
General Structured Specifications

Sophie Coudert and Gilles Bernot and Pascale Le Gall

L.a.M.I., Université d’Évry, Cours Monseigneur Roméro, 91025 Evry Cedex, France
{coudert,bernot,legall}@lami.univ-evry.fr

Abstract. We propose a definition of structured heterogeneous formal
specifications. We focus on the specification structures themselves and
we represent them using terms instead of graphs. Then, we take benefit of
classical results on terms. For example, the use of substitutions naturally
allows to take into account subspecification sharing. Then, we show how
some common issues such as proof mechanisms or modularity can be
expressed inside our framework. Finally, we give an example of such a
general framework of structured specifications.
Keywords: Structured heterogeneous specifications, modularity, gen-
eral logics, institutions, logical frameworks, inference systems, algebraic
specifications, theorem proving.

Introduction

Formal methods in software engineering, and in particular formal specifications,
become almost sufficiently well controlled to envisage to apply them to very
large size parts of a software project [GW96]. Today, a lot of formal founda-
tions and tools exist to treat specification modules independently, or to treat
hierarchical specifications written according to a unique, well established frame-
work: formal languages (e.g., [Jon90,Spi89,Abr95,BG80,Wir94,Gau84,GH93]),
advanced theorem provers (e.g., [Gor88,GG91,CCJC+95]), test generation tools
(e.g., [DF94,DF93,Mar91]), etc. However, in order to cope with large scale spec-
ifications, one of the primary interests is to be able to consider heterogeneous
specifications . For instance to reuse various software or hardware components in
a new system, it implies that their specifications should be reused and combined
as they are, thus we have to cope with specifications whose components can be
written according to several different frameworks. Moreover, of course, the struc-
ture itself of the specifications becomes a “first class citizen” object of study, as
in the so called software architecture approaches [GS93,PW92]. The CoFI initia-
tive for example, gives a large place to structuring issues in the discussions, and
there are several research works focused on the structuring primitives of speci-
fications [Wir93,HT94,DGS93]. Extending the ideas of a previous article about
heterogeneous specifications [BCLG96]1 and the ideas behind several articles
about specification structures [Wir93,HT94,DGS93], this article gives a unified
framework to handle both subjects. In other words, we propose a definition of
structured heterogeneous formal specifications in general.

1 where it was impossible for a module to import several heterogeneous modules.

Even if the detailed definitions may seem technical, the philosophy behind
this article is very simple and based on natural ideas:

– Usually, a hierarchical specification is shown as a directed acyclic graph
(DAG) with a root node (the top module), and a classical alternative repre-
sentation is a tree whose nodes are the specification modules and where equal
subtrees represent a unique sub-specification. This last convention allows to
retrieve the DAG from the tree (and conversely).

– Syntactic, semantic, and more recently proving [VB95] issues can be handled
via recursive considerations along the tree representation of the hierarchical
specification. What raises strong difficulties is to manage the sharing aspects
between equal subtrees representing equal sub-specifications [Roq94].

– Because substitutions can manage sharing properly, a first natural idea is
then to represent structured specifications as terms instead of trees. The ad-
vantage would be to take benefit of the wide scientific corpus about terms,
substitutions, rewriting, etc. This article is a first proposal in this direc-
tion. The first obstacle to this idea is the notion of well-formedness. For
example, to represent a specification module △P which uses n specifications
SP1, ..., SPn, it seems natural to write the “term” use(△P , SP1, ..., SPn).
Unfortunately, if SP1, ..., SPn can be viewed as terms easily, it is not the
case for △P which is of different nature, and typing issues on the terms
representing specifications become unmanageable.

– Things are different if we write use△P (SP1, ..., SPn). The top level operation
of this term is use△P instead of use, thus there are as many different use
operations as different specification modules, and all subterms are structured
specifications. Would you believe that such a simple manipulation solves the
question? It does! and the rest of the paper, more or less, shows this fact.

Of course, things are a little bit more complex in details. For example, to define
semantics of structured heterogeneous specifications, we have to consider a sort of
“higher order” substitution where not only variables at the leaves of the term can
be substituted, but also operations in the internal nodes of a term. Moreover, we
do not only consider a structure as a hierarchical construction via use modules,
we also want to encompass all other primitives, such as forget, rename, etc. The
most delicate issue has been to give a large place to heterogeneity in the structure
(e.g., in our general approach SP1, ..., SPn do not necessarily belong to the same
specification framework, and the “output framework” of operation(SP1, ..., SPn)
can also be another framework). Also, we have been careful to provide a good
way to express the proof mechanism within our general framework. One of our
contribution is to provide a formalization of the proof principle which consists to
“delegate lemmas” along the specification structure (or to dive them according
to [HT94]) in order to prove a property at the top level of the specification. For
all these concerns, representing structured specifications as terms has been very
fruitful.

