
Probalistic Formula Testing

Laurent Bouaziz,

CERMICS – ENPC

Central 2 – La Courtine

F-93167 Noisy le Grand cedex

Gilles Bernot, Pascale Le Gall

Université d’Evry, LaMI

Cours Monseigneur Roméro

F-91025 Evry cedex

{bernot,legall}@lami.univ-evry.fr

Introduction

In the field of software or hardware testing [1], the systematic approaches to generate test data sets
are mostly based on a first step where the input domain is divided into a family of subdomains [2, 3].
According to the so-called structural , or white-box , testing approach, these subdomains correspond to
well chosen paths in the data flow or control graph of the product under test. According to the so-called
functional , or black-box , testing, these subdomains correspond to the various cases addressed by the
specification of the product under test. Then, there are two main strategies to select test cases :

• either one performs a deterministic selection of test cases within each subdomain;
• or one performs a probabilistic selection of test cases based on a distribution on each subdomain [4].

If the test data set is successfully executed, it provides us with different kinds of confidence :

• If the selection has been deterministic, then we get a qualitative reliability evaluation, namely
the confidence that we give to the criteria used to make the partition of the input domain into
subdomains (e.g., to cover all the branches of the control graph, or to cover all the i-paths [5]).

• If the selection has been probabilistic, then we can get a quantitative reliability evaluation, given
by classical probability results, according to chosen distributions (e.g., using the operational profile
[6]).

Deterministic structural testing has already been extensively studied [1] and several test generation tools
exist. There are ongoing researches about probabilistic structural testing (e.g., [7, 2, 3]) with promising
concrete results [8].

Deterministic functional testing is also widely practiced (the test cases are established while writing the
specifications). With the emergence of formal specifications, several research works show that it becomes
possible to define the functional testing strategies in a rigorous and formal framework, and to partly
automate them [9, 10]. All these approaches are deterministic ones.

The work reported here aims at rigorously treating probabilistic functional testing. Let us make precise
that we address dynamic testing, i.e., the generated test cases are executed by the system under test and
we check the actual results against the ones defined by the specification.

A formal specification of a functionality f can be seen as a (possibly composed) formula establish-
ing the required properties between the input variables of f , say x1, x2, · · · , xn, and the output result
f(x1, x2, · · · , xn). Thus, we can consider that we test formulas of the form: ∀ (x1, · · · , xn) ∈ D , ϕ(x1, · · · , xn)
In practice, to test such formulas amounts to :

• generate a (pertinent) test data set, which is a finite subset of the input domain D of the formula,
i.e., some chosen values for the tuple (x1, · · · , xn),

• execute each test, which means make the product under test execute the terms of ϕ for the chosen
values,

1



• if one of the execution does not furnish the expected results (i.e., they do not logically satisfy
ϕ), then the test reveals a failure, else all the tests are in success and it remains to evaluate our
confidence into the correctness of the product under test with respect to the formula.

Such a process requires a lot of instrumentations. For instance in the last step, which consists in deciding
the success/failure of each test, it is necessary to be able to decide if ϕ(x1, · · · , xn) is satisfied. Thus, it
is necessary to make available a decidable “oracle” ([11]) which computes ϕ for any (x1, · · · , xn) in the
domain. In this article we only focus on the first step, assuming that the second and last steps are already
instrumented.

The next section addresses the question at the theoretical level, the “formula testing” level. We mainly
address three questions. The first one is “how many test cases should we generate in order to affirm that
the system will behave correctly, except possibly for a given percentage of the input values?” The second
question is “how to evaluate the risk that we take when we guaranty this percentage, and sign the permit
to deliver the system?” The last question is “how to choose pertinent test cases?” It is the reason why
we introduce the notion of (µ, ǫ, α)-validation.

• µ is a distribution on the domain D of the formula. Roughly speaking, µ specifies a way to generate
well chosen test cases out of the domain, and gives a precise meaning to the expression “well chosen.”

