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1 Introduction

As complexity of Hardware/Software systems increases, it becomes impossible
to manage this complexity without formal methods. Formal specification allows
to rigorously prove that the final implementation behaves in the manner speci-
fied. Today, computer systems involve a strong imbrication between Hardware
and Software parts. For example, a processor is not only a hardware resource,
software is a plain part of it, and we have to be able to do a well partitioning of
hardware and software parts. For some applications (e.g. telecommunications), it
is important not to induce any constraint on the Hardware/Software partitioning
at the specification level. Consequently, it is of first interest to use an homo-
geneous specification language for the system as a whole. Formal approaches
have already been studied, particularly the specification of the IEEE float using
the language 7 [Spi92] [Jon90]. Approaches such as Z or VDM are “model ori-
ented” languages. We decided to use a “property oriented” language, algebraic
specification with exception handling [BGA94] , which allows to reach a very ab-
stract specification style where no hypotheses about the future implementation
are made.

Algebraic specifications allow: checking coherence and completeness of a spec-
ification, proof: before and after refinement, stepwise enrichment: specify and
prove step by step all along the development process, successive refinements up
to code generation. The usefulness of algebraic specifications is widely recog-
nized for Software, the main purpose of the work reported here was to check if
algebraic specifications are also able to specify Hardware.

We focused on the specification of the RISC architecture. For that purpose, we
decided to choose the DLX processor as a case study, because it is a representa-
tive example of the RISC technology (see [HP90] and [HP94]). Our approach was
to first write a full abstract specification based on well established mathemati-
cal abstractions of the real-life data structures (integers, natural numbers, ...)
and the observational behavior of the execution unit. Then we wrote a low level
specification where DLX is described by its lower level data structures (array of



Booleans). Lastly, we performed the most relevant proofs of the correctness of
this abstract implementation. Proofs are possible at all levels of specifications
and during the abstract implementation.

2 The advantages of rigorous formal methods

2.1 The role of formal specifications

One of principal targets of all methods and technics of hardware / software system
design is to obtain flexible (i.e. one can easily have a system advanced) reusable
(i.e. either for simpler purposes or like a basis of some larger system) and correct
systems (i.e. the system does what it is supposed to do). Formal specifications
are good means to reach these three properties for two reasons:

e Formal specifications are written according to rigorously and mathemati-
cally established syntaz (i.e. what a specifier is allowed to write) and seman-
tics (i.e. what is a correct system behavior with respect to the specification).
Consequently, they never contain ambiguities. So, the understanding of the
specification by the reader and the verification of its correctness are better
achieved. Then, the mistakes of specifications fraught with consequences
are avoided.

e Formal specifications allow to rigorously write specifications in describing
“what the system is supposed to do” without to be interested by “how it is
done”. It is true that it is not easy to make the most abstract specification
even if well known mathematical structures facilitated this issue. Indeed, it
is a strong discipline, a kind of “pedagogical effort.” However, this effort is
profitable, especially if the specified component is used (or reused) several
times: the abstraction effort to understand the purpose of the component
has not to be done by the readers. Moreover, resulting specifications are
clearer, terser and more legible. Consequently, the use, the reuse and the
maintenance of system are facilitated.

Moreover, formal specifications, to be fully usable, should offer a set of rules (also
called caleulus) allowing to prove if certain properties are ensured by a given
specification. The set of rules has to be sound (i.e. all properties proved from
these rules must semantically be true) and may be complete (i.e. all properties
semantically true can be proved from the set of rules). The interest of such a
calculus is to be able to directly and syntactically reason on a given specification.
Consequently, in practice, a specifier is not obliged to understand all the “so-
complicated mathematical considerations” involved by the semantics. It is only
sufficient that the specifier has an intuitive idea of what his or her specification



means, provided that the specifier can check the required properties by using the
calculus.

Lastly, as a specifier can write very abstract specification, most of specifications
that he or she manipulates, are often not executable. It is not always possible
to directly obtain a program which verifies the specification or a prototype of
the specification (e.g. by a rewriting system obtained from the specification by
using the Knuth-Bendix algorithm [KB70]). Consequently, it may be necessary
to perform refinement steps before to obtain such a prototype (see Figure 2.1).
In the formal specification frameworks, these steps of refinement are often called
abstract implementation. The aim of abstract implementations is to introduce at
each step of refinement new design decisions. These decisions may be the choice of
a special algorithm, or the implementation of some abstract operations by lower
level ones, or the implementation of some data types (e.g. the implementation of
stacks by an array and a natural number). The formal approaches give means to
prove the implementation correctness for each refinement step.

Specif 2

N levels

Prototypée

Figure 2.1

All these steps can be aided by graphic editors, formula editors, libraries of al-
ready implemented specifications, browsers, etc.



2.2 General algebraic specification framework

We may distinguish two classes of formal specification frameworks: the first one
is called “model oriented” and the second one is called “property oriented” or
“axiomatic”.

In the model oriented approaches (VDM [Jon90], Z [Spi92], B [Abr94],...) we build
an unique model from a lot of built-in data structures and construction primitives
that the specification language offers (thus, model oriented approaches more or
less induce several choices of implementation from the beginning of the specifica-

tion stage). Consequently, a program is correct with respect to its specification
if it has the “same behavior” that the model specified.

In the property oriented approaches, the specifier gives a set of “functionality
names” (also called a signature) and a set of properties on these functionalities
(often called axzioms). These properties describe the abstract behavior of the
functionalities. Consequently, the semantics associated to a specification in a
declarative style is defined by a set of models which is a subset of models that
one can build on the signature. Each one represents a possible implementation of
functionalities of the system under specification. Then, a program is correct with
respect to the specification if the model associated to this program is a model of
the specification under consideration. Also, a specification is consistent if there
exists at least one model which satisfies this specification.

So, unlike model oriented approaches, specifications in an axiomatic style are
allowed to be incomplete, without loosing a rigorous semantics.

