
A Theory of Probabilistic Functional Testing

Gilles Bernot

Université d’Evry

LaMI

Cours Monseigneur Roméro

F-91025 Evry cedex, France

bernot@lami.univ-evry.fr

Laurent Bouaziz

CERMICS – ENPC

Central 2 – La Courtine

F-93167 Noisy le Grand cedex,

France

bouaziz@cermics.enpc.fr

Pascale Le Gall

Université d’Evry

LaMI

Cours Monseigneur Roméro

F-91025 Evry cedex, France

legall@lami.univ-evry.fr

ABSTRACT

We propose a framework for “probabilistic functional
testing.” The success of a test data set generated ac-
cording to our method guarantees a certain level of con-
fidence into the correctness of the system under test,
as a function of two parameters. One is an estimate of
the reliability, and the other is an estimate of the risk
that the vendor takes when (s)he notifies this reliabil-
ity percentage to the client. These results are based on
the theory of “formula testing” developed in the article.
We also present a first prototype of a tool which assists
test case generation according to this theory. Lastly, we
illustrate our method on a small formal specification.

Keywords

software testing, random testing, formal specification,
functional testing, partition testing, reliability, proba-
bilistic testing.

INTRODUCTION

In the field of software or hardware testing [5, 2], the sys-
tematic approaches to generate test data sets are mostly
based on a first step where the input domain is divided
into a family of subdomains [28, 4]. According to the
structural , or white-box , testing approach, these subdo-
mains correspond to well chosen paths in the data flow
or control graph of the product under test. According
to the functional , or black-box , testing, these subdo-
mains correspond to the various cases addressed by the
specification of the product under test.

Then, there are two main strategies to select test
cases :

• either one performs a deterministic selection of
test cases within each subdomain (for example one
“nominal” case and some others “to the limits”);

• or one performs a probabilistic selection of test cases
based on a distribution on each subdomain [10] (for

example the uniform distribution on the domain).

Assuming that, after submission, the test data set is
successfully executed, it provides us with different kinds
of confidence about the product under test :

• If the selection has been deterministic, then we get
a qualitative reliability evaluation, namely the con-
fidence that we give to the criteria used to make
the partition of the input domain (e.g., to cover all
the branches of the control graph [14]).

• If the selection has been probabilistic, then we can
get a quantitative reliability evaluation, given by
classical probability results, according to chosen
distributions (e.g., using the operational profile as
in the cleanroom approach [11]). A good motiva-
tion for this approach is to deal with the lack of
infallible criteria and fault model.

Deterministic structural testing has already been ex-
tensively studied [5, 2] and, based on this approach,
several (not only academic) test generation tools exist.
There are ongoing researches about probabilistic struc-
tural testing (e.g., [25, 28, 4]) with promising concrete
results [21].

Deterministic functional testing is also widely practiced
(the test cases are established while writing the speci-
fications). As far as informal specifications are used,
this process is mainly performed manually, or by man-
ually extracting formal properties or graphs from the
informal specifications and then apply systematic pro-
cesses. With the emergence of formal specifications such
as VDM [17], Z [23], or algebraic specifications (e.g.,
Larch [13] or OBJ [18]), several research works show
that it becomes possible to define the functional testing
strategies in a rigorous and formal framework, and to
partly automate them [8, 24, 9, 16, 12, 1]. All these
approaches are deterministic ones, they do not address
the probabilistic side.

The work reported here aims at rigorously treating
probabilistic functional testing. Functional testing ap-
proaches have the interesting property to facilitate the
prevision of the expected result for each test case (the
role of a specification being precisely to characterize

the acceptable results). Besides, functional testing ap-
proaches are complementary to structural ones, as they
allow to test if all cases mentioned in the specification
are actually dealt with in the product under test, which
is not the case of structural testing (if a case has been
forgotten in a program, the corresponding path is miss-
ing, thus it is probably not exercised). Moreover, only
probabilistic methods can ensure valuable quantitative
reliability estimates. Intuitively, this results from the
guaranty that any sample generated according to a given
distribution provides informations on further samples
that would be drawn according to the same distribu-
tion. Moreover, an arbitrary quality level being given,
probabilistic methods are able to furnish the size of the
sample to be drawn.

Let us make precise that we address dynamic testing,
i.e., the generated test cases are executed by the system
under test and we check the actual results against the
ones defined by the specification, as opposed to static
testing, which rely on some source checking [11].