• ǫ can be seen as a contract between the vendor of the product under test and the client. It allows the
vendor to say “according to µ, I affirm that my product satisfies the formula ϕ, with a probability
ǫ to be wrong.”

• α can be seen as the risk that the vendor takes when making this affirmation.

According to this theory, we propose a tool to assist test generation. The point is to generate test cases
from a description of the domain D. We have considered several primitive operations to describe the most
common domains in computer science. These operations on domains are treated and a small prototype
written in Mathematica [12] allows to assist test generation on domains definable according to these
primitive operations. Thus, the “complicated underlying probabilistic machinery” is hidden behind a “set
theoretic interface.”

Some related works are considered in the last section. We show that our approach is not limited to
probabilistic functional testing only. A triple (µ, ǫ, α) can also be deduced from probabilistic structural
testing, and combined with the functional one, in order to better estimate and tune the risk taken by
the vendor. Lastly, we outline some possible cross-fertilization between our approach and a recent tool
performing deterministic functional test generation from algebraic specifications [17].

1 Formula Testing

1.1 (µ, ǫ, α)-validation

The two propositions below are the basic results on which we rely to replace an exhaustive deterministic
verification of a formula with a finite probabilistic verification. Let us first introduce some notations.

• The tested formula is of the form ∀ X ∈ D , ϕ(X) where X is a variable which replaces the
tuple (x1, · · · , xn) of the formulas stated in the introduction.

• The domain D of the input variable X of the formula is assumed to be countable.
• µ is a probability distribution on D that gives a strictly positive weight to any element of D: such

a distribution is termed complete on D.
• (Xi)i≥0 are independent random variables on D distributed according to µ: this means that they

are drawn at random1, their result being distributed according to µ and the output of any subset
of them does not influence the rest of the outputs.

• F is the subset of D for which ϕ does not hold, i.e.: F = {X ∈ D | ¬ϕ(X)}. Our goal is to propose
a validation procedure to check whether F is empty.

1for simplicity reasons, we do not distinguish between the random variable, which is a mapping, and its realization,

which is an element of D.

2



Proposition 1 (∀ X ∈ D, ϕ(X)) ⇔ (∀ i ≥ 0, ϕ(Xi))

(To be fully correct within a probabilistic framework, the above assertion holds up to the almost sure
equivalence. This has no practical consequence.) This result alone would be of no practical value: we
simply replace a countable deterministic verification with a countable random check. The next proposition
shows that in the latter case, it is possible to infer nonetheless from a finite probabilistic verification a
quantitative estimate of the confidence we can have in the formula. Let us first introduce a definition to
make things more precise (see also Section 1.2):

Definition 1 A µ-test of length N is any set {ϕ(X1), . . . , ϕ(XN )}. Such a test is said in success if for
all i = 1..N , Xi 6∈F (i.e., ϕ(Xi) holds).

In analogy to what happens in statistical quality control where one admits the possibility of wrongly
accepting a decision, we introduce the following notion of probabilistic validation:

Definition 2 We call (µ, ǫ, α)-validation of a formula ϕ any procedure that allows one to assess:

With a probability of at most α to err, µ(F ) ≤ ǫ

The error α being considered here is what statisticians call “error of the second kind,” i.e., the error that
one makes when one announces that the result holds when it does not.

Proposition 2 If a µ-test of length N succeeds, it is a (µ, 1 − N
√

α, α)-validation of ϕ.

Let us notice that as N grows and assuming that the tests are successful, we can give estimates on the
upper bound for the probability of F that gets closer to 0, which is rather logical.
α, that lies between 0 and 1, measures the quality of the test: the closer α is to 0, the greater the
confidence in the validation. In other terms, if one repeats 100 times the previous test (with independent
draws), the decision will be wrong in at most 100 α cases.