Among property oriented formal specifications, the most popular approaches
are based on algebraic semantics (also called algebraic specifications) ([GTWTg],
[EM85]). The paradigm of algebraic specifications is rather a way of thinking
semantics, with a common set of mathematical tools (based on category theory)
to establish basic properties of the proposed specification formalism, and with a
syntax mainly based on equalities. The main advantages of algebraic specifica-
tions is that it is a good mean to deal with proof, stepwise refinement, typing
issues, exception handling, test, modularity, object oriented, reusability, etc.

This approach is new in the hardware design, but already experimented in the
software domain (e.g. algebraic specification of embedded software of a sub-
way [DG94], algebraic specification of a Pascal compiler [DS83], algebraic speci-
fication of a subset of the UNIX file system [BGM89] or on the data base of the
environment specifications ASSPEGIQUE [Cap87], telephone switching [BH85],

).



3 Introduction to axiomatic specifications

3.1 Algebraic specifications without exception handling

Succinctly, an algebraic specification Spec is defined by a signature ¥ and a set
of axioms Ax.

A signature ¥ is a set of type names S (often called sorts) with a set of function
symbols F', each one provided with a profile of the form: s; x ... x s, — s
where s; € S and s € S (n may be equal to 0). For example, the booleans
signature is defined by the set of sorts: S = { BOOL} and the set of operations:
F = {true, false : BOOL, or,and : BOOL x BOOL — BOOL,...}.

An algebraic model A on a signature ¥, also called Y-algebras, is defined by:
e a family of sets of values indexed by S, also denoted by A, (i.e. A =

{As}ses). Each set A; is called the carrier of the sort s. For example, we
may associate the following carrier for the sort BOOL: Agoor = {0, 1}.

o a set of functions f4 : A, x ... x A, — A,, one for each operation
f s xX...x s, — s belonging to F. For example, we associate the usual
semantics to boolean operations: true? =1, false* = 0,

x|y |z and® y
and - 010 0
x|ly|xorty 01 0
01]0 0 110 0
011 1 111 1
110 1
11 1

From all signature ¥, we can build a special algebraic model: the model of ground
terms, denoted by Ty, where the family of carriers contains all terms inductively
defined from the functionalities in ¥: a term of Ty can be represented by a tree
where leaves are constants (operations “¢” with a profile of the form: ¢ : s)
of the signature. For example, the ground term “(true and false) or true” is

represented by:

N\

and true
/ \
true false

Let ¥ be a signature over a set of sorts S. Let X be a family of sets indexed by
S (i.e. X = {X}ses). For each s belonging to S, X, contains variables of type



s. We denote Ty (X), the model of terms built on the signature ¥ by considering
the variables belonging to X as additional constants of the type s. We call
an element belonging to Ty (X), a term with variables in X: a term of Ty (X)
can be represented by a tree where leaves are either constants of the signature or
variables. For example, the term with variables “(x and y) or true” is represented

by:

or
N
and true

N

An azxiom is a well-formed formula inductively builds from equations “t = u

"where t and u are terms with variables of the same type, connectives in {A, V, -, =
} and quantifiers in {V,3} (free variables are supposed universally quantified).

For example, we may want the following axiom for booleans structure:

x and false = false

An algebraic model satisfies an equation “t = u” it for every assignment o :
Ts(X) — A, we have: o(t) = o(u). The satisfaction of the formulas is inductively
defined from the satisfaction of equations and the usual truth tables associated
to connectives and quantifiers.

The semantics of a specification Spec = (X, Ax) is represented by the class of
Y-algebras which satisfy each axiom of Az.

Example 3.1: Let us give the complete arrays specification (it will be used later
on):

S={ARRAY, RANG,ELEM} [ Names of soris x/

F =
create : — ARRAY [/ initial array x/
store.__ : ARRAY RANG ELEM — ARRAY [+ assignement */
A1 ARRAY RANG — ELEM / * access x [

The sort RANG is the sort of array positions and the sort Flem, the sort of
array elements.

By convention, we will denote by t the variable of sort Array, : and j those of
the sort Rang, and = and y those of the sort Elem.



Ax =

create = store(create, i, e)

i = j = store(store(t,i,x),j,y) = store(t,j,y)

i £ j = store(store(t,i,x),j,y) = store(store(t,j,y), i, )
store(t, i, 2)[{] =«

The first axiom means that the empty array contains the constant e everywhere.
The second and third axioms mean that the assignment in an array is commuta-
tive except for equal positions. In this case, the last assignment removes the first
one. Lastly, the last one means that taking an element at a given position gives
the last element put at this position.

3.2 Algebraic specifications with exception handling

From the general algebraic framework, a lot of formalism have been developed
(unified algebras [Mos89], typed algebras [MSS89], order sorted algebras [GogT78],
partial algebras [BW82]...).

In this article, we choose to use the formalism of algebraic specifications with ex-
ception handling [BGA94]. It is suitable to specify the DLX processor which has
constraints on the data representation (e.g. we consider some data represented on
32 bits). This formalism is able to treat all the exceptional cases and exception
handling features, including the following ones: implicit propagation of excep-
tions, “intrinsic” exceptions which are related to the underlying data structure
(for instance, popping an empty stack or applying the predecessor operation on
zero for natural numbers), exceptions which are relied on “dynamic” properties
(as an access to a non-initialized array cell), exceptions which are due to certain
limitations (mainly bounded data structures), recovery (as the exception handler
that recovers every overflow value on maxint).

The main idea underlying to the theory of exception algebras is that two terms
can result on the same value whilst being differently labeled.

An exception signature XL is an usual signature ¥ (see Section 3.1) to which we
add a set of labels L and a special label Ok. The label Ok characterizes the
normal cases. Exception names and error messages are reflected by the labels
belonging to L.

An exception algebra A on an exception signature (X, L) is a ¥-algebra A provided
with, a set of terms, denoted 14 (¢ € [4 means that the term is labeled by [).