A formal specification of a functionality f can be seen
as a (possibly composed) formula establishing the re-
quired properties between the input variables of f ,
say x1, x2, · · · , xn, and the output result denoted by
f(x1, x2, · · · , xn). The input tuple (x1, x2, · · · , xn) has
to belong to the intended domain Df of the function-
ality f . Consequently, a formal specification of f is
something of the form

∀ (x1, x2, · · · , xn) ∈ Df ,
ψ(x1, x2, · · · , xn, f(x1, x2, · · · , xn))

where ψ is the required input/output property. More
generally, we can consider that we test formulas of the
form:

∀ X ∈ D , ϕ(X)
where to simplify notations, X is a variable which re-
places the tuple (x1, · · · , xn) and ϕ(X) plays the role of
the formula ψ(x1, x2, · · · , xn, f(x1, x2, · · · , xn)).

In practice, to test such formulas amounts to :

• generate a (pertinent) test data set, which is, con-
sequently, a finite subset of the input domain D of
the formula, i.e., some chosen values for the tuple
X = (x1, · · · , xn),

• execute each test, which means make the product
under test execute f(x1, · · · , xn) for each previ-
ously chosen value,

• if one of the execution does not furnish the expected
result, then the test reveals a failure, else all the
tests are in success and it remains to evaluate our
confidence into the correctness of the product under
test with respect to the formula.

Of course, such a process requires a lot of instrumen-
tations. For instance in the last step, which consists in

deciding the success/failure of each test, it is indeed nec-
essary to be able to decide if ϕ(X) is satisfied. Thus, it
is necessary to make available a decidable “oracle” ([27])
which computes ϕ for any X = (x1, · · · , xn) in the do-
main. Similarly, executing f (in the second step) may
require some instrumentations (e.g., to simulate its en-
vironment in order to introduce the input variables xi).
In this article we only focus on the first step, assuming
that the second and last steps are already instrumented.

The next section addresses the question at the purely
theoretical level, the “formula testing” level. We adapt
and formulate some classical results from probabil-
ity/statistics and from software reliability engineering
to our framework. To some extent, dynamic testing can
be shown as the particular case of the software relia-
bility area ([22]) where no error is discovered, and no
software modification is done. It corresponds to a kind
of “static” software reliability engineering where the no-
tion of time is avoided (we do not address software relia-
bility models, MTBF, etc.). We take benefit of this spe-
cialization in order to fully control the submitted tests
data sets. We provide test generation methods and tools
which ensure a statistical notion of complete coverage.
More precisely, in any process of probabilistic software
or hardware verification and validation, we mainly ad-
dress three questions. The first one is “how many test
cases should we generate in order to affirm that the sys-
tem will behave correctly, except possibly for a given
percentage of the input values?” The second question
is “how to evaluate the risk that we take when we guar-
anty this percentage, and sign the permit to deliver the
system?” The last, but certainly not least, question is
“how to choose pertinent test cases?” It is the reason
why we introduce the notion of (µ, ǫ, α)-validation.
• µ is a distribution on the domain D of the formula.

Roughly speaking, µ specifies a way to generate well
chosen test cases out of the domain, and gives a
precise meaning to the expression “well chosen” (it
may be for example the well known uniform distri-
bution, or the also well known operational profile).

• ǫ can be seen as a contract between the vendor of
the product under test and the client. It allows
the vendor to say “according to µ, I affirm that my
product satisfies the formula ϕ, with a probability
ǫ to be wrong.”

• α can be seen as the risk that the vendor takes
when making this affirmation. Let us assume that
N tests have been generated and that they are suc-
cessful during the vendor verification, then, in av-
erage, if 100 clients generate their own N tests ac-
cording to µ, at most α × 100 of them will find a
bug.

According to this theory, we propose a tool to assist test
generation, a first prototype of which is described in the
section about “random generation.” The point is to gen-

erate test cases from a description of the domain D. We
have considered several primitive operations to describe
the most common domains in computer science. For ex-
ample, obviously, Cartesian product of domains, union
of domains and so on are such useful operations, and,
more importantly, recursively defined domains are espe-
cially useful in computer science. All these operations
on domains are treated and a small prototype written
in Mathematica [29] allows to assist test generation
on domains definable according to these primitive oper-
ations. Thus, the “complicated underlying probabilistic
machinery” is hidden behind a “set theoretic interface.”
Since software engineers usually know simple set theory
and recursivity, our tool is clearly useful.