The terms we consider are simple first order typed terms. The type of a
term is simply the signature exported by the specification (according to the
“output framework” of the top level operation of the term). One difficulty is that

operations in terms are partial. For example, if we want to consider a structuring
operation which “translates” a specification from a framework with exception
handling features to a framework without exception handling features, then it is
possible that only specifications where all exceptional cases are recovered can be
translated. Thus the operation that goes from exception handling to this other
framework is partial, it plays the role of a filter, and its definition domain can
be understood as the well known proof obligations , which are often imposed in
practice to consider a specification as “well-formed”.

1 Preliminary definitions

Our framework will be based on a notion of formalisms similar with the one of
general logic introduced in [Mes89], but our requirements about formalisms are
weaker. In particular, the notion of signature morphisms is useless for us (and
thus, the satisfaction condition) because signatures will now be linked between
them through the specification structuring operations. Nonetheless, in the sequel,
signature morphisms will serve us to describe classical examples of structured
specifications.

Definition 1. A specification formalism b is a tuple (Sigb, senb,modb,⊢b, |=b)
where:

– Sigb is a class whose objects are called signatures
– senb is a total map from Sigb to Set associating to each signature a set of

sentences (Set being the category of classes)
– modb is a total map from Sigb to Class associating to each signature a class

of models (Class being the category of classes)
– ⊢b, called inference relation, is a Sigb-indexed family such that for each sig-

nature Σ, ⊢b,Σ is a binary relation included in P(senb(Σ)) × senb(Σ)
– |=b, called satisfaction relation, is a Sigb-indexed family such that for each

signature Σ, |=b,Σ is a binary relation included in modb(Σ) × senb(Σ)

and the following properties are satisfied:

– ⊢b is reflexive, monotonic and transitive, i.e., respectively
• ∀Σ ∈ Sigb, ∀ϕ ∈ senb(Σ), {ϕ} ⊢b,Σ ϕ
• ∀Σ ∈ Sigb, ∀Γ ⊆ senb(Σ), ∀Γ ′ ⊆ senb(Σ), ∀ϕ ∈ senb(Σ),
Γ ⊢i,Σ ϕ and Γ ⊆ Γ ′ =⇒ Γ ′ ⊢b,Σ ϕ

• ∀Σ ∈ Sigb, ∀Γ ⊆ senb(Σ), ∀Γ ′ ⊆ senb(Σ), ∀ϕ ∈ senb(Σ),
Γ ⊢b,Σ Γ ′ and2 Γ ∪ Γ ′ ⊢b,Σ ϕ =⇒ Γ ⊢b,Σ ϕ

– soundness: for any Γ ⊆ senb(Σ) and any ϕ ∈ senb(Σ), if Γ ⊢b,Σ ϕ then3

∀M ∈ modb(Σ), (M |=b,Σ Γ) =⇒ (M |=b,Σ ϕ)

Notation 1 We introduce the following notations:

2 Γ ⊢b,Σ Γ ′ means ∀ϕ ∈ Γ ′, Γ ⊢b,Σ ϕ
3 M |=b,Σ Γ means ∀ϕ ∈ Γ, M |=b,Σ ϕ

– B is the class of all specification formalisms.

– Sig =
∐

b∈B

Sigb

– mod : Sig → Class associates modb(Σ) to each signature Σ in Sigb

– sen : Sig → Set associates senb(Σ) to each signature Σ in Sigb

– ⊢ =
∐

b∈B

⊢b and |= =
∐

b∈B

|=b

2 General structured specification framework

Our approach focuses on the structure itself and proposes to see specifications
as terms. Each function symbol of a specification term corresponds to a building
operation of the specification. We will call such function symbols structuring
nodes. For example, each basic module will be a constant node and two differ-
ent enrichment modules are two different nodes. Intuitively, the semantics of
these nodes are functions from the imported models towards the models of the
resulting specification. Moreover, an inference mechanism is associated to each
node. It allows the transmission of properties through the structure. Below, our
framework is described by the three usual components: syntax, semantics and
inference relation.

2.1 Syntax

A meta-signature of a general structured specification framework consists in
a class of structuring nodes, each of them being provided with its definition
domain:

Definition 2. A meta-signature Θ is a tuple (N ,Spec) where

– N is a class of nodes. Each node is provided with a profile in Sig+. We note
f : Σ1 . . .Σn → Σ such a node (n ∈ IN).

– Spec is a class of well structured specifications which is a subclass of the
free term algebra on N , TN , closed by sub-terms:
∀f : Σ1 . . .Σn → Σ ∈ N , ∀τ1 ∈ TN,Σ1

, . . . ,∀τn ∈ TN,Σn
,

f (τ1, . . . , τn) ∈ Spec =⇒ ∀i = 1 . . . n, τ i ∈ Spec

Reminder: N being given, the free term algebra on N is the least Sig-indexed

family TN =
∐

Σ∈Sig

TN,Σ such that for every (f : Σ1, . . . , Σn → Σ) ∈ N , if

τ1 ∈ TN,Σ1
and . . . and τn ∈ TN,Σn

(n ≥ 0), then f(τ1, . . . , τn) ∈ TN,Σ.