An aziom is inductively defined as previously but we add labeling atoms of the
form “w € [” where w is a term with variables (i.e. an element of Tx(X)) and [
is a label belonging to L. Such an atom means that w s labeled by the exception
[ (see example below).

As consequence of this approach, (labeled) terms must also be considered as “first
citizen objects.” An exception algebra A satisfies a labeling atom “w ¢ {7 if for



every assignment o : Tx(X) — Ty, we have: o(w) € l4. Intuitively, o(w) € I4
with [ # Ok means that the calculation defined by o(w) leads to the exception
name [. The satisfaction of general formulas is defined from the satisfaction of
atoms as above (see Section 3.1) .

An exception specification is a quadruple (X, L, GenAx, De f Ax) where GenAx is
a set of axioms, called “generalized axioms”, and DefAx a set of axioms, called
“default axioms”. The axioms of an exception specification are separated in two
parts in order to preserve clarity and terness.

o GenAx is devoted to exception handling. The purpose of GenAx is to
specify the exceptional cases: when to raise exceptions and how to recover
them.

o DefAux is entirely devoted to the normal cases (when no exception has
been raised). These axioms are called default axioms because terms under
consideration in this part are by default labeled by Ok and o(w) € Oky
means that the calculation defined by o(w) is a “normal” calculation (i.e.
it does not need an exceptional treatment).

Example 3.2:

Let us consider the bounded natural number specification with the successor
and sum operations. Let us assume that every calculation of the form succ'(0)
(¢ > Maxint) is labeled by Overflow. Lastly, let us consider an exception
handler that recovers every Quer flow-value on Maxint. We obtain the following
exception signature:

S={NATB} /% Name of the sort * [

=
0: — NATB
suce _;: NATB — NATB /% successor * /[
+-: NATB NATB — NATB /* sum */

L = {Overflow}

and following specification:

GenAx:

succMa®int(() ¢ Over flow

suce(n) € Over flow = suce(n) = n

(suce(n) + m) e Overflow = (n + succ(m)) € Overflow
n+ m=m-+n

DefAx:
n+ 0=n
n + suce(m) = suce(n + m)




The first axiom of GenAx specifies the Over flow domain. The second axiom
specifies the exception handler which consists to recover every Overflow-value
into Mazint-value. Lastly, the last two axioms describe general properties on
every terms (i.e. both terms labeled by Ok or Over flow).

DefAx specifies the usual operation “+7 in all normal cases. As we have al-
ready seen, every axiom belonging to DefAx is implicitly labeled by Ok. Con-
sequently, in both De fAz-axioms above, we implicitly have: n ¢ Ok, m e Ok,
n + succe(m) e Ok and suce(n + m) e Ok.

According to the specification defined above, we can consider the exception alge-
bra A= (A, {la}icrufory) defined by: A =[0... Maxint].

The operations 04, succ* and +% are defined as usual on integers with the
following restriction: suce*(Mawxint) = Mazint.

4 An informal specification of the DLX

DLX has been chosen because of its architecture. It is characteristic of all the
RISC architectures. Before formally specifying DLX, let us consider a DLX’s
informal description.

“What informations do we need to informally specify DLX 77 As every architec-
tural description, relevant informations are:

e the instruction set
o data used, their format and their addressing modes
e exceptions
e general resources
In the four next sections, we informally describe the DLX’s behavior (see [HP90]

and [HP94] for more complete description).

4.1 The instructions set

As usual, the instruction set contains two kinds of information:
e The operations

— memory access (Load, Store)
— ALU operations (integer and floating point)

— Control operations (branches and jump)

e The instruction format



— register-register (destination, operandl, operand?2)
— register-instructions and short branch (destination, source, immediate)
— Branches and jump (immediate)

In a pedagogical purpose, we only consider a subset of the whole instruction set

in this article (see [HP90] and [HP94] for more details).

4.2 The data format and addressing modes

To correctly define registers and the memory (and also the whole set of buses),
we have to describe all data types manipulated by DLX:

o Integer data type is encoded by either word of 8, 16 or 32 bits.

o Floating-point data type is encoded by either word of 32 bits for simple
precision or word of 64 bits for double precision.

There is only one addressing mode, defined by:

Address = Register + offset

4.3 The exceptions

Exceptions occur in the following cases:
e Hardware or software Interruptions
o ALU exceptions

e Instruction errors

4.4 The general resources

At this description level, we only define the registers files: GPR and FPR. Other
specific registers (e.g. the program counter) can be deduced from the instruction
set.

In order to simplify the specification process, the following resources are used:

10



GPR | 32 register to store integers

FPR | 32 register for floating-point numbers.
RO | 1 register coded to the 0 value.
SR | 1 status register.
IR 1 instruction register.

MDR | 1 memory data register.

MAR | 1 memory address register.

IAR | 1 interruption register.

IAR | 1 interruption register.

PC | 1 program counter.

TVR | 1 TRAP value register.

5 The DLX algebraic exception specification

From the DLX’s informal description, we formally specify it, using the exception
specification framework.

In a pedagogical purpose, we only specify a part of the actual DLX’s behavior
described above.

As we have seen, the interest of axiomatic specifications is to formally describe
the most abstract behavior of a system. Thus, we have to determine the funda-
mental DLX properties. Let us notice that the DLX’s informal description above,
is composed of architectural data (e.g. the pipeline), external characteristics (e.g.
the memory is 32-bits addressable) and functionalities (e.g. integers operations).
From the user point of view, the fundamental DLX properties only concern ex-
ternal characteristics and functionalities. The reason why architectural data do
not belong to these properties is that they describe the “how part” and not the
“what part” of DLX. Consequently, to completely specity the DLX behavior, we
have to consider two levels of specification:

e a high level specification where concrete implementation is not considered.

e a low level specification for which some implementation choices are taken
into account.