An example of test generation from a formal specifi-
cation, more precisely an algebraic specification with
subsorts (OBJ [18]), is given in the section called “an
example.” The specification (sorted lists) is easily read-
able even without knowing the OBJ language, and a
probabilistic test case generation in the sorted list do-
main demonstrates how our tool can handle dependent
types.

Some related works are considered in the last section.
We show that our approach is not limited to probabilis-
tic functional testing only. A triple (µ, ǫ, α) can also be
deduced from probabilistic structural testing, and com-
bined with the functional one, in order to better esti-
mate and tune the risk taken by the vendor. Lastly, we
outline some possible cross-fertilization between our ap-
proach and a recent tool performing deterministic func-
tional test generation from algebraic specifications [20].

FORMULA TESTING

(µ, ǫ, α)-validation

The two propositions below are the basic results on
which we rely to replace an exhaustive deterministic
verification of a formula with a finite probabilistic veri-
fication. Let us first introduce some notations that will
prevail for the rest of the paper.

• The tested formula is of the form
∀ X ∈ D , ϕ(X)

• The domain D of the input variable X of the for-
mula is assumed to be countable.

• µ is a probability distribution on D that gives a
strictly positive weight to any element of D: such
a distribution is termed complete on D.

• (Xi)i≥0 are independent random variables on D
distributed according to µ: this means that they are
drawn at random1, their result being distributed
according to µ and the output of any subset of them
does not influence the rest of the outputs.

1for simplicity reasons, we do not distinguish between the ran-
dom variable, which is a mapping, and its realization, which is an
element of D.

• F is the subset of D for which ϕ does not hold, i.e.:
F = {X ∈ D | ¬ϕ(X)}

Our goal is to propose a validation procedure to
check whether F is empty.

Proposition 1

(∀ X ∈ D, ϕ(X)) ⇔ (∀ i ≥ 0, ϕ(Xi))

Remark

• To be fully correct within a probabilistic frame-
work, the above assertion holds up to the almost
sure equivalence. This has no practical conse-
quence.

• The key point in the proof of Proposition 1 is the
condition that µ gives a strictly positive weight to
any element of D.

This result alone would be of no practical value: we sim-
ply replace a countable deterministic verification with a
countable random check. The next proposition shows
that in the latter case, it is possible to infer nonethe-
less from a finite probabilistic verification a quantitative
estimate of the confidence we can have in the formula.
Let us first introduce a definition to make things more
precise (see also the next subsection):

Definition 1 A µ-test of length N is any set
{ϕ(X1), . . . , ϕ(XN)}. Such a test is said in success if
for all i = 1..N , Xi 6∈F (i.e., ϕ(Xi) holds).

In analogy to what happens in statistical quality control
where one admits the possibility of wrongly accepting
a decision, we introduce the following notion of proba-
bilistic validation:

Definition 2 We call (µ, ǫ, α)-validation of a formula
ϕ any procedure that allows one to assess the following:

With a probability of at most α to err,
µ(F) ≤ ǫ

Remark The error α being considered here is what
statisticians call “error of the second kind,” i.e., the er-
ror that one makes when one announces that the result
holds when it does not.

Proposition 2 Let us assume that a µ-test of length N
succeeds. Then, it is a (µ, 1 − N

√
α, α)-validation of ϕ.

Remark

• This result is a consequence of classical statistical
results [6].

• Let us notice that as N grows and assuming that
the tests are successful, we can give estimates on
the upper bound for the probability of F that gets
closer to 0, which is rather logical.

• α, that lies between 0 and 1, measures the quality
of the test: the closer α is to 0, the greater the
confidence in the validation. In other terms, if one
repeats 100 times the previous test (with indepen-
dent draws), the decision will be wrong in at most
100 α cases.

