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Extended Abstract

1 Introduction

The ability to provide a formal specification language based on an object-oriented methodology has been, and
is still, a great challenge. Several formal semantics to cope with reactive objects have been proposed [AZ92,
Gur91, G92]. Several variants of logics based on Kripke semantics have been proposed and carefully stud-
ied [FM92, FCSM91] in order to model concurrent aspects of object-oriented programming. Lastly, several
algebraic specification formalisms have been proposed in order to extend classical algebraic specifications to
concurrent systems with hidden states [GD92, AB95, Aig95]. These approaches generally reached a sufficient
expressive power to model concurrent objects. Our particularity is that we try to propose a language allowing
to write short and easily readable specifications [CP94, CSS89, JSHS91, JSHS95, SR94]. ETOILE-specifications
put the emphasis on system modularization. The syntax of ETOILE-specifications has been designed in collab-
oration with several kinds of “naive specifiers,” mainly people used to object-oriented programming languages,
hardware designers and people used to classical formal specifications.

It turned out to be natural to distinguish between “class” specifications and system specifications. In ETOILE-
specifications, a “class” is called an object-type. The specification of an object type is a description of the typical
behaviour of one representative object of the class (conventionally called self). Then, the specifications of a
system is, roughly speaking, a set of object-type specifications with certain “gluing constraints” and some
additional invariants.

When specifying an object-type, the experience showed us that it is convenient to partially specify the
objects used by self in order to perform its own functionalities (or methods). Thus, an object-type specification
is structured like a star, the center of which is the object of interest self, the branches being peripheral objects
which provide some services to self. The word “étoile” is the French translation of “star.”

2 Object type specifications

An object type specification describes “a view” (the one of self) like a star. Intuitively, self is fully specified while
the branches only outline the functionalities used by the center, as they are seen by self. The branches play the
role of parameters, they are not fully described, and their signatures are not exhaustive. In the classical algebraic
modular approaches, such parameter parts are also often distinguished in a module [BEP87, EG94, NOS95].
An object type specification is defined by a signature (Section 2.1) and a set of formulas (Section 2.2).

2.1 Signature

Definition 2.1 A ETOILE-set S = (¢, 0, D) consists of the object type of interest ¢, a set of object types O and
a set of data types D such that: DN O =0 and c¢D.
S = (c,0, D) being given, we note S =0 U D.
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c is the center of the star and each o € O can be considered as one branch of the star. Roughly, the data types
of D can be understood as shared types for the communication between objects in a system.

In this article, to clarify things, we will take as running example the specification of dynamic queues. The
contents of a queue will be included in its internal state. The elements stored in the queue will be any arbitrary
object-type (called elem), so that a queue will indeed store the element identities. After giving the abstract
specification of the object-type queue in this Section 2, we specify a system in Section 3 that implements queues
as chained cells. Lastly, in Section 4, we outline the proof of a property of this system.

Example 2.2 To specify queues, the type of interest is ¢ = queue. Moreover, since queues store elements, the
object self (of type queue) will use some objects of type elem. No other object-type is needed at this level, thus
O = {elem}. Lastly, Booleans and natural numbers will be useful, thus D = {bool,nat}.

Consequently, S = (queue, {elem}, {bool, nat}).

In a similar way as there is a distinction between “pure data types” in D and object-types in O, it has proved
useful to distinguish “purely functional operations” from operations whose semantics can depend on local states
and/or can modify them. The first ones are called functions whilst the second ones are called methods. Moreover,
a method can be executed by the objects of a given object type o € O. On the contrary, functions are not
attached to an object-type.

Definition 2.3 A ETOILE-signature © =<8, F, M > consists of a ETOILE-set S = (¢, 0, D), a set F' of function
names with an arity of the form (o — ) where a € S* and § € ST, and a family M = {M°},couqcy such
that M° is a set of method names with an arity of the form (o — ) where «, 3 € S*. Moreover, it is required
for M€ to contain a method called new.

F is the set of function names which denote pure functions (without side-effect). For every o € O , the set M°
only contains the methods that self needs from objects of type o. The set M contains all the methods offered
by the object-type ¢ (by analogy with programming languages, we can see it as the interface of the object type
¢). Lastly, if a method is named “new” in M?° for o € O II {c} then it is supposed to be devoted to create
objects of type o.

Example 2.4 For the queue example:

F' contains the whole set of usual functions associated to the data types bool and nat:

F = {true :— bool, false:— bool, 0:— nat, succ:nat — nat,...}.