The mean to link both specifications is defined by abstract implementation theo-
ries (see Section 5.2.1).

The approach followed is to write a fully abstract specification based on the
abstraction of the real-life data structures (integers, natural numbers...) and the
observational behavior of the DLX processor (Section 5.1). Then, we give a low
level specification where the DLX processor is described by its lower level data
structures (typically arrays of Booleans) (see Section 5.2). This is indeed one
step of implementation.

11



5.1 The high level specification

The high level specification will only express what DLX users need: the DLX’s
instruction set and the linking of instructions. Consequently, we need to specify
both to reach our purpose !.

At this level of description, well known abstract data types provide the basis of
the specifications. They are typically used to describe user-defined data types
created to represent some abstraction of a real-life entities. The high level spec-
ification may seem to be very abstract regardless to what we want to specify.
However, we should not forget that an abstract specification specifies a set of
requirements to describe the system properties. For the sake of clarity, relations
between abstract data types and DLX entities are given in Figure 5.1. For each
entity of the DLX processor, a corresponding abstract data type specifies the
behavior of the operations existing in real-life. For example, a unsigned register
is a bounded structure (due to the finite representation used to memorize its
value). The operations which can be performed on such a structure are sum,
subtraction, comparison, and so on. So, it is obvious that the bounded natural
number data type represents a good abstraction of unsigned integers. In fact, this
one just keeps the interesting properties of unsigned registers (see the bounded
natural numbers specification in Example 3.2). The high level DLX specification
is composed of 5 modules:

e RELB, NATB

Signed and unsigned integers.

e FLOAT

floating-point numbers.

e REG

Memorization element.

e MEM

A list of memorization elements: extern memory and register file.

e INSTR

Instruction scheduling.

Each one is representative of the classical specifications which can be found when
trying to specify Hardware.

Schematically, DLX is represented by the following figure.

'In fact, to keep our pedagogical way, we only describe a subset of the complete instruction
set. This subset has been chosen to represent all different types of instructions.

12
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Figure 5.1

We do not specity the signed integers data type because it is similar to unsigned
integers specification with respect to the operation predecessor (pred) and the

label Under flow.

5.1.1 Specification of the float registers: FLOAT

Classically, a float register is defined by: a sign, a mantissa and an exponent. We
represent signs by booleans , mantissas by natural numbers, and exponents by
integers (BOOL, NATB, RELB specifications). Consequently, it is unnecessary
to specify new data types. Likewise, we do not need to specify new operations.
For example, a sum of two exponents is defined by the integer sum. Thus, we
only focus on the specification of float registers:

S={FLOAT} [+ Name of the sort (type) */

F = /% beginning of the signature * [

float_ __: BOOL x RELB x NATB — FLOAT / * float format x/
nfinite_ : FLOAT — BOOL /% test if value is infinite [/
zero_ : FLOAT — BOOL / * test if value is nul * /

L = {OwverFloat,UnderFloat, NaN/ x errors, Not A Number * /

o The generator “float” means that a float register is defined by the concate-
nation of a Boolean (i.e. sort BOOL), a bounded integer (i.e. sort RELB),
and a bounded natural numbers (sort NATB).

o The set of operations “infinite” and “zero” are observators on the float
register.

13



The second part of the specification is defined by the following set of axioms.

GenAx:
eq(fraet,0) = false
eqlexp, EMax) = true }
— float(sign,exp, fract) e NaN /* Not a Number * /

Emar < exp = true = float(sign, exp, fract) ¢ OverFloat
exp < Emin = true = float(sign, exp, fract) ¢ UnderFloat

DefAx:
Emax = succ

Emin = pred®Mae=1(0)
FMax(O)

EMax(O)

Fmax = succ
eq(fraet,0) = true
eqlexp, EMax) = true }

— infinite( float(sign, exp, fract)) = true

eq(fraet,0) = true
eq(exp, EMin) = true
= zero(sign, exp, fract)) = true

The GenAx-axioms are devoted to describe the domain of each label (i.e. excep-
tion name) of the signature (i.e. termslabeled by NaN, Over float or Under Float).

Concerning DefAx-axioms, the operation “infinite” takes a float register and
checks whether its value is infinite or not regardless of the IEEE 754 norm.

5.1.2 The register specification

By analyzing the instruction set, let us notice that DLX’s registers contain either
instructions or, signed and unsigned integers, or floating-point numbers. More-
over, instructions are encoded into three different formats:

32 0

NATB NATB |NATB |NATB NATB REG
I/ F| OPCODE| RS RT RD : Register
NATB |NATB |NATB | RELB_16, NATB_16 REG
OPCODE* RS RT RD| IMD 16 bits : Register
NATB | RELB_26, NATB.16 REG
OPCODE* IMD 26 bits : Register

Instruction formats with their corresponding specification type.

Notation: The I / F stands for the integer or floating-point instruction.

14



Every information above are respected in the following register exception speci-

fication:

S={REG} [=* Name of the sort (type) */

F = /x begin of the signature * /
mstr_____: NATBXx NATB x NATB x NATB x NATB

— REG /x* Reg-Reg instruction formal * [

mstr_ _ __ . NATB x NATB x NATB x RELB1s — REG /% Reg, branches, 16 bits imd */

mstr_ _ NATB x RELBys — REG [x Jump, branches, 26 bits imd x /

_ FLOAT — REG [+ FLOAT to REG conversion * /

_ RELB — REG /* RELB to REG conversion * [

_ NATB — REG [/« NATB to REG conversion #/
L={UNDEFINSTR,/* unknown unspecified instructions * /

TBSL} / * instructions specified later * [/

The number of bits used to represent the instruction set allows to encode more
than the DLX’s 90 instructions. Consequently, some binary codes have no corre-
sponding instruction; their label is “UNDEFINSTR”.

“TBSL” (To Be Specified Later) is another label indicating that the instruction
will be specified later (e.g. in another refinement step). Thus, the high level

specification becomes more legible.