1.2 Formula Testing Applied to Probabilistic Functional Testing

We want to deal with the test of a formula (∀ X ∈ D, ϕ(X)) , that comes from a specification. The
previous results suggest the following approach:

1. Select a distribution µ on D.
2. Select a confidence level 1 − α and a control parameter ǫ.

3. Compute the length N of the µ-test according to: N ≥ log(α)
log(1−ǫ)

4. Draw N times in the distribution µ and for each of the produced values, compute the truth of ϕ.
5. If the previous µ-test of length N succeeds, then we have a (µ, ǫ, α)-validation of ϕ.

The implementation of the approach assumes that one is able to draw at random according to a given
distribution. This is the problem we are going to tackle now.

2 Random Generation

2.1 An Introductory Example

Let us consider a function intdiv that computes the quotient q of the division of two natural numbers
a and b: intdiv : [0, MaxInt] × [1, MaxInt] → [0, MaxInt]. A required property for intdiv is:
∀(a, b) ∈ [0, MaxInt] × [1, MaxInt] , (0 ≤ a − b × intdiv(a, b)) & (a − b × intdiv(a, b) ≤ b − 1)

The operations −, ×, ≤, & and of course intdiv are assumed to be executable.

3



An elementary test of the previous formula amounts to select two values a0 and b0 and to submit the
formula to the program. To benefit from the approach we developed in the previous section, we have
to draw according to a distribution on [0, MaxInt] × [1, MaxInt]. In the present case, this is quite
obvious since we can choose for example the uniform distribution on that set that assigns a weight of

1
(MaxInt+1)MaxInt

to any pair of the input domain.

The choice of the uniform distribution is not imposed by the method however. The tester may prefer
to give a special importance to values near to the boundary of the input domain. This could lead, for
example, to a procedure that would draw: with probability 1/2 a pair in the set [0, MaxInt]×{MaxInt},
and with probability 1/2 a pair in the complementary set.

2.2 Goal

According to the theory developed previously, the distribution in which data are drawn must assign a
non-zero weight to any element of the input domain D, otherwise, the validation would hold only for the
carrier set of the distribution. Hence:

Definition 3 A generation function for a domain D is a procedure (in the computer science meaning)
that outputs values according to a complete distribution.

Our goal is now to produce generation functions for a large class of sets frequently used in computer
science. We are going to list and comment the basic blocks and the combinators used to describe sets. For
each operation, we will provide both a short mathematical justification of the method and some examples
of the possible uses of the tool. All the examples and the code are written in Mathematica ([12]).

Definition 4 A simulation pair is a pair (D, γ) where D is a set and γ is a generation function on D.

The following subsections define inductively the class S of simulation pairs handled by our tool.

2.3 Interval of Integers

The first class of basic sets we consider is the class of the interval of integers denoted by intInterval[{a,b}].
The tool allows to build either the uniform distribution or any specified distribution defined by the weights
assigned to each element of the interval. By default, generate[intInterval[{a,b}]] draws numbers
in the interval [a,b] according to the uniform distribution. To implement such kind of generator, we
make the classical assumption ([13]) that we can rely on a perfect generator that simulates a uniform
distribution on [0, 1] as a subset of the reals. generate[intInterval[{a,b},d]], where d is a density
function that assigns a probability to each element of [a,b], draws numbers in [a,b] according to d.
For example, we can set:

d[0]:=1/3 ; d[1]:=2/3 ; int01:=intInterval[{0,1},d]

and in average, 1 will be drawn twice as much as 0. We can also consider a uniform distribution on
bounded natural numbers: bnat:=intInterval[{0,MaxInt}]

2.4 Enumerated Set

Since finite sets can be seen as mapped integer intervals, their generation is straightforward; for example,
with the previous d, we can generate a boolean with: bool:=finiteSet[{false,true},d]
Moreover, for practical purposes, we introduce a Singleton operation with an obvious meaning.

4



2.5 Cartesian Product

Given any tuple of simulation pairs (Di, γi), it is easy to build the simulation pair (
∏

i Di, γ) where γ is
the tuple whose i-th component is equal to γi. The probability to draw a given tuple (u1, · · · , ui, · · ·) is
equal to the product of the probabilities to draw each ui according to the distributions of the γi. For
example:

fprod:=product[int01,bool]

generate[fprod]will return pairs (i, b) where i is drawn in [0, 1] according to d and b is a boolean drawn
according to d too.