Maveve = fnew :—, add : elem —, remove :— elem, is_empty :— bool, length :— nat}

Moreover, it is not necessary to know anything about elements in order to store them into a queue. The queue
self never uses an element method: Mee™ = ()

2.2 Terms and formulas

We suppose given a ETOILE-signature © =<8, F, M > and a set of variables V = H V-
aeSt

Terms are inductively defined as follows:

1. if z is a variable of type a € ST then z is a term of type a.

2. if each ¢; is a term of type a; then (t1,...,t,) (resp. (t1 3 ... 5 ty,)) is a term of type 1 ... ay,.

n may be 0; in that case the corresponding term is denoted by “_” of type €. “,” and “;” are associative.
3. if t is a term of type « then f(t) where (f : « — 3) € F is a term of type 3.
4. if t is a term of type a, (m: o — ) € M°, and ¢’ a term of type o € O then t'.m(t) is a term of type f.
5. if t is a term of type o then m(t) where (m : a — 3) € M€ is a term of type 3.
6. if ¢ is a term of type $1 ..., with s; € S then <t>“ where w =iy ...0;, € {1,...,n}* is a term of type
Siy -+ - Si,, -
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Intuitively, in 2., the comma “,” is the parallel evaluation of terms, whilst the semi-colon “;” is the sequential
evaluation. The result of both (¢1,...,¢,) and (¢1 5 ... ; t,) is the tuple composed by the concatenation of the
results of the ¢;. In 4., ¢’ is a term that computes an identity: the identity of the object which will perform m.
In 5., m(t) has to be understood as self.m(t): since self is the specified object, it is convenient to leave self
implicit. The construction in 6. allows to rearrange the tuple which results from the computation of a term.

From terms, we can build atoms. There are two kinds of equational atoms:
1. t = u where ¢t and u are terms of the same type.

2. <t>p=<u >, where t and u are terms of the same type, and, ¢ and u’ are terms of the same type
belonging to O*.

Moreover, in order to specify deadlocks and creation/deletion of objects, we introduce two supplementary
predicates; we have the following atoms:

e wait (¢) where ¢ is a term.
e alive (¢) where t is a term of a type belonging to O, as well as alive (self).

Formulas are inductively defined from the atoms above, usual connectives and usual quantifiers. Moreover, in
order to take into account an implicit notion of time, we introduce: after [t] (¢) where ¢ is a term and ¢ is a
formula.

As usual, a ETOILE-specification SP consists of a ETOILE-signature © and a set of formulas (“axioms”).
Example 2.5 We specify the behaviour of dynamic queue by the following axioms:
1. after [new] (is_empty = true)
after [add(e)] (is_empty = false)
is_.empty = true = wait (remove)
is_.empty = true = add(e) ; remove = e
is_.empty = false = add(e) ; remove = remove ; add(e)

after [new| (length = 0)

NS v e e

length=n = after [add(e)] (length = succ(n))

2.3 Semantic hints

2.3.1 Models

For each object type o € O, we associate a set A, which should be understood as the set of all possible object
identities usable by self and a set A, of possible states of any object of type o. The set A, contains the view
that self has of the possible behaviours of objects of type o in its environment. For the ogject type of interest
¢, we associate the set :f}c which should be understood as the set of all possible true local states of self (by
analogy with object oriented programming languages, it simulates the attributes of self; the states in ;f}c are

abstractions of the value vectors of the self attributes). Formally:

Definition 2.6 Given a ETOILE-signature © =<8, F, M >, a ETOILE-model A consists of:

e q triplet (A,ﬁl, Ga) where A is a S-indexed family, é is a OIl{c}-indexed family and G4 is a set of partial

functions ~y : H Ao 1T {self} — A such that: if v(a) is defined then v(a) € Ao for every a € A,, and if
ocO
v(self) is defined then ~y(self) € Ac.



n
e Given o = 81...8, € 8%, we note A, = HA&- and we let A. = {1}, where T is neutral in a tuple, i.e.,
i=1
(a1,.., L. a,) = (a1,...,an).

e A total function fA: A, — Ag for every (f 1o — ) € F.

o A partial function mnA 1 Aa — Ag X Ao (resp. mf tAq — Ag x Ga) for every (m: a— B) € M° (resp.
(m:a— B) € MC) and every n € Ao (resp. Y€ Ga)

e For the particular case of the methods named new, new? : Ay, — Ag does not depend on n (resp. 7).

Intuitively, given an object identity a € A,, y(a) is the state of a. If v(a) is undefined, then a is not alive. If a
is alive, and n = v(a), then the semantics of a method m performed by a is given by mnA. Let (r,n') = mnA(t),
r € Ag denotes the result of a.m(t) and 7" denotes the state of a after m has been performed. For the particular
case of a.new(t), it means that a has been created and, r and 7’ only depends on ¢ (y(a) being possibly undefined,
1 =7(a), thus new;", would have no sense).