The set of general axioms is defined by:

GenAx:

Unused Code-op
instr(0, succ'(0),z,y,z) e UNDEFINSTR
instr(0, succ®(0),z,y,z) e UNDEFINSTR

/% Instruction not yel specified */
SLL

instr(0, succ*(0), z,y,z) e TBSL
MULTF

instr(1, succ?(0),z,y,z) e TBSL

/ * 000001 has no associated instruction x /
/ * 000101 has no associated instruction x /

instr(0, succ®5(0),z,y,z) e UNDEFINSTR /+ 001000 to 001111 have no associated instructions * |

[ * shift left logical (000100)+ /

/ * floating — point multiplication (000010) « /

The label “TBSL” prevents incomplete specifications. For example, let us take a
“TBSL” floating-point unit; its label will only be removed if we finally want to
specify a complex processor with floating-point and integer units. If we want to
specify a simpler processor, the label will be kept. In both cases, specifications
are complete.

The reason why the SLL (shift logical left) and MULTF instruction are labeled
by “TBSL” is that it is easier and more legible to specify the shift operation using
array of booleans rather than integers.

15



Remark: Let us notice that there is no specific DefAx part for the register
signature. The reason why is that Ok-Axioms contained in registers specifications
(i.e. natural numbers, integers and floating points) are sufficient.
5.1.3 The memorisation elements
There are two different memorisation elements in DLX:

e the external memory

o the register set

Within the high level specification, both behave in the same way as they are
composed of a set of registers. So, we have only one global exception specification,
called the “MEM” specification. The corresponding signature is defined by:

S={MEM} /x* Sort correponding to the extern memory and the register file x /

F =

write_ _ _ REGXMEMSIZE x NATB —>MEM5[ZE /*write REG in MEMSIZE[NATB] */
read_ _ : MEMsizg x NATB — REG / * read the content of MEMsizr[NATB] * /
create : NATB — MFEMyarg [* Creation of a memory of NATB size * [
L ={0utOfMemory} / * memory access forbidden * /

The set of axioms is defined by:

GenAx:

ind < 0 = true = write(r, br,ind) ¢ OutOfMemory / write forbidden at negative index * /
SIZE < ind = true = write(r, br, ind) ¢ OutOfMemory / * the index exceed the memory size x [/
ind < 0 = true = read(br, ind) e OutO fMemory / * negative index * /
SIZE < ind = true = read(br,ind) ¢ OutOfMemory / * index too big * /
DefAx:

write(rl, write(r2, br, ind), ind) = write(rl, br, ind) / * Rewrite on a "REG" will overwrite value * /
eq(indl, ind2) = false / * write order in two dif ferent cases is undiferrent x /
— write(rl, write(r2, br, ind2), ind1) = write(r2, write(rl, br,indl), ind2)

read(write(r, br,ind), ind) = r / * Read operation give the last written value * /

From now on, we can specify the execution of the instructions contained in the
memory.
5.1.4 The instruction scheduling

The entity Execution Unit is quite special; it is not a real-life entity of the DL.X
processor. In our specifications, it represents a virtual execution unit, including
different steps of the DLX’s pipeline: fetch, decode, execute...
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The instruction scheduling specification allows the introduction of dynamic as-
pects in the DLX specification. Let us give the specification of the Execution

Unit:
S ={INSTR} / * instruction scheduling sort * /[

F =
[, ., J]: REGxMEM x MEM — INSTR / * static state (PC,GPR, Memory) * /
ere_ : INSTR — INSTR [/=* gotothe next state (next instruction) * /

L = {ERRORINFETCH}

/ * execulion, instruction error * [

The first operation represents a state of the DLX at a given step: this static
state is composed of a memory, a register set and a counter program. The second
one allows to go from one state to the next. In practice, the description consists
in executing an instruction and fetching the next one. The label “ERRORIN-
FETCH?” is used to represent either a code operation which does not match any
instruction or an error which occurs during the execution of an instruction.

GenAx:

/ * propagation of errors occured in the register — register instruction format * /[

instr(z,y,z,t,u) e TBSL / * Instruction specified latter x /
— exe([pc,br,mem]) e ERRORINFETCH

instr(z,y,z,t,u)e UNDEFINSTR / * Undefined instruction co —op * /

— exe([pc,br,mem]) e ERRORINFETCH

/ * other instruction format * /

The label “ERRORINFETCH” means that the execution of the instruction
under consideration is either not yet implemented or an invalid instruction.
The exception raising “ERRORINFETCH?” is caused by the propagation of ex-

ceptions occuring on previous terms of the sort "MEM”.

The DefAx part is defined by:
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DefAx:

NOP
read(mem, pec) = instr(0,0,z,y, z)
— exe([pe, br, mem]) = [pec+ 1, br, mem)]

ADD
read(mem, pc) = instr(0, succ®?(0), z,y, 2)
(a = read(br,z)) A (b = read(br, y))

= exe([pe, br, mem]) = [pe + 1, write(a+ b, br, z), mem)

LW

read(men, pc) = instr(suce®®(0), z,y, 2))

/ * no operation | just start the next instruction * /[

/ * 000000 code — op */

/ * next instruction * [

/*xz = a4+ y x/

/ * code — op 100000 * /

/ * load x and y from the file register x/
/ * store the sum, next instrution * /

/ * load word from memory and store it in register * [

/ * code —op 100011 « /

= exe([pe, br,mem]) = [pe + 1, write(read(mem,y + z), br, x), mem]/ * read memoryly + 2|, next instr */

SW / * load word from file register and store it in mem x /

read(men, pc) = instr(suce*®(0), z,y, 2))

= exe([pe, br, mem]) = [pe + 1, br, write(read(br, ), mem, y + z)]