2.6 Union

Given a tuple of simulation pairs (Di, γi)1≤i≤n and a family of strictly positive weights (wi)1≤i≤n, it
is possible to build a generation function on ∪iDi: one has to draw an index i0 on the interval [1, n]
according to the distribution given by the wi and then draw in Di0 . If the carrier sets Di are disjoint,
then the wi can be interpreted as the relative frequency with which values will be drawn in the Di. The
probability to draw in ∪iDi an element u of a given Dj is equal to the product of

wj
∑

i
wi

by the probability

to draw u in Dj according to γj . For example, one may have defined:

int01prime:=Union[{{Singleton[0],1/3} , {Singleton[1],2/3}}]

and the distributions associated to int01 and int01prime would have been identical.

2.7 Mapping

Given any simulation pair (D, γ) and any function g whose domain coincides with D, it is possible to
build a generation function on the codomain of g by simply first drawing a value in D and then mapping
it with g. The probability of an element u of g(D) is the sum of the probabilities of the antecedents of
u by g. One may have thus defined:

g[0]:=false ; g[1]:=true ; boolprime:=map[int01,g]

and the distributions associated to bool and boolprime would have been identical.

2.8 Countable Set

Given any family of positive real numbers wi that sum up to 1, it is possible to build a distribution on the
set of natural numbers, denoted nat that assigns a probability wi to i. That is the goal of the primitive
nat[w] where w is the weight function. By default, the following distribution is assigned to nat:

nat:=Union[{{intInterval[{0,MaxInt}],1-EPS},{intInterval[{MaxInt+1,INFINITY}],EPS}}]

Any interval of the form intInterval[{x,INFINITY}] is provided by default with a generation function
poisson which is the density of a Poisson distribution whose intensity is 1:

poisson[n,lambda,x]:=Exp[-lambda] lambda^(n-x+1)/Factorial[n-x+1]

The intuition behind nat is to have a uniform distribution up to a prespecified number MaxInt mixed
with a rapidly decreasing distribution for numbers greater than MaxInt, the weight attributed to this
last distribution being controlled by a constant EPS. By mapping, this allows to build a distribution on
any countable set that is defined as the range of some given map on the set of natural numbers.

5



2.9 Subset

It is often convenient to define a set D′ as the subset of a bigger one D through a predicate p. If this
predicate is executable and if we have a generation function on D, γ, the rejection method ([13]), which
amounts to draw in D as long as the predicate is not satisfied, gives a general method to build a generation
function on D′. The greater the probability of D′ under the distribution associated with γ, the shorted
the average time needed to draw in D′. Given that the function IsPrime checks that a given natural
number is prime, it is easy to draw prime numbers: prime:=subset[nat,IsPrime]. The efficiency of

the previous generation function is not so bad since the asymptotical density of prime numbers is log(n)
n

.

2.10 Sequence

One has often to deal with “product” sets where one factor of the product depends on some other factors.
For example,

{

(x, y) ∈ bnat2| x ≤ y
}

is such a set. It is often more efficient to express explicitly this
dependency than to consider such a set as the subset of a bigger one. That is why we provide a Sequence

operation that allows us to describe the previous set as:

DBNat := Sequence[{bnat,Function[x,intInterval[x,MaxInt]]}]

and this amounts to first draw x0 in bnat and then to draw uniformly in [x0, MaxInt] and the probability
to draw (x, y) is 1

(MaxInt+1)(MaxInt−x+1) .

The tool allows in fact to deal with any such “dependent product set” (corresponding to the classical
dependent types in computer science) where one can find a permutation of the components such that in
the reordered tuple, the i-th component depends only on the 1 . . . (i − 1)-components.