When a method is performed by self (m € MC), it can call other methods in other objects. Consequently, the
semantics of m depend on, and can modify, the state of any object in the star view of self. Thus, we consider

A

: A
ms, instead of my.

2.3.2 Term evaluation

Let A be a ©-model. Roughly, a term can be seen as something that takes an initial state « as input, and returns
a tuple r as value, as well as a resulting state 7’'. The evaluation of terms follows a “bottom-up” strategy. Things
are unfortunately rather complex because concurrency can lead to deadlocks or non-deterministic results. For
example, to evaluate tg.m(t1,t2), it is possible that, after the evaluation of ¢y, t; and ta, v(tp) is undefined;
then, the evaluation leads to a deadlock. Moreover, because t; and t5 can have side-effects on the state -, it is
also possible that evaluating ¢; after ¢o leads to a different semantics of m than evaluating to after ¢; ... and
so on. Thus, the evaluation of a term ¢ leads indeed to a set eval,(t) of pairs (r,7"). There is a deadlock if
eval,(t) is empty, and we say that ¢ is waiting. Lastly, terms of the form z.new(t) lead to a special treatment
of substitutions, since they define the identity assigned to x.

2.3.3 The satisfaction relation

As usual, the satisfaction of formulas is inductively defined from the satisfaction of atomic formulas, the truth
tables of usual connectives and the semantics associated to the new operator after.

Intuitively, an equational atom of the form ¢ = u is satisfied if for any initial state v under consideration, the
sets eval,(t) and eval,(u) are equal and reduced to a singleton. In a similar way, an equational atom of the
form <t>p=<wu>, is satisfied if for any v; resulting from the evaluation of ¢, for any v, resulting from the
evaluation of u, for any 71 resulting from the evaluation of ¢ and for any 7o resulting from any evaluation of
u', we have: v(r1) = 72(r2). An atom of the form wait (t) is satisfied if eval,(t) = . An atom of the form
alive (t) is satisfied if for any value r resulting from the evaluation of ¢, y(r) is defined.

The satisfaction of classical connectives and quantifiers is handled as usual.

Lastly, a formula of the form after [t] () is satisfied if for any 7 resulting from the evaluation of ¢, the formula
@ is true.

3 System

3.1 Intuition

A system is obtained by gluing together several object-types. Remember that object types are stars whose
branches are partial views of other object types. Thus a system will be given by a set of actualizations; each
branch of a star (= the virtual parameter) has to be actualized by the center of another star (= the actual
parameter) of the system.



3.2 Syntax

Definition 3.1 A system signature O is a set {O1,...,0,} of ETOILE-signatures such that the following con-
ditions hold for every i,j € [1,n]:

1. if we note S; ; = (Se, N Se,) then: Va € S;., VB € S, V(f 1 — B), (f € Fo, < [ € Fo,)

4,57 4,57
2. ¢; € Op, => M C MS
] O; 0, = 70;"
The first condition ensures the consistency between shared data types. The second condition says that the
methods of the virtual parameter always belong to the methods of the actual parameter.

Terms and formulas to specify the behaviour of a system are defined from the union of the signatures ©;.
We follow the same induction than Section 2.2 except that we do not consider terms of the form m(t) because
there is no reason to privilege a self object in the system.

A system specification SP is defined by a set {SPy,...,SP,} of ETOILE-specifications and a set of invariants,
which are formulas on the underlying system signature ©.
Example 3.2 Let us specify a system that implements queue by chained cells.

first last

v4 | +——| v3 v2 vl | nil

The system is composed by 3 object types: elem, cell and implemented queue.

1. Cell specification:
S = (cell, {elem, cell}, )

We consider a constant identity of type cell, called nil, which will denote a never alive cell. Since the
name nil does not depend on any state, nor modify any state, it belongs to F.

F = {nil :— cell}
Meell = {new : elemxcell — , wvalue:— elem , next:— cell , setvalue:elem —, setnext: cell —}
Melem — (Z)

Notice that this is an example where ¢ € O because self uses other objects of type cell (cf. next and
setnext methods).

axioms:

(a) after [new(e,c)] (value=e A next=c)
(b) after [setvalue(v)] (value = v)
(c) after [setnext(c)] (next = c)

2. Implemented queue specification:

The signature is similar to the one of Example 2.4 except that some additional types and operations are
needed to manage the concrete representation of a queue by chained cells.