Following the previous example, any flat homogeneous presentation P =
(Σ,Γ), according to any specification formalism, can give rise to a node of arity
0, and used to introduce elementary specifications as basic cases in the recursive
construction of structured specifications: basicP :→ Σ. Also, say in the first
order typed equational logic, each signature morphism σ : Σ1 → Σ2 can give

rise to forgetσ : Σ2 → Σ1, with the obvious meaning as structuring operation.
Many other examples can be invented. Notice that the signatures belonging to
the profile of a node f do not necessarily share the same underlying specification
formalism.

Notation 2 If τ ∈ TN,Σ, we call Σ the signature of τ . By convention, the
signature of τ is denoted by Στ . Moreover, we note SpecΣ = Spec ∩ TN,Σ =
{T ∈ Spec | Στ = Σ}

Let us remark that a specification term is typed by its output signature. In-
tuitively, the coincidence of the signatures is the minimal requirement to connect
two specifications components. However, this requirement is often not sufficient
to limit the connections to the licit ones. The additional constraints are expressed
by Spec which is the class of all well-formed specifications.

Definition 3. Given a meta-signature Θ = (N ,Spec), the syntactical domain
of a node f : Σ1 . . .Σn → Σ is the class Df of tuples (τ1, . . . , τn) such that
f(τ1, . . . , τn) belongs to Spec .

For example, Dforgetσ
can be chosen as SpecΣ2

entirely (i.e., forgetσ is a
total function).

Remark 1. N being given, the class Spec is entirely determined by the knowl-
edge of the syntactic domain Df for each f in N .

2.2 Semantics

Definition 4. A node semantics for a meta-signature Θ = (N ,Spec) is a N -

indexed family Sem =
∐

f∈N

Semf such that for each f : Σ1 . . .Σn → Σ in N ,

the elements of Semf , called implementations of f , are partial functions ν from
mod(Σ1)× . . .×mod(Σn) to mod(Σ), their definition domain being denoted by
Dν called the semantic domain of the node implementation ν.

Notation 3 Given Θ and Sem, the class mod(Sig) (Notation 2) is equipped
with a partial Sem-algebra structure (from Definition 6).
We note Mod(Θ,Sem) this partial algebra whose carrier is mod(Sig).

Thus, the semantics of a node are partial functions, from the models of the
domain signatures of f to the models of the codomain signature of f . For exam-
ple, a natural choice for a node forgetσ is the singleton Semforgetσ

= {mod(σ)},
the functor mod(σ) being often called the forgetful functor in the first order logic
framework. A natural choice for a node basicP could be mod(P), which means
that each model satisfying the specification is considered as a correct imple-
mentation of the node. If applicable in a given specification formalism, another
possibility is to restrict SembasicP

to finitely generated models for example.
Notice that node implementations ν are a priori partial functions. Some

models of the signatures of the domain of f may be unacceptable for a given

implementation ν. A rough analogy to make things pragmatically clear is the
case of a program module ν which requires to import 32 bits integers and no
other implementations of integers4. For this reason, Mod(Θ,Sem) is a (strict)
partial algebra.

We can obviously imagine structured specifications τ such that a given node
f (say a module for example) appears several times in the term. As already men-
tioned in the introduction, to formalize that f should have only one implementa-
tion in a correct realization of τ is very difficult when considering specifications
as trees or DAGs. Moreover this kind of sharing is generally not considered if
the two occurrences of f do not import the same subspecifications. Here, the
classical notion of substitution solves the problem easily.

Definition 5. Given Θ = (N ,Spec) and Sem, a (Θ,Sem)-realization is a
partial substitution ρ : N → Sem such that for f in N , ρ(f), when it is defined,
belongs to Semf . We note Sem(Θ) the class of all (Θ,Sem)-realizations.

Notation 4 Given a (Θ,Sem)-realization ρ : N → Sem, we note ρ : Spec →
Mod(Θ,Sem) the partial canonical extension of ρ to Spec.
Notice that ρ(f (τ1, . . . , τn)) is defined if and only if: ρ(f) and all the ρ(τi) are
defined, and (ρ(τ1), . . . ,ρ(τn)) belongs to Dρ(f), the semantic domain of ρ(f).

The partiality of ρ should not confuse the reader here: it simply means that
to realize a specification τ , it is not necessary to implement all other nodes
that do not belong to τ . On the contrary, the partiality of ρ is significant. It
means that incompatible implementations of the nodes of τ never result into a
realization of τ . Finally, we can give the following definition:

Definition 6. Given Θ = (N ,Spec), Sem, and a well structured specification
τ in Spec, the class of all flattened models of τ is:
Mod(τ) = {M ∈ mod(Στ) | ∃ρ ∈ Sem(Θ),M = ρ(τ)}.

