For example, let us prove the �rst axiom of the DefAx part in the naturalnumbers speci�cation: x + 0 = x(i.e. 0 is neutral for the sum operation).As already seen, the abstract operation < >: ARRAY ! NATB is bijec-tive. Consequently, there exists an unique operation � : NATB ! ARRAY(we have no over
ow problems because x + 0 = x is a DefAx-axiom). So,it is su�cient to prove the following formula:�(x) + 0 = �(x)By the �rst axiom of the natural numbers implementation, we can write:�(x) + �(0) =<plus(�(x); �(0); t; false; 0)>Consequently, it is su�cient to prove the following property:8i 2 [1;Wide]; plus(�(x); �(0); t; false; 0)[i] = �(x)[i]To reach this result, inductively show on the following lemma:Lemma:8n �Wide; 8i 2 [1; n]; plus(�(x); �(0); t; false; 0)[i] = �(x)[i]and carry = false (at the step n)Proof:Basic case: At the �rst step of calculation, we have to consider two cases:25

� ifWide = 0 then by the �rstDefAx-axiom of the hidden speci�cation,we can write:plus(�(x); �(0); t; false; 0) = store(t; 0; �(x)[0])So, by the second axiom of the array speci�cation, we can write:store(t; 0; �(x)[0])[0] = �(x)[0]Consequently, we directly conclude:plus(�(x); �(0); t; false; 0)[0] = �(x)[0]� if Wide 6= 0 then by the second axiom of the hidden speci�cation, wecan write:plus(�(x); �(0); t; false; 0) =plus(�(x); �(0); store(t; 0; �(x)[0]); false; succ(0))Let us remark that from the hidden speci�cation, it is easy to prove:8i 2 [1; n� 1]; plus(t1; t2; t3; carry; n)[i] = t3[i]Consequently, by the second axiom of the array speci�cation, we candirectly write: plus(�(x); �(0); t; false; 0)[0] = �(x)[0]In the same way, it is obvious that the resulting carry is false.General case: Let us assume that t be the array obtained to the nth stepof calculation. According to the induction hypothesis, we have:8i 2 [1; n]; t[i] = �(x)[i] and carry = falseAs the basic case, concerning the n + 1th step, we have to consider twocases:� if Wide = n+ 1 then by the �rst DefAx-axiom of the hidden speci�-cation, we can write:plus(�(x); �(0); t; false; n+ 1) = store(t; n+ 1; �(x)[n+ 1])Moreover, by the second axiom of the array speci�cation, we also have:26

store(t; n+ 1; �(x)[n+ 1])[n+ 1] = �(x)[n+ 1]As we have seen before, let us remember that:8i 2 [1; n� 1]; plus(t1; t2; t3; carry; n)[i] = t3[i]Consequently, we directly conclude:8i 2 [1; n+ 1]; plus(�(x); �(0); t; false; 0)[i] = �(x)[i]� if n+1 < Wide then by the second axiom of the hidden speci�cation,we can write:plus(�(x); �(0); t; false; n+ 1) =plus(�(x); �(0); store(t; n; �(x)[n]); false; succ(n+ 1))Consequently, we can directly write:8i 2 [1; n+ 1]; plus(�(x); �(0); t; false; 0)[i] = �(x)[i]In the same way, it is obvious that the resulting carry is false.6 ConclusionThe work partially reported in this paper shows that property oriented speci�-cations are also well suited to specify Hardware. Similar results prepare the wayto a new approach for Hardware/Software co-design, using formal methods andaxiomatic speci�cations. In particular, we have shown that proving techniquesof algebraic speci�cations and stepwise re�nements can be achieve in the samemanner as in Software.This article reports a case study of Hardware speci�cation using algebraicspeci�cation with exception handling. We have shown on this example how ax-iomatic speci�cations ful�ll the fundamental constraints of co-design:� to be in position to specify without hypotheses about future implementa-tions (Hardware / Software choices).� to be in position to specify the Hardware and Software parts without a pri-ori management of the system complexity (i.e.
exible design of Hardwareand Software parts). This o�ers at the designer the possibility to make cor-rectness proofs of his or her system as soon as possible in the design process.Consequently, the mistakes of speci�cations fraught with consequences areavoided. 27

