3 Abstracts of Presentations

The following abstracts appear in alphabetical order of the speakers.

Multi-Aspect System Descriptions for
Object-Oriented Programming

Keijiro Araki®
Kyushu University
Fukuoka, JAPAN

We report our case study of a system development with a variety of descriptions and
analyses using 7, ML and Smalltalk. We get a set of system descriptions from various
viewpoints including abstract functional aspects, system structural aspects, implemen-
tation feasibility aspects, and so on. We need not necessarily start from an abstract
formal specification and refine it to a final concrete program, but we may start wher-
ever easy to start. We discuss the roles of such descriptions and their interrelationships.
Especially, we use ML as an executable specification language. By describing a system
in ML, we would get insigts for abstract formal specifications as well as for system
architectures and design issues. We intend to accumulate much experience in system
development with a set of various descriptions and build up a road map for system
development based on formal methods.

ETOILE-Specifications and Real-Time issues

Gilles Bernot?
Université d’Evry
Evry France

ETOILE is an object based formal specification theory. After a short introduction
about the way ETOILE-specifications are structured, we describe the syntax of the
specification of object types and we show how they can be combined to specify object
systems.

An object type specification can be described as a sort of "star”, the center of which
is the type of interest, the branches being types of objects that can be used by an object
of the center. ("etoile” is the French translation of "star”). A system of objects is then
obtained by putting together several such stars. We follow the principle to match each
branch of a star with the center of another one.

Then we show that adding a new object to an already existing system can entirely
modify the system properties. Thus, if we want to establish formally the properties of

!This work has been done with Han-Myung Chang and Toshiyuki Tanaka.
2This is joint work with Marc Aiguier and Stefan Beroff.

12



an object system, we cannot proceed by establishing some lemmas on a small system,
and complete the lemmas incrementally after adding objects one by one to the system,
until we reach the full system under interest. Consequently, an incremental proving
method cannot be obtained this way.

To allow to establish properties on an incremental way, we propose instead a method
based on "object refinements”. Within our ETOILE theory, we have defined a theory
of refinement which has the interesting property that: if a system SYSI1 correctly
implements an object type O, and if SYS2 is a system that contains O and satisfies
a property phi, then the system SYS3 obtained by replacing O by SYS1 in SYS2 still
satisfies phi. This allow to start from a small, very abstract system with a small number
of very abstract object types; and to make the system incrementally bigger and more
precise, by successive refinements of its object types.

Real-time aspects are also currently an important topic for ETOILE. ETOILE spec-
ifications are used since 5 years to specify hardware/software systems for the co-design
of some telecommunication systems and we often need to introduce statements about
some delays in actual nanoseconds.

We have only defined such real time formulas for systems made of a unique object
(i.e. systems with a unique global state). The idea is to add a special data type which
represents time durations, with some built-in operations and predicates. This allows
to specify methods that modify dynamically their behaviours according to their own
execution time for example. An example is fully described to illustrate the approach.

Object orientation in domain analysis for reuse

Alfs Berztiss
University of Pittsburgh
Pittsburgh, USA and
University of Stockholm
Stockholm, Sweden

We consider domain analysis in the context of reuse-based development of software
systems. Domain models are expressed in terms of processes, and a process is defined as
an ordered set of tasks. A generic task is first formulated as a cliche in natural language,
and reuse is achieved by adapting it for several specific applications. We follow an
object-oriented approach to the definition of processes, with the understanding that
object orientation has two aspects. One relates to data, but there is also a process
aspect, and this latter aspect is our primary concern here. We consider process models
and object orientation in reuse-driven development of information systems and control
systems. Our method of defining application domains in terms of generic processes,
where a process is regarded as a collection of tasks, is used to define the domain of
repairs. This domain includes repair of machinery, road repirs, surgical procedures,
and software debugging. We specialize the generic process for the last application. We
also consider situations, by which we mean tasks that are so general that they arise in
several domains.

13