2.3 Inference relation

We define heterogeneous inference relations as in [BCLG96]. They allow to het-
erogeneously infer sentences on the signatures of the codomain of a node using
sentences on the signatures of the domain of this node. This is done in a rather
natural way. Remind however that the involved signatures do not necessarily all
belong to a common specification formalism. There can be up to one different
formalism per signature.

Definition 7. Given a meta-signature Θ = (N ,Spec) and a node f : Σ1 . . . Σn →
Σ ∈ N , a (local) heterogeneous inference relation for f is a binary relation

|∼ ⊆ P(
∐

i=1...n

sen(Σi)) × sen(Σ).

In the remainder of this article, we will note indifferently (Φ,ϕ) ∈ |∼ or Φ|∼ϕ.

4 even if they fulfill the integer specification under consideration

Definition 8. Given a meta-signature Θ = (N ,Spec) and a node f : Σ1 . . . Σn →
Σ in N , a local heterogeneous inference relation |∼ for f is sound with respect
to a node semantic Sem if and only if

∀(Φ,ϕ) ∈ |∼, ∀τ = f (τ1, . . . , τn) ∈ Spec, ∀ρ(τ) ∈ Mod(τ),

(∀i = 1 . . . n, ρ(τ i) |= Φ ∩ sen(Σi)) =⇒ ρ(τ) |= ϕ

A general structured specification framework is then obtained by considering
heterogeneous inference relation for each node.

Definition 9. A general structured specification framework is a tuple (Θ,Sem,
)
where Θ is a meta-signature, Sem is a node semantics over Θ and
 is an N -

indexed family of local heterogeneous inference relations,
 =
∐

f∈N

f , such that

for each f in N ,
f is sound with respect to Sem.

3 General properties

In this section, we sketch out how our framework allows to easily express some
methodology issues. First, we give a proof mechanism following the specifica-
tion structure. Similar structured proof mechanisms have been already proposed
within a unique formalism [Wir93] [HT94], but without addressing the prob-
lem of the structuring of models. We also characterize the modularity in our
heterogeneous world as the requirement of two fundamental properties: the in-
dependence of the module implementations and the preservation of properties
through a node.

3.1 Inference system

Here, we propose an inference system for our structured specifications which
allows to use properties inherited from sub-specifications in order to prove prop-
erties at the top level. There will be two kinds of step, depending on which
inference relation will be used. The homogeneous steps will use the inferences
relations ⊢ of the specification formalisms. They allow to deduce, from proper-
ties about one model, other properties about the same model. The heterogeneous
steps will use the heterogeneous inference relations. They allow to deduce, from
properties about one model, properties about the images of this model by node
implementations.

Definition 10. A general structured specification framework (Θ,Sem,
) being
given, the corresponding inference system is the least binary relation � ⊆ Spec×
sen(Sig) such that, for any τ ∈ Spec

– � is transitive via ⊢:
∀Γ ⊆ sen(Στ), ∀ϕ ∈ sen(Στ), (τ � Γ) ∧ (Γ ⊢ ϕ) =⇒ (τ � ϕ).

– � is transitive via
 : when τ is of the form f (τ1, . . . , τn)

∀Γ ⊆
∐

i=1...n

sen(Στi
), ∀ϕ ∈ sen(Στ)

[(∀i = 1 . . . n, (τi � Γ ∩ sen(Στi
))) ∧ (Γ
 ϕ)] =⇒ (τ � ϕ)

A similar idea is developed in [BCLG96] and a relevant example of hetero-
geneous proof is given.

Theorem 5. For any general structured specification framework , the corre-
sponding inference system is monotonic and sound. This means that for any
specification τ and for any sentence ϕ in sen(Στ), we have:

soundness:
– τ � ϕ =⇒ (∀M ∈ Mod(τ), M |= ϕ)
monotony:
– ∀Γ ∪ {ψ} ⊆ sen(Στ), (τ � Γ ∪ {ψ}) ∧ (Γ ⊢ ϕ) =⇒ (τ � ϕ).

– for any node f , for any (τ 1, . . .τ n) in Df , for any Γ∪{ψ} of
∐

i=1...n

sen(Στi
),

[(∀i = 1 . . . n, (τi � (Γ ∪ {ψ}) ∩ sen(Στi
))) ∧ (Γ
 ϕ)] =⇒ (τ � ϕ)

Proof. The proof of soundness is done by induction on the proofs by using the
soundness properties of ⊢ and
. The one of monotony is done by inserting a
step Γ ∪ {ψ} ⊢ Γ in the proof (from the reflexivity and monotony properties of
⊢).

Let us remark that here, the validity is expressed with respect to the flat
models of the specification.

3.2 Stepwise integration

We can easily formalize in our framework the notion of stepwise integration. In-
tuitively, it means that we can obtain a realization of specification by using some
already implemented components and by implementing step by step the missing
ones. Such an already existing partial implementation is simply a realization ρ,
and then, adding component implementations is just extending this realization
to these components.