2.11 Recursive Structures

Inductively defined sets are omnipresent in computer science. In order to keep things simple and short
in this article, we will only deal with “linear” recursive structures like lists (the interested reader can
consult [14] for a more general presentation).

2.11.1 Free Linear Recursive Structures

They can be seen as some least fixpoint for some building total functional. In the formal specification
setup, it is convenient to work with the set of all the terms built on the signature of a given data type,
and the functional is then called a free constructor .

The generation of free structures is very simple. For example, if one wants to generate lists of integers at
random, one just has to draw first the length l of the list, and then iteratively l times, draw an integer
and apply the free constructor “cons” to get a list. More precisely, given the following signature Σ:

op nil : -> List

op cons _ _ : Nat List -> List

op head _ : List -> Nat

op tail _ : List -> List

lists can be defined as the set of all the terms generated over nil by the constructor cons. Their general
form is: cons(x1,cons(x2,...(cons(xn,nil))...)). This can be expressed as the least subset of all
the Σ-terms satisfying: X = {nil} ∪ cons(nat, X) where nat denotes the carrier set containing all
the values of type Nat (previously provided with its own generation function).

list:=RecStruct[Sig->Sigma,Base->Singleton[nil],Cons->{cons}]

where Sigma is defined in an obvious way.

6



By default, all the lengths2 up to MaxInt are considered equivalent and the other lengths are neglected.
This is implemented via a default function NDistrib which draws the length l according to the nat

distribution. If we want to privilege short lists over longer lists, we can modify the distribution that
controls the length of the generated structure with:

shortList:=ModifyDistrib[list,NDistrib->Union[{{intInterval[{0,SmallInt}],1/2},

{intInterval[{SmallInt+1,INFINITY}],1/2}}]]

To generate non-empty lists, there are several possibilities:

• one first solution is to consider them as a subset of the lists and to define them as:

NeList1:=subset[list,Function[x,Not[IsEmpty[x]]]]

• a second solution is to modify the distribution on the lengths to exclude a length of 0.

NeList2:=ModifyDistrib[list,NDistrib->intInterval[{x,INFINITY}]]

• a third solution is to proceed from the ground up and to set as the base set the lists of length 1:

NeList3:=RecStruct[Sig->Sigma,

Base->map[nat,Function[x,cons[x,nil]]],

Cons->{cons}]

2.11.2 Constrained Linear Recursive Structures

The main difference with the previous case is that the building functional can be partial. The domain of
the functional is often defined by a predicate. The algorithm we provide here works if this predicate is
defined in terms of a recursive function on whose range a generation function is available.

Let us take the example of non empty sorted lists SortedList. The building functional can be written as:

∀(x, e) ∈ list× nat,

{

x ∈ SortedList & e ≤ head(x) ⇒ cons(e, x) ∈ SortedList
cons(e, nil) ∈ SortedList

Let us notice that the constraint is expressed in terms of the recursive function head whose range is nat:
the property we required from the predicate is thus satisfied.
The basic idea of the generation algorithm is then to try to solve a problem of the form: {head (x0) = e0

size(x0) ≤ n, where size denotes the number of constructor calls needed to build x0 and n is a natural
number. n controls the size of the generated structure and will be drawn at random in order to generate
structures of different sizes.

The next idea is to write x0 under the form: x0 = cons(e1, x1). x0 can be in SortedList if and only if
x1 is in SortedList and e1 ≤ head(x1). Moreover we must have head(x0) = e0. Because of the axiom
relative to head (see the next section), we have: { e1 ≤ head(x1)
e0 = e1

Let us consider the subset Gu,n of nat × nat defined by: { v 1 ≤ v2

u = v1. This set can be expressed as:

G[u_,n_]:=Sequence[{Singleton[u],Function[x,intInterval[{x,INFINITY}]]}]

Once a pair (e1, e2) has been drawn in Gu,n, we have to solve the following problem: {head (x1) = e2

size(x1) ≤ n − 1, which leads to a straightforward recursive solution of the generation problem.
The recursion stops when:

• either Gu,n = ∅ (which never happens here as can be seen from its expression above) and with the
previous notations, x1 is drawn in B.