BNEZ
read(men, pc) = instr(succ®(0), z,y, z))
eq(x,0) = false }
— exe([pe, br, mem]) = [pc + z, br, mem)]

read(men, pc) = instr(succ®(0), z,y, z))
eq(x,0) = true
= exe([pe, br, mem]) = [pe+ 1, br, me]

JR
read(men, pc) = instr(succ?(0),z))

= exe([pe, br, mem]) = [read(br, z), br, mem]

/ * Where pc : NATB; a,b: RELB; %/

/ * code —op 101011 « /

/ * write in mem[y + z], next inst * /

/ * conditional branch x /

/ * code — op 000101 « /

[ * case :value of register x 1= 0 %/
/ * branch at pec+ z adress * [

/ * code — op 000101 « /
[ * case :value of register ¥ == 0 %/
/ * next instruction * [

/ * jump wilth target addressed by register * [
/ * code —op 000011 « /
/ * jump at address © * /

Let us notice that the pipeline is underlying:

e Fetch and decode of the instruction
read(men,pc) = instr(succ® (0),z,y,z)).

o Registers fetch
a = read(br, x)

e Execution step and memory access. exe/,_, [ = [, ]

We do not consider it in this paper to simplify the DLX specification. Neverthe-

less, it is possible to describe such an architectural structure into our specification

framework.
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5.2 Low Level Specification of the DLX Processor
5.2.1 Abstract implementation

The aim of an abstract implementation is to specify a higher level abstract data
type by another lower level data type and to give:

e an axiomatic specification describing how the lower level data types are used
to implement (simulate) the higher level data type under consideration.

e semantics for this specification.

e means to prove its correctness.

The main advantage of such an approach is that the formalism used for all the
specifications (the lower level data types, the higher level data type and the ab-
stract implementation) is the same. Thus, they share the same proof techniques.
Consequently, correctness proofs for abstract implementations are easier because
they can be performed according to a homogeneous logic. We can prove that the
implementation of the higher level specification by the lower level specification is
correct. Consequently, the final specification behaves in the manner specified.

In this article, we use the [EKMP80]’s abstract implementation formalism ex-
tended to exception handling [Ber89]. In this framework, the abstraction method
is used to algebraically specify the implementation. The aim of this method is
to abstract tuples of lower level data types into higher level abstract data types.
To reach this purpose, we use an abstraction operation, denoted by “< ... >".

From this approach, we have to consider two problems:
1. two tuples of lower level data may be abstracted into only one higher level

abstract data (e.g. when we implement stacks by the couple array x nat, all
tuples <t,0> belonging to array x nat represent the same empty stack).

2. some tuples of lower level data implement nothing (e.g. from the same
implementation than above, the tuple < create, 4> belonging to array x nat
where create represents the uninitialized array, does not represent a possible
stack because the four first places must be initialized).

As we will see below, in the [EKMP80]’s formalism, these difficulties are solved
at semantic level.

5.2.2 Formalism presentation

The main idea of this formalism is to distinguish between the syntactical level
and semantic level of implementations:
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o At the syntactical level, first of all, we dispose of two exception specifica-
tions:

1. the specification of the lower level data types, denoted by:
Speco =< Yo, Lo, Genag,, Defaz, >.

2. the specification of the higher level data type that we want to imple-
ment, denoted by: Spec; =< ¥y, Ly, Genay,, Defaz, >.

Moreover, we can specify an intermediate hidden specification Specy.

Thus, a syntactical implementation is defined by an tuple:

Impl =< Fups, Specy, Genag,,, Defaz,, >
where:

— Flps 18 the set of abstraction operations provided with a co-domain

belonging to Sy [ SH.

— Speey =< Xy, Ly, GenAxy, DefAxy > is the specification describ-
ing the behavior of hidden operations of the implementation. These
ones are only used to specify the implementation. They are not visible
outside.

— GenAux,, (resp. DefAx,,) is the set of generalized axioms (resp. de-
fault axioms) describing the “constructive” implementation of higher
level operations.

e The semantic level is composed by three successive applications: synthesis,
identification and restriction?.

— the synthesis application turns each algebra satisfying the resident
algebras (i.e. the specification Specy) into only one algebra satisfying
the implementation (i.e. the specification I'mpl).

— the identification application identifies all tuples which implement the
same higher level data. Consequently, it allows to semantically solve
the first difficulty mentioned above.

— the restriction application prunes all tuples which implement nothing.
So, it semantically solves the second difficulty mentioned above.

2As the class of algebras which satisfy a given specification, defines a category (for more
detail, see [BW90]), the synthesis, identification and restriction applications are generally called
functors (i.e. applications which preserve morphisms between algebras).
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5.3 The DLX abstract implementation

What we intend to implement in DLX concerns data types described in the high
level specification (natural numbers, integers and floating-point numbers). We
use the array data type (see the ARRAY specification of Example 3.1 with the
sort ELEM instantiated by BOOL) to implement bounded natural numbers in
binary representation. Consequently, the only element of Fy; is:

‘ <_>: Array — NATB ‘

So, given an array t for which the size is n, the corresponding natural number

val is obtained by the following formulas: val = succ”(0) where n =Y t[1] x 2.2
=1

To implement bounded natural numbers from arrays, supplementary operations

on the already implemented structures (i.e. Array and Boolean) are useful to

specify the final implementation. The behavior of these operations is defined

into the hidden specification of the implementation Specy. They are specified as

follows:

S ={ARRAY, BOOL,NATB} /% Names of sorts */

=
Wide : — NATB
unif___ : ARRAY x BOOL x NATB — BOOL
plus.____ . ARRAY x ARRAY x ARRAY x BOOL x NATB — ARRAY

Intuitively, uni f(t,b,n) is true if all cells of ¢ between 0 and n uniformly contain
the value b, Wide gives the size of arrays under consideration in the specification
and plus(ty,ta,ts,ret, n) is the classical binary addition (using n full adders, ret
is the carry) of the arrays t; and ¢3 from the cell 0 to the cell n. The array ¢ is
the addition result.