Definition 11. A general structured specification framework (Θ,Sem,
) and
a realization ρ being given, the class of all realizations that extend ρ is:

Sem(ρ,Θ) = {ρ′ ∈ Sem(Θ) | Dρ ⊆ Dρ′ ∧ ρ′
|Dρ

= ρ}

Similarly, the class of all flattened models of τ that follow ρ is:
Mod(ρ, τ) = {M ∈ Mod(τ) | ∃ρ′ ∈ Sem(ρ,Θ), M = ρ′(τ)}

Notation 6 Given a general structured specification framework (Θ,Sem,
) a
node f of Θ and a function ν in Semf , we denote by [ν/f] the substitution of
Sem(Θ) verifying D[ν/f] = {f} and [ν/f](f) = ν.

It denoted the particular realizations which only implement one component.
It provides us with a simple way, for example, to point out all the realizations
of a specification τ that share a common implementation ν of a module f , with
Mod([ν/f], τ).

3.3 Independent implementations

A classical property which is required for modularity is that the different mod-
ules of a specification can be separately implemented. More precisely, a modular
composition of specification modules id such that any implementation choice for
the modules provides an implementation of the global specification. In our frame-
work, this idea is expressed by the fact that all the possible implementations of
a modular node f cope with any realization of its potential input specifications
(Df).

Definition 12. Given a general structured specification framework F = (Θ,Sem,
)
a node f : Σ1 . . . Σn → Σ ∈ N of Θ and a function ν in Semf , the class
of all F -inputs of ν is denoted by InputsF (ν) = {M ∈ mod(Σ1) × . . . ×
mod(Σn) | ∃(τ1, . . . , τn) ∈ Df , ∃ρ ∈ Sem([ν/f],Θ), M = (ρ(τ1), . . . ,ρ(τn))}.

Definition 13. Given a general structured specification framework F = (Θ,Sem,
)
and a node f : Σ1 . . . Σn → Σ ∈ N of Θ,

– A function ν in Semf is said to be an independent implementation of f if
and only if all the F-inputs of ν belong to the semantics domain of ν, i.e.
InputsF (ν) ⊆ Dν .

– f is said to be an independent node in F if and only if all implementations
of Semf are independent.

3.4 Encapsulation

The second requirement for a node to be modular is the preservation of what
it imports. From our property-oriented point of view, we would like to preserve
in the global model the observable properties of the components. But these
properties are not expressed in the same language: the specifications under con-
sideration can belong to different frameworks. So, such a principle of properties
preservation has to be expressed by a heterogeneous relation |∼ which will serve
us as an external reference for the properties we want to preserve. This prop-
erty preservation mechanism encapsulates properties in two directions, from the
imported specification to the global one and reciprocally. This has been done
to ensure a possible delegation of lemmas guided by the specification structure.
This property preservation according to an external inference relation |∼ is called
|∼-encapsulation:

Definition 14. Given a meta-signature Θ = (N ,Spec), a node semantics
Sem, a node f : Σ1 . . . Σn → Σ and a heterogeneous inference relation |∼
for f , a function ν of Semf is said to be |∼-encapsulated if and only if:

for any subset Φ of
∐

i=1...n

sen(Σi), if Ψ = {ϕ ∈ sen(Σ) | Φ|∼ϕ} 6= ∅, then

∀τ = f(τ1, . . . , τn) ∈ Spec, ∀ρ(τ) ∈ Mod([ν/f], τ),

ρ(τ) |= ψ ⇐⇒ ∀i = 1 . . . n, ρ(τ i) |= Φ ∩ sen(Σi)

If for each ν in Semf , ν is |∼-encapsulated, then Semf and f are said to be

|∼-encapsulated too.

4 BUFF : A proposed example of general structured

specification framework

In this section, we describe a particular structured specification framework built
over “basic formalisms”. On such basic formalisms, we propose four kinds of
nodes:

– constant basicP for classical presentations of the form P = (Σ,Γ);
– use∆P for a use primitive based on an enrichment module ∆P ;
– forgetσ for a restriction primitive based on a signature morphism σ;
– filterH for a heterogeneous primitive based on a formalism morphism;

This set of structuring primitives is a good compromise between a simple
and concise language for structured specifications and the minimal requirements
to compose specifications. For homogeneous structures, some authors choose a
different distribution of the primitives. In a model-theoretic framework [Wir93],
Wirsing propose four primitives: presentation, renaming , restriction on a sub-
signature and union of two specifications defined on two different signatures. In
a proof-theoretic framework [HT94], they also propose presentation and restric-
tion, but the two other primitives are different: extension on a oversignature and
union of two specifications defined over a signature. The scope of our choice is
roughly the same as the ones of [Wir93,HT94] insofar as each family of primi-
tives allows to build structured specification by either abstracting, renaming or
combining subspecifications.