• or n = 0 and once again, x1 is drawn in B.

The distribution that results from the above algorithm is naturally parameterizable through the choice
of a distribution: on the size of structure, on the set Gu,n, and on the range of the recursive function for
which the equation is solved (head here).

Finally, to test a formula of the form ∀X ∈ D, ϕ(X), it suffices to produce a set description of D, based
on the primitives shown above.

2the length being defined here as the number of constructors.

7



3 Relationship with some Other Approaches

3.1 Partition Testing

Partition testing ([15, 2, 16, 3]) is a classical testing method which consists in breaking the input domain
D in several pieces and in drawing uniformly in each subdomain Di a given number of data ni. The
result of such a test can be expressed in terms of a (µ, ǫ, α)-validation. More precisely, let us denote:
wi = ni

∑

j
nj

, µ̄ =
∑

i wiµi and n̄ =
∑

i ni where µi is the uniform distribution on Di. Then, we have

the following result:

Proposition 3 The success of the previous partition test is a (µ̄,
∑

i wi(1− ni
√

α), 1−(1−α)n̄)-validation.

3.2 Statistical Structural Testing

Statistical structural testing [7, 8] consists also in breaking the input domain into subdomains Di. Rather
than choosing arbitrary values in each subdomain, the authors of the method suggest to draw at random
on the whole domain, arguing that this compensates for the imperfection of any prespecified criterion.
More formally, the distribution µ is constructed in such a way that for each subdomain Di, the probability
that one value is drawn in Di must be greater than a prespecified quantity q termed the test quality.

A straightforward computation shows that the length n of such a test must verify the following relation:

n ≥ maxi
log(1−q)

log(1−µ(Di))
. The next proposition follows immediately from this observation:

Proposition 4 Given a successful statistical structural test with distribution µ, partition Di and test
quality q, it is possible to deduce, for any given α in ]0, 1[, a (µ, 1 − n̄

√
α, α)-validation, with: n̄ =

maxi⌈ log(1−q)
log(1−µ(Di))

⌉

Let us finally notice that the generation tool described previously helps one to build the functions needed
by a partition test as well as by a statistical structural test.

3.3 Deterministic Functional Testing

Once a successful test has been conducted, if we want to increase the reliability evaluation, we get two
different scenarios depending on whether the test data selection is deterministic or probabilistic:

• Deterministic: we can refine the criteria, and it will result into numerous smaller subdomains in
which a few test cases are selected.

• Probabilistic: we can either tune the distribution in order to privilege some special cases or increase
the number of generated test cases in order to get a more interesting triple (µ, ǫ, α).

The first scenario presents the advantage that the new subdomains exhibit cases addressed either by
the program or by the specification that are likely to reveal errors. However, it cannot always be done
automatically. The second scenario presents the advantage that the test has a length under control and
can be automatically generated provided that the generation function is available. In return, there is
no guarantee of quickly revealing some prespecified test cases (in relation to the structure of either the
system or the specification).

In the field of functional testing, B. Marre has developed LOFT, a tool for deterministic test data
selection from classical positive conditional algebraic specifications [17]. It is written in Prolog and is
based on an equational resolution procedure with some control mechanisms. The main mechanism for
defining subdomains is the decomposition based on a case analysis. This case analysis is achieved by
unfolding the validity domain of the axioms w.r.t. the structure of the specification into a partition of
smaller validity subdomains. It would be interesting to combine LOFT with our tool of probabilistic test

8



generation in order to benefit from the fine decomposition into small subdomain provided by LOFT and
from our quantitative reliability evaluation. The main difficulty comes from the fact that the subdomains
given by LOFT are characterized by predicates and thus do not necessarily belong to our class of S
of simulations pairs. Such a combination of the two tools requires to find an intermediate level where
subdomains can be described both by a predicate (as in LOFT) and by using building primitives (as in
our approach).