F = {nil :— cell, true:— bool, false:— bool, 0:— nat, succ:nat X nat — nat,...}

= {new :—, add:elem —, remove :— elem, is_.empty :— bool, len :— nat,
Maveue dd : el l ) ty bool, length t
irst :— cell, last:— cell, setfirst:cell —, setlast: cell —, setlen :nat —
st I, last ll tfirst ll tlast ll tlength t

Meel! = Inew : elem x cell —, wvalue :— elem, mnext :— cell, setnext : cell —}
Melem — 0

Notice that setvalue is useless in the queue specification.

axioms:



(a) after [setfirst(x)] (first = x)
(b) after [setlast(x)] (last = x)
(c) after [setlength(n)] (length =n)
(d) new = setfirst(nil) ; setlength(0)
(e) alive (first) = add(e) = z.new(e,nil) ; last.setnext(x) ; setlast(x) 5 setlength(succ(length))
(f) —alive (first) = add(e) = z.new(e,nil) ; setlast(x) 5 setfirst(x) 5 setlength(succ(length))
(g) remove = firstwalue ; setfirst(first.next) ; setlength(length — 1)
(h) first =nil <= is_empty = true
3. Invariants:

(a) —alive (nil)

This aziom s given here instead of within the specification of cell because it does not concern the cell
representative object self. It is an invariant observed by all objects of the system.

3.3 Semantic hints
3.3.1 Models

For every i,j € [1,n], if ¢; € O, then the object self of type ¢; has only an abstract view of the object behaviour

of type ¢;. This abstract view is represented by a surjective application absfi called abstraction. Formally:

Definition 3.3 Let © = {O1,...,0,} be an exhaustive system signature. A ©-model A is defined by a set
{A1,..., An} where A; is a ©;-model for i € [1,n] and satisfying the following conditions for every i,j € [1,n]:
o for every s € (S;NS;), (Ai)s = (4;)s.
o for every (f:a— B) € F;NE;, fA = fA.

and with for every i,j € [1,n] such that c; € O;, a surjective application absfl- 1 Ga, — (Ai)c, such that for

every (m:a — f8) € ME every a € (Aj)a and every v € Ga, if n = absfi(’y) then:

1. m.YAj (a) is defined < mnA” a) is defined

(
2. (i (a) is defined = m;l+(a) = (p1 (m3" (a)), absl (p2(m3" (a)))
where py : (Aj)p X Ga;, — (Aj)p and pa : (Aj)g x Ga, — Ga, are the projections.

3.3.2 Term evaluation and the satisfaction condition

Naturally, a state of the system under consideration will be defined as the collection of the states of each object
of the system. We associate to every object of type c;, a state belonging to G4,. Some instantiation constraints
have to be defined in order to only consider feasible global states. Formally:

Definition 3.4 Let © = {©1,...,0,} be an exhaustive system signature. Let A be a ©-model. We note Gj the
set of partial functions 7 : H A, — H Ga, such that for every i € [1,n] and for every a € Aci the following
0€0 i€[L,n]
conditions are verified: (a) € Ga,
Vej € O;, Vb e Ay : F(a)(b) is undefined if §(b)(self) is undefined
F(a)(b) = absfi(ﬁ(b)) otherwise

As in Section 2.3.2, evaluations of terms follow a “bottom-up” strategy by reduction of terms. So, the
evaluation of a term t from a state ¥ in a model A leads also to a set evaly(t) of pairs (r,7’).

Lastly, the satisfaction relation follows the same rules than in Section 2.3.3.



4 Proving properties

Let us consider the system specification described in Example 3.2, and let us prove the following formula ¢:
is_emplty = true = wait (remove)

Sketch of the proof: The inference rules we use will be introduced here on a “call-by-need” basis, just before
their first use. Moreover, we will ignore the use of any rule about classical connectives ({—, A, V, =, <1}).
From the two following axioms of the implemented buffer specification:

o first=mnil <= is_empty = true

e remove = first.walue ; setfirst(first.next) ; setlength(length — 1)

wait (1) A <t>=<t'>°
wait (¢)

t=t’

Zse—ase  and

and from the following rules: the formula ¢ is equivalent to the

following formula:
first =nil = wait (first.value ; setfirst(first.next) ; setlength(length — 1))

From the system specification, we have:
e —alive (nil)
Thus from the three following inference rules:

<t>_=<t'>_

t=t’ U=u
and alive (t)=-alive (¢')

= .=, and

we can write:
o first =nil = -alive (first)

-alive ()

m we can write:

Thus from the rule:

o first=nil = wait (first.value)

wait (¢;)

And we conclude from the rule: .
walt (t1 5 ... 5t 5 ... 3 tn)

o first=nil = wait (first.value ; setfirst(first.next) ; setlength(length — 1))

This ends the proof. Unfortunately, to fully prove the correctness of our implementation of queue by cells, the
proof of formulas involving equality between queue states are more complex. We need observability technics,
similar to context induction [Hen91].
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