The heterogeneous primitive filter has been introduced in one of our previous
articles [BCLG96] in order to compose modules written in different formalisms.
It is also similar to the one denoted derive from SP via γ introduced in
[Tar95] which consists in “hiding some components in the specification while
preserving the interpretation of the remaining parts according to an institution
semi-morphism γ.” However, Tarlecki does not tackle the question of a proof
mechanism through such a heterogeneous bridge.

Our example of structured specification framework, called5 BUFF , is built
over the notion of basic formalisms where signature morphisms are introduced in
order to cope with the classical meanings of the structuring primitives. But still
we do not consider the satisfaction condition since δ-encapsulation encompasses
it in the context of structured specifications.

4.1 The category Form of basic formalisms

Definition 15 ((Basic formalism)). A basic formalism is a specification for-
malism b = (Sigb, senb,modb,⊢b, |=b) such that:

– Sigb is equipped with signature morphisms in order to become a category.
– senb is a functor.
– modb is a contravariant functor.

5 the letters are the first letters of the primitive names

As usual, for any signature morphism σ, mod(σ) will be denoted by Uσ.

Definition 16 ((Morphism of Specification Formalisms)).
Let a = (Siga, sena,moda,⊢a, |=a) and b = (Sigb, senb,modb,⊢b, |=b) be specifi-
cation formalisms. Then a morphism µ : a→ b consists of

– A functor Trµ : Siga → Sigb, called signature transposition functor
– A Siga-indexed family Extµ such that Extµ,Σ : moda(Σ) → modb(Trµ(Σ))

are partial functions called model extraction functions
– A family
µ indexed by Siga, such that
µ,Σ is a binary relation included

in P(sena(Σ)) × senb(Trµ(Σ)), called heterogeneous inference bridge

such that the following properties are satisfied:

– Extµ is a (partial) natural transformation from moda to modb ◦ Trµ

–
µ is monotonic
–
-translation: for any isomorphism σ : Σ → Σ′ in Siga , any Γ ⊆ sena(Σ),

and any ϕ ∈ senb(Trµ(Σ)) , Γ
µ,Σ ϕ if and only if σ(Γ)
µ,Σ′ Trµ(σ)(ϕ)
– heterogeneous soundness: for any Σ ∈ Siga, for any Γ ⊆ sena(Σ), for

any ϕ ∈ senb(Trµ(Σ)), if Γ
µ,Σ ϕ then for all M ∈ moda(Σ), we have
[M |=a Γ =⇒ Extµ,Σ(M) |=b ϕ]

This notion of morphisms of specification formalisms allows to character-
ize the minimal syntactic, semantic and proof requirements on bridges between
basic formalisms to define heterogeneous specifications following our approach
presented in [BCLG96]. Such bridges between two basic formalisms a and b al-
low to transpose signatures from a to b, to extract models from a to b and to
heterogeneously infer sentences from a to b.

Notation 7 Given two morphisms µ : a → c and µ′ : c → b, if we define the
composition µ′ ◦ µ : a → b in the obvious way, with
µ′◦µ,Σ = {(Φ,ϕ) ∈
P(sena(Σ)) × senb(Trµ′◦µ(Σ)) | ∃Ψ ∈ P(senu(Trµ(Σ))), ∀ψ ∈ Ψ, Φ
µ,Σ ψ ∧
Ψ
µ′,Trµ(Σ) ϕ}, then basic formalisms forms a category. We denote it by Form.

4.2 The meta-signature of BUFF

Definition 17. The meta-signature of BUFF is ΘBUFF = (NBUFF ,SpecBUFF),
where N BUFF = BASIC⊔USE⊔FORGET⊔FILTER and SpecBUFF are6 the small-
est classes satisfying the following:

Basic nodes:
– A presentation of Form is a tuple P = (Σ,Γ), where Σ ∈ Sig and Γ ⊆
sen(Σ).

– A basic node is a node of the form basicP : → Σ, where P = (Σ,Γ) is a pre-
sentation of Form, with DbasicP

= 1l (i.e. all “constant” basic specifications
belong to Spec)

6 remind that Spec is entirely defined by the knowledge of syntactic domains Df for

all f in N .

– BASIC denotes the class of all basic nodes.
Use nodes:
– An enrichment module is a tuple △P = (δ1 : Σn → Σ, . . . , δn : Σn →
Σ,△Γ,D△P) such that all δi are signature morphisms of Sigb for some b in
Form, △Γ is a subset of senb(Σ) and D△P is a subset of SpecΣ1

× . . . ×
SpecΣn

.
– A use node is a node of the form use△P : Σ1 . . .Σn, where △P = (δ1 : Σn →
Σ, . . . , δn : Σn → Σ,△Γ ,D△P) is an enrichment module, with Duse△P

=
D△P .