4 Conclusion

We have defined a framework for probabilistic functional testing. Our main contribution is the formaliza-
tion of the testing activity in term of (µ, ǫ, α)-validation. It allows to associate to any successful test of
length N drawn according to the distribution µ two useful quantitative measures: ǫ which gives a proba-
bilistic upper bound of the potential error domain and α which gives a clue to help the tester/vendor to
estimate the risk (s)he takes in underestimating the measure of the error domain. These two measures
give a quantitative evaluation of the reliability. In order to facilitate the use of our theory, we have
proposed a tool to assist test generation on the most common domains in computer science (as Cartesian
product, inductively defined set, . . .). Our tool is only a first prototype which proves the applicability
of our method. In order to fully illustrate the interest of our method, one should compare or combine it
with other approaches on some real sized case studies. Of course, for this, our tool should offer a more
user-friendly interface.

References

[1] B. Beizer: Software testing techniques. Van Nostrand Reinhold, New-York, Second edition. 1990.

[2] E.J. Weyuker, B. Jeng: Analysing partition testing strategies. IEEE Trans. Software Engineering,
Vol.17, No.7, p.703-711, July. 1991.

[3] T.Y. Chen, Y.T. Yu: On the expected number of failures detected by subdomain testing and random
testing. IEEE Trans. on Software Engineering, Vol.22, No.2, p.109-119, February. 1996.

[4] J.W. Duran, S.C. Ntafos: An evaluation of random testing. IEEE Trans. on Software Engineering,
Vol.10, p.438-444, July. 1984.

[5] R. Hamlet: Theoretical comparison of testing methods. Proc. of the 3rd Symposium on Software
Testing, Analysis and Verification (TAV-3), Key West, USA, Software Engineering Notes, Vol.14,
No.8, p.28-37, December. 1989.

[6] M. Dyer: The cleanroom approach to quality software development. John Wiley and sons. 1992.

[7] P. Thevenod, H. Waeselynck, Y. Crouset: An experimental study on software structural testing:
determinisitc versus random input generation. Proc of the 21st IEEE Symposium on Fault-Tolerant
Computing, Montreal, p.410-417. 1991.

[8] B. Marre, P. Thévenod, H. Waeselynk, P. Le Gall, Y. Crouset: An experimental evaluation of formal
testing and statistical testing. Proc. of Safety of Computer Control System 1992 (SAFECOMP’92),
Zurich, October 1992, IFAC (Heinz H. Frey Ed.), Pergamon Press, p.311-316. 1992.

[9] J. Dick, A. Faivre: Automating the generation and sequencing of test cases from model-based speci-
fications. Proc. of Formal Methods Europe (FME 93), Springer-Verlag LNCS 670, p.268-284. 1993.

[10] A. Arnould, P. Le Gall, B. Marre: Dynamic testing from bounded data type specifications. Proc. of
EDCC-2, Second European dependable Computing Conference, Taormina, Italy. 1996.

[11] E.J. Weyuker: On testing non testable programs. The Computer Journal Vol.25, No.4, p.465-470.
1982.

[12] S. Wolfram: Mathematica: A System for doing Mathematics. Addison Wesley. 1995.

[13] L. Devroye: Non-uniform random variate generation. New-York, Springer. 1986.

[14] L. Bouaziz: Méthodes probabilistes pour la validation de formules et applications au test de logiciel.
Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées, Paris. 1996.

9



[15] R. Hamlet, R. Taylor: Partition testing does not inspire confidence. IEEE Trans. on Software
Engineering, Vol.16, p.1402-1411, December. 1990.

[16] M.Z. Tsoukalas, J.W. Duran, S.C. Ntafos: On some reliability estimation problems in random and
partition testing. IEEE Transactions on software Engineering, July. 1993.

[17] B. Marre: Toward automatic test data set selection using algebraic specifications and logic program-
ming. Proc. of the 8th Intl. Conference on Logic Programming (ICLP’91), Paris, June 1991, Logic
Programming M.I.T. Press, p.202-219. 1991.

10