For the sake clarity, we only specify the operation plus. So, we obtain the fol-
lowing axioms:

3Let us remark that the identification and restriction applications are only identity appli-
cations. The reason for it is that the abstraction operation < _> is bijective (this property is
easy to show). At each array we have only one natural number which is implemented by it.
Conversely, at each natural number, it corresponds only one array which implemented it.
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GenAx:
/ * sum of numbers too big x /
(t1[Wide — 1] and t2[Wide — 1])

or (carry and (\[Wide — 1] or t2[Wide — 1])) } = plus(t1,12,t3, carry, Wide) ¢ Over flow

DefAx:
/ * description of the sum with logical operators x* /
plus(t1,12,13, carry, Wide) = store(t3, Wide, ((t1[Wide] xor t2[Wide]) zor carry))
plus(t1,12,13, carry, n) = plus(t1,12, store(t3, n, ((t1[n] zor t2[n]) xor carry),
(t1[n] and t2[n]) or (carry and (t1[n] zor t2[n]), succ(n))

/ * Where WIDE is the array size. * [

Remark: The description into a hardware language such as VHDL is very close
to the description above.

procedure plus (t1, 12 : in bit_vector;

t3 : out bit_vector ) is
variable result : bit_vector(tl'range);
variable carry : bit = '0/;
begin

for n in result'reverse_range loop

result(n) = tl(n) xor t2(n) zor carry;
carry = (tl(n) and t2(n)) or (carry and (t1(n) zor t2(n)));
end loop;,
t3 = result;
end plus;

Here, the abstract implementation of operations belonging to bounded natural
numbers specification is defined by:

GenAx:

unif(t, true, Wide) = true = succ(< t >) € Over flow
suce(< tl >) € Overflow = suce(< tl >) =< tl >
suce <1l > 4+ <12 > € Overflow =

/ * succ(0111...111) give an over flow */
/ * suce do nothing on a too big number x* /
< tl > +suce <12 > ¢ Querflow

DefAx:

unif(t, false, Wide) = true = 0 =<t >
<1l >= 0= suce(< t >=<plus(t, store(tl,0,true),t2, false,0) >
suce(< t >) =< plus(t, store(< nul >,0,true), 12, false,0) >
<1l >+ <12 >=< plus(t1,12,13, false, Wide) >
- and so on for operations: —, eq, <

/ * element 0 definition */

/ * suce(n) =

n + (000....001) */

/ * integer sum conversion into bit array sum x /

We assume that the maxint-value is represented by the array where each cell
contains true. So, when we apply the operation succ on it, we obtain a higher
value. Consequently, such a term has to be labeled by Over flow. The second
axiom defines the exception handler. Lastly, as previously, the last two axioms
describe general properties on every term.
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The DefAx part defines the constructive specification. It describes how the op-
erations 0, succ and + of the higher level specification are implemented from
resident specification operations, the hidden operation plus and abstraction op-
eration <_>.

As previously, we do not consider integers and float implementation.

5.83.1 SLL instruction

As we mentioned before, the SLL instruction has not been specified in the high-
level specification (this has been made possible by using the label ?TBSL”). The
reason for it is that it is easier to specify a shift with the ARRAY structure in
the implementation than with RELB and NATB data types. Now, at this level
of description, we get the following specification:

F= /% left logical shift */

sl ___ _ ARRAY x ARRAY x NATB x NATB — ARRAY
DefAx:

0 < n — count = false / * fill the "count” less significants bits with 0 * /
= sll(< t1 >, <12 > count, n) = sll(< t1 >, < store(t2,n,0) >, count, pred(n))

0 < n — count = true / * shift the content of t[n — count] to t[n] */
= sll(< t1 >< 12 >, count, n) = sll(< t1 >, < store(t2,n,t1[n — count]) >, count, pred(n))
sll(< tl >, <12 >, count,0) =< 12 > [+ return t2 when all shifted * /

5.4 Implementation of the instruction set

This section is devoted to the implementation of the subset of the DLX instruc-
tions set, previously defined.

Let us assume that some constants like nop, add, sll, j, nul* ... are specified in
the hidden part of the implementation specification.

4pull is the array where cach cell is at false.
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DefAx :

NOP
mem[pc] = instr(nul, nop, <tl>, <12> <13 >) = exe[< pc>, <br> < mem >
= [< pe >+ < store(nul,0,1) >, < br >, < mem >]

ADD
mem[pc] = instr(UE, add, <tl >, <12>, <13 >) = exe[< pc>, <br>, <mem >]
[< pe >+ < store(nul,0,1) >, < store(br, <13 > <1l >+ <12>) >, < mem >]

SLL
mem[pc] = instr(UE, sll, <1l >, <t2>, <13>) = exe[<pe>, <br > < mem >]
= [< pe >+ < store(nul,0,1) >, < store(br, <3 > sll(< tl >, <12 >, <13 >, Wide)), < mem >]

J
mem[pc] = instr(j, <t >) = exe[< pc>, <br>, < mem >]
=[<pe>+<t> <br> < mem >]

LW
mem[pc] = instr(lw, <1l >, <t2>, <13 >) = exe[<pe >, <br >, < mem >]
= [< pe > + < store(null,0,1) >, < store(br,< 13 > mem[<tl >+ <12 >]) >, < mem >]

SW
mem[pc] = instr(sw, <tl >, <12>, <13 >) = exe[< pc>, <br>, <mem >]
= [< pe >+ < store(nul,0,1) >, < br >, store(mem, < 12>+ <13 >, < br[<tl >] >)]

5.4.1 Implementation correctness

As mentioned before, the high-level, low-level and implementation specifica-
tions are written in the same formalism. Consequently, correctness proofs for
abstract implementation are easier because they can be performed according to
an homogeneous logic.

Intuitively, an implementation will be correct provided that the behavior of the
implementation is indistinguishable from the behavior of the higher level specifi-
cation under consideration.