– USE denotes the class of all use nodes.
Forget nodes:
– A forget node is a node of the form forgetσ : Σ1 → Σ2, where σ : Σ2 → Σ1

is a signature morphism for some b in Form, with Dforgetσ
= SpecΣ1

.
– FORGET denotes the class of all forget nodes.
Heterogeneous filter nodes:
– A heterogeneous filter is a tuple H = (µ,Σ,DH) such that µ : a → b is a

morphism of basic formalisms, Σ is a signature belonging to Siga an DH is
a subset of SpecΣ.

– a heterogeneous filter node is a node of the form filterH : Σ → Trµ(Σ)
where H = (µ,Σ,DH) is a heterogeneous filter, with DfilterH

= DH .
– FILTER denotes the class of all heterogeneous filter nodes.

Let us remark that forgetσ when σ is a signature isomorphism, simply
amounts to a classical renameσ operation.

4.3 Semantics of BUFF

As in [BCLG96], we consider implementations which ensure the preservation
of the imported sentences through signature morphisms. They formalize some
encapsulation principles and will be used to define semantic and proof aspects
of the use nodes.

Definition 18. Given n signature morphisms (δ1 : Σ1 → Σ), . . . , (δn : Σn →
Σ) in a basic formalism (Sig, sen,mod,
, |=), we note |∼δ1,...,δn

the binary

relation on P(
∐

i=1...n

sen(Σi)) ×Σ such that

Φ|∼δ1,...,δn
ψ ⇐⇒ ∃i = 1 . . . n, ∃ϕ ∈ Φ, ψ = δi(ϕ)

Definition 19. The node semantics of BUFF is SemBUFF =
∐

f∈NBUFF

Semf ,

with

Basic nodes:
if f is of the form basicP ∈ BASIC, with P = (Σ,Γ), then Semf is the
subclass of mod(Σ) whose objects satisfy Γ .

Semf = {M ∈ mod(Σ) |M |= Γ}

Use nodes:
if f is of the form use△P ∈ USE, with △P = (δ1 : Σ1 → Σ, . . . , δn : Σn →
Σ,△Γ,D△P), then Semf is the class of all |∼δ1,...,δn

-encapsulated functions
from mod(Σ1) × . . . ×mod(Σn) to mod(Σ,△Γ) which are also independent
implementations.

Forget nodes:
if f is of the form forgetσ ∈ FORGET, with σ : Σ2 → Σ1, then:

if7 ∀M ∈ mod(Σ1), ∀ϕ ∈ sen(Σ2), (M |= σ(ϕ) ⇔ Uσ(M) |= ϕ), then
Semf = Uσ, else Semf = ∅

Heterogeneous filter nodes:
if f is of the form filterH ∈ FILTER, with H = (µ : i→ o,Σ,DH), then:

if ∀ρ ∈ Sem(Θ), ρ(DH) ⊂ Dom(Extµ,Σ), then Semf = {Extµ,Σ}, else
Semf = ∅

4.4 Heterogeneous inferences relations for BUFF

Definition 20. The heterogeneous inference relation of BUFF is
BUFF =
∐

f∈NBUFF

f ,

with

Basic nodes:
if f is of the form basicP ∈ BASIC, with P = (Σ,Γ), then its heterogeneous
inference relation is the introduction of the axioms of Γ :

f = {(∅, ϕ) | ϕ ∈ Γ}
Use nodes:

if f is of the form use△P ∈ USE, with △P = (δ1 : Σn → Σ, . . . , δn : Σn →
Σ,△Γ,D△P), then its heterogeneous inference relation is the introduction
of the axioms of △Γ and the preservation of the properties of the imported
specifications:

f = {(∅, ϕ) | ϕ ∈ △Γ} ∪
∐

i=1...n

{(ϕ, (sen(δi))(ϕ)) | ϕ ∈ sen(Σi)}

Forget nodes:
if f is of the form forgetσ ∈ FORGET, with σ : Σ2 → Σ1, then its heteroge-
neous inference relation is the preservation of the properties of the imported
specifications:

f = {((sen(σ))(ϕ), ϕ) | ϕ ∈ sen(Σ2)}

Heterogeneous filter nodes:
if f is of the form filterH ∈ FILTER, with H = (µ : i → o,Σ,DH), then its
heterogeneous inference relation is
f =
µ,Σ

Proposition 1. With the previous notations, the use∆P nodes are
use∆P
-

encapsulated.
(obvious)

7 Of course, if the underlying formalism of σ fulfills the satisfaction condition, this
property is always satisfied.

5 Conclusion

We have proposed a definition of structured heterogeneous formal specifications
allowing to easily deal with implementation sharing. The idea is to see specifi-
cations as terms containing structuring “nodes” which are intended to be the
structuring operations. Then, semantics of these nodes are in a natural way some
functions transforming “imported” models to models of the resulting signature.
This approach has the advantage to give a very unified view of the hierarchical
structuring mechanisms. It allows us to manipulate them very easily, owning to
the well established corpus on terms, substitutions, algebraic morphisms,. . . It
will probably also be useful to deal with grouping of modules or with heteroge-
neous abstract implementation.