Let us note that this properties directly follow from using of axiomatic speci�ca-tions.This case study convinced ourselves of the importance of exception handlingand modularity. These two concepts are crucial to reach a legible and tersespeci�cation style. Modularity also provides reusability of speci�cation modules.It would be of �rst interest to enrich classical software speci�cations libraries withspeci�c hardware modules.For general purpose system speci�cations, it seems to be necessary to com-plete a modular approach with concurrent and dynamic aspects betweenmodules.With this respect, the potential bene�ts of Object Oriented concepts have beenillustrated in [AJKW94], but at a non formal level, using the C++ language. Al-gebraic speci�cations with Object Oriented aspects belong to the latest issues ofthe European ESPRIT working group IS-CORE [AB95]. The goal of our futureworks is to extend these developments to Hardware/Software co-speci�cation.Indeed, such a formalism o�ers new perspectives for the co-design as complexinteractions between elements of a system and implicit dynamic aspects (states,temporality notion, ...). The main advantage of such a formalism is that resultingspeci�cations are more abstract , clearer and terser. Thus, this allows to delayimplementation steps.AcknowledgementsWe would like to thank Judith Benzakki for careful proof readings of this paperand accurate corrections.References[Abr94] J-R. Abrial, : \Assigning meaning to programs", to be published,Cambridge University Press, 800 pages, 1994.[AB95] M. Aiguier, G. Bernot, : \Algebraic semantics of object type speci�ca-tions" to be published in proceedings of IS-CORE'94, World Scienti�cPublishing, 1995.[ABBI94] M. Aiguier, J. Benzakki, G. Bernot, M. Isra�el, : \Ecos: From For-mal Speci�cation to Hardware / Software Partitionning", VHDL Fo-rum'94, Grenoble, France, 1994.[AJKW94] H.A. Aylor, B.W. Jonhson, S. Kumar, W.A. Wulf : \Object-OrientedTechniques in Hardware Design", Computer Science, pp. 64-70, June1994.[Ber89] G. Bernot, :\Correctness proofs for abstract implementations" In-formation and Computation (formerly Information and Control)",Vol.80, No.2, pp.121-151, February 1989.28

[BGA94] G. Bernot, P. Le Gall, and M. Aiguier, : \Label algebras and ex-ception handling" Science of Computer Programming (23), North-Holland Pub., pp. 227-286, 1994.[BGM89] M. Bidoit, M-C. Gaudel and A. Mauboussin, : \How to make al-gebraic speci�cations more understanble? an experiment with thePLUSS speci�cation language", Science of Computer Programming,12(1), 1989.[BH85] B. Biebow, and J. Hagelstein : \Algebraic speci�cation of synchro-nization and errors: A telephonic example", In Proc. of the 1st In-ternational Joint Conference on Theory and Practice of Software De-velopment (TAPSOFT), pp. 294-308, Springer-Verlag, L.N.C.S. 186,1985.[BW82] M. Broy and M. Wirsing, : \Partial abstract data types", Acta Infor-matica, 18(1), November 1982.[BW90] M. Barr, and C. Wells, : \Category Theory for Computing Science",Prentice-Hall, 1990.[Cap87] F. Capy, : \ASSPEGIQUE : un environnement d'exceptions... Unes�emantique op�erationnelle des E,R-alg�ebres, formalisme prenant encompte les exceptions. Un environnement int�egr�e de sp�eci�cationalg�ebrique: ASSPEGIQUE", PhD thesis, Universit�e de Paris-Sud,d�ecembre 1987.[DG94] P. Dauchy, and M.C. Gaudel, : \Algebraic Speci�cations with implicitstate", LRI, Universit�e de Paris-Sud, Tech. report n.887,1994.[DS83] J. Despeyroux-Savonitto, : \An algebraic speci�cation of a Pascalcompiler", SIGPLAN notices, 18(2), 1983.[EKMP80] H. Ehrig, H. Kreowski, B. Mahr, P. Padawitz, : \Algebraic implemen-tation of abstract data types", Theoritical Computer Science, October,1980.[EM85] H. Ehrig and B. Mahr, : \Fundamentals of algebraic speci�cation 1.equations and initial semantics", EATCS Monograph on TheoteriticalComputer Science, 6, 1985.[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner, : \An initial algebraapproach to the speci�cation, correctness, and implementation of ab-stract data types" In Current Trends in Programming Methodology,R.T. Yeh Prentice-Hall �editeur, volume IV, pp.80-149, 1978. Also IBMReport RC 6487, October 1976.29

[Gog78] J.A. Goguen, : \Order sorted algebras: exceptions and error sorts,coercion and overloading operators" Tech. report n.14, University ofCalifornia Los Angeles, Semantics Theory of Computation, December1978.[HP90] J.L. Hennessy, and D.A. Patterson, : \Computer Architecture: AQuantitative Approach" Morgan Kaufmann Publishers, Inc, 1990.[HP94] J.L. Hennessy, and D.A. Patterson, : \Computer Organization andDesign. The Hardwarw / Software Interface" Morgan Kaufmann Pub-lishers, Inc, 1990.[Jon90] C.B. Jones, : \Systematic Software Development using VDM", Pren-tice Hall International, 2nd edition, 1990.[KB70] D-E. Knuth and P-B. Bendix, : \Simple word problems in universalalgebras", In J. Leech, ed., Computational Problems in Abstract Al-gebras, pp. 263-297, Pergamon Press, Oxford, U.K., 1970. (reprinted[1983] in Automation of reasonning 2, Springer, Berlin, pp. 342-376.)[Mos89] P. Mosses, : \Uni�ed algebras and action semantics", In Proc.STACS'89, 6th Symp. on Theoritical Aspects of Computer Sciences,February 1989.[MSS89] V. Manca, A. Salibra and G. Scollo, : \Equational type logic", InConference on Algebraic Methodology and Software Technology, pp.131-159, May 1989. Iowa City, Iowa (TCS 77).[Spi92] J.M. Spivey, : \The Z notation: a reference manual", Prentice HallInternational, 2nd edition, 1992.
30