Formally, [EKMP80] defines the correctness of an abstract implementation by
the following two conditions:

1. The first condition, called op-completude, means that every ground term
belonging to the higher level specification is (recursively) defined by the
implementation. Consequently, such a condition means that every opera-
tion in higher level specification is completely specified. This condition is
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easy to verify. It is often sufficient to inductively reason on operations be-
longing to the higher level specification. For example, our implementation
of natural numbers by the arrays data type trivially verifies this condi-
tion. The reason is that the abstraction operation <_>: Array — Nat is
surjective (in fact, as we have seen before, it is bijective).

. The second one means that the implementation completely simulates the
higher level specification. Such a condition means that we can prove every
axioms belonging to the higher level specification from the axioms of the
implementation.

For example, let us prove the first axiom of the DefAx part in the natural
numbers specification:

z + 0==x
(i.e. 0 is neutral for the sum operation).

As already seen, the abstract operation <_>: ARRAY — NATB is bijec-
tive. Consequently, there exists an unique operation p : NATB — ARRAY
(we have no overflow problems because @ + 0 = x is a De f Az-axiom). So,
it is sufficient to prove the following formula:

By the first axiom of the natural numbers implementation, we can write:

p(x) + p(0) =<plus(p(x), p(0),1, false,0)>

Consequently, it is sufficient to prove the following property:

Vi € [1, Wide], plus(p(x), p(0),1, false,0)[i] = p(x)[¢]

To reach this result, inductively show on the following lemma:

Lemma:

Vi < Wide, Vi € [Ln], plus(p(e), p(0), 1, false, 0)i] = plo)]i]
and carry = false (at the step n)

Proof:

Basic case: At the first step of calculation, we have to consider two cases:
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o if Wide = 0 then by the first De f Az-axiom of the hidden specification,
we can write:

plus(p(x), p(0),1, false,0) = store(t,0, p(x)[0])

So, by the second axiom of the array specification, we can write:

store(t, 0, p(@)[0])[0] = p(x)[0]

Consequently, we directly conclude:

plus(p(:l}), p(O), i, false, 0)[0] = p(l’)[()]

o if Wide #£ 0 then by the second axiom of the hidden specification, we
can write:

plus(p(x), p(0),1, false,0) =
plus(p(x), p(0), store(t,0, p(x)[0]), false, succ(0))

Let us remark that from the hidden specification, it is easy to prove:
Vi e [1,n —1], plus(tl,t2,13, carry,n)[t] = t3[¢]

Consequently, by the second axiom of the array specification, we can
directly write:

plus(p(x), p(0),1, false, 0)[0] = p(x)[0]
In the same way, it is obvious that the resulting carry is false.

General case: Let us assume that ¢ be the array obtained to the n'” step
of calculation. According to the induction hypothesis, we have:

Vi € [1,n], t[i] = p(x)[¢] and carry = false

As the basic case, concerning the n + 1% step, we have to consider two
cases:

o if Wide =n + 1 then by the first DefAz-axiom of the hidden specifi-

cation, we can write:

plus(p(a), pl0), 1, false,n+1) = store(t,n + L, p(a)[n + 1])

Moreover, by the second axiom of the array specification, we also have:
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store(t,n + 1, p(x)[n + 1])[n + 1] = p(a)[n + 1]

As we have seen before, let us remember that:

Vi e [1,n —1], plus(tl,t2,13, carry,n)[t] = t3[¢]

Consequently, we directly conclude:

Vi € [Ln+ 1, plus(p(e), p(0),, false, 0)[i] = p(x)[i]

o if n+1 < Waide then by the second axiom of the hidden specification,
we can write:

plus(p(x), p(0),1, false,n+ 1) =
plus(p(x), p(0), store(t,n, p(x)[n]), false, suce(n + 1))

Consequently, we can directly write:

Vi € [Ln+ 1, plus(p(e), p(0),, false, 0)[i] = p(x)[i]

In the same way, it is obvious that the resulting carry is false.

6 Conclusion

The work partially reported in this paper shows that property oriented specifi-
cations are also well suited to specify Hardware. Similar results prepare the way
to a new approach for Hardware/Software co-design, using formal methods and
axiomatic specifications. In particular, we have shown that proving techniques
of algebraic specifications and stepwise refinements can be achieve in the same
manner as in Software.

This article reports a case study of Hardware specification using algebraic
specification with exception handling. We have shown on this example how ax-
iomatic specifications fulfill the fundamental constraints of co-design:

e to be in position to specify without hypotheses about future implementa-
tions (Hardware / Software choices).

e to be in position to specify the Hardware and Software parts without a pri-
ori management of the system complexity (i.e. flexible design of Hardware
and Software parts). This offers at the designer the possibility to make cor-
rectness proofs of his or her system as soon as possible in the design process.
Consequently, the mistakes of specifications fraught with consequences are
avoided.
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Let us note that this properties directly follow from using of axiomatic specifica-
tions.

This case study convinced ourselves of the importance of exception handling
and modularity. These two concepts are crucial to reach a legible and terse
specification style. Modularity also provides reusability of specification modules.
It would be of first interest to enrich classical software specifications libraries with
specific hardware modules.

For general purpose system specifications, it seems to be necessary to com-
plete a modular approach with concurrent and dynamic aspects between modules.
With this respect, the potential benefits of Object Oriented concepts have been
illustrated in [AJKW94], but at a non formal level, using the C++ language. Al-
gebraic specifications with Object Oriented aspects belong to the latest issues of
the European ESPRIT working group IS-CORE [AB95]. The goal of our future
works is to extend these developments to Hardware/Software co-specification.
Indeed, such a formalism offers new perspectives for the co-design as complex
interactions between elements of a system and implicit dynamic aspects (states,
temporality notion, ...). The main advantage of such a formalism is that resulting
specifications are more abstract , clearer and terser. Thus, this allows to delay
implementation steps.
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