The gist of our article is nothing more, and nothing less: we have tried to
exploit well known definitions on terms for the definition of structured heteroge-
neous specifications in general, and this article is a first proposal in this direction.
A next question is possibly: “is it possible to handle object oriented structures in
a similar manner?” which is a bit out of the scope of this paper. We will probably
rather try to explore more deeply the meaning of several classical theorems on
terms (rewriting, etc.) for the side of structured heterogeneous specifications.

References

[Abr95] J.R. Abrial. The B-Book - Assigning Programs to Meanings. 1995.

[BCLG96] G. Bernot, S. Coudert, and P. Le Gall. Towards heterogeneous formal spec-
ifications. In AMAST’96, Munich, volume 1101, pages 458–472. Springer,
LNCS, 1996.

[BG80] R. Burstall and J. Goguen. The semantics of CLEAR, a specification
language. In Springer, editor, Proc. Advanced Course on Abstract Software

Specifications, Berlin, pages 292–332, 1980.

[CCJC+95] C. Cornes, J. Courant, Filliâtre J-C., G. Huet, P. Manoury, C. Munoz,
C. Murthy, C. Parent, C. Paulin-Mohring, A. Säıbi, and B. Werner. The
Coq Proof Assistant, Reference Manual, version 5.10. Technical Report
177, INRIA, INRIA-Rocquencourt, 1995.

[DF93] J. Dick and A. Faivre. Automating the generation and sequencing of test
cases from model-based specifications. In FME’93, LNCS 670, Springer

Verlag, pages 268–284, 1993.

[DF94] R. K. Dong and Ph. G. Frankl. The ASTOOT approach to testing
object-oriented programs. ACM Transactions on Software Engineering and

Methodology, 3:39, 1994.

[DGS93] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modular-
isation. In G. Huet and G. Plotkin, editors, Proc. Workshop on Types and

Logical Frameworks, pages 83–130, 1993.

[Gau84] M Gaudel. First introduction to PLUSS. Technical report, LRI, Université
de Paris-Sud, 1984.

[GG91] S. Garland and J.V. Guttag. A guide to LP, the larch prover. Technical
Report 82, DEC-SRC, 1991.

[GH93] J.V. Guttag and J.J. Horning. LARCH:languages and tools for formal spec-
ifications. Texts and Monographs in Computer Science, Springer-Verlag,
1993. ISBN 0-387-94006-5/ISBN 3-540-94006-5.

[Gor88] M J C. Gordon. Hol: A proof generating system for higher-ordder logic. In
G. Birtwisle and P. A. Subrahmanyam, editors, VLSI Specification, Verifi-

cation and Synthesis, pages 73–128, Kluwer, Dordrecht, The Netherlands,
1988.

[GS93] D. Garlan and M. Shaw. An introduction to software architecture. In
Ambriola and Tortora, editors, Software Engineering and Knowledge En-

gineering, volume 1. World Scientific Publishing Co., 1993.
[GW96] M-C. Gaudel and J. Woodcock, editors. FME’96: Industrial Benefit and

Advances in Formal Methods, Oxford, 1996. Springer, LNCS 1051.
[HT94] D. Harper, R. andd Sannella and A. Tarlecki. Structured theory presenta-

tions and logic representations. Annals of Pure and Applied Logic, 67:113–
160, 1994.

[Jon90] C.B. Jones. Systematic Sotfware Development Using VDM. Prentice-Hall
International, 2nd edition, 1990.

[Mar91] B. Marre. Toward automatic test data set selection using Algebraic Speci-

fications and Logic Programming. Eigth International Conference on Logic
Programming, ICLP’91, Paris, 25-28, MIT Press, 1991.

[Mes89] J. Meseguer. General logics. In North-Holland, editor, Proc. Logic. Collo-

quium ’87, Amsterdam, 1989.
[PW92] D.E. Perry and A.L. Wolf. Foundations for the study of software architec-

tures. ACM SIGSOFT, Software Engineering Notes, pages 40–52, 1992.
[Roq94] C. Roques. Modularité dans les spécifications algébriques : théorie et ap-

plications. PhD thesis, Université de Paris-Sud, 1994.
[Spi89] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, Hemel

Hempstead, 1989.
[Tar95] A. Tarlecki. Moving between logical systems. In Recent Trends in Data

Type Specification, Oslo, pages 478–502, 1995.
[VB95] F. Voisin and M. Bidoit. Modular algebraic specifications and the ori-

entation of equations into rewrite rules. In Recent Trends in Data Type

Specification, Oslo, pages 503–521, 1995.
[Wir93] M. Wirsing. Structured specifications: syntax, semantics and proof cal-

culus. In Brauer W. Bauer F. and Schwichtenberg H., editors, Logic and

Algebra of Specification, pages 411–442. Springer, 1993.
[Wir94] M. Wirsing. Algebraic specification languages: An overview. In Recents

Trends in Data Type Specification, S. Margherita, Italy, pages 81–116, 1994.