Formula Testing Applied to Probabilistic Func-

tional Testing

We want to deal with the test of a formula
∀ X ∈ D, ϕ(X)

that comes from a specification (an axiom or a logical
consequence of the specification). Under the assump-
tion that the truth value of the formula is directly com-
putable for any instance of the input data, the previous
results suggest the following approach:

1. Select a distribution µ on D.
2. Select a confidence level 1−α and a control param-

eter ǫ.
3. Compute the length N of the µ-test according to:

N ≥ log(α)
log(1−ǫ)

4. Draw N times in the distribution µ and for each of
the produced values, compute the truth of ϕ.

5. If the previous µ-test of length N succeeds, then
we have a (µ, ǫ, α)-validation of ϕ.

6. Even if the previous test is not fully successful, it
is nonetheless possible to infer from the number k
of failures an estimation of µ(F). Easy statistical
computations show that with a probability of at
most α to err:

µ(F) ≤ ǫ0
where ǫ0 is the maximum2 of k/N and of the solu-
tion of the following equation:

α =

(

N
k

)

ǫk0(1 − ǫ0)
N−k

This kind of result still fits in our framework,
since the previous estimate can be interpreted as
a (µ, ǫ0, α)-validation.

The implementation of the approach assumes that one
is able to draw at random according to a given distribu-
tion. Since we assumed that the truth decision for the
formula can be automated, the only impediment to a
full automatization of the testing procedure lies in this
random generation phase. This is the problem we are
going to tackle now.

RANDOM GENERATION

An Introductory Example

Let us consider a function intdiv that computes the

2the function x → xk(1 − x)N−k is decreasing on the interval
[k

N
, 1].

quotient q of the division of two natural numbers a and
b.
intdiv : [0,MaxInt] × [1,MaxInt] → [0,MaxInt]

A required property for intdiv is:
∀(a, b) ∈ [0,MaxInt] × [1,MaxInt],

(0 ≤ a− b × intdiv(a, b))
&

(a− b× intdiv(a, b) ≤ b− 1)
The operations −, ×, ≤, & and of course intdiv are
assumed to be executable.

An elementary test of the previous formula amounts to
select two values a0 and b0 and to submit the formula
to the program.

To benefit from the approach we developed in the previ-
ous section, we have to draw according to a distribution
on [0,MaxInt] × [1,MaxInt].

In the present case, this is quite obvious since we can
choose for example the uniform distribution on that set
that assigns a weight of 1

(MaxInt+1)MaxInt
to any pair

of the input domain.

The choice of the uniform distribution is not imposed
by the method however. The tester may prefer to give
a special importance to values near to the boundary of
the input domain. This could lead, for example, to a
procedure that would draw:

• with probability 1/2 a pair in the set [0,MaxInt]×
{MaxInt};

• with probability 1/2 a pair in the complementary
set.

Goal

According to the theory developed previously, the distri-
bution in which data are drawn must assign a non-zero
weight to any element of the input domain D, other-
wise, the validation would hold only for the carrier set
of the distribution. Hence:

Definition 3 A generation function for a domain D
is a procedure (in the computer science meaning) that
outputs values according to a complete distribution.

Let us notice that we do not impose any restriction on
the kind of distribution except completeness:

1. the theory does not impose any such restriction,
e.g. uniform distribution or the operational profile
are only particular cases (see below).

2. we will take advantage of this flexibility in allowing
testers to emphasize the subdomains they believe
to be critical.

3. from a practical point of view, uniform distribu-
tions are not easy to produce automatically. In re-
laxing that constraint, we will be able to provide a
tool that translates automatically set descriptions

based on some primitives operations into genera-
tion functions without loosing completeness.

4. Let us notice that when some cardinality results
are provided, we are able to parameterize our gen-
eration functions in order to get uniform distribu-
tions for some non-trivial domains like some recur-
sive structures.

Our goal is now to produce generation functions for a
large class of sets frequently used in computer science.
We are going to list and comment the basic blocks and
the combinators used to describe sets. For each opera-
tion, we will provide both a short mathematical justifi-
cation of the method and some examples of the possible
uses of the tool. All the examples and the code are
written in Mathematica ([29]) which is both a sym-
bolic system and a programming language, in which our
prototype is implemented.

Definition 4 A simulation pair is a pair (D, γ) where
D is a set and γ is a generation function on D.

The goal of the following subsections is to define induc-
tively the class S of simulation pairs handled by our
tool.

Interval of Integers

The first class of basic sets we consider is the class of the
interval of integers denoted by intInterval[{a,b}].
The tool allows to build either the uniform distribu-
tion or any specified distribution defined by the weights
assigned to each element of the interval. By default,
generate[intInterval[{a,b}]] draws numbers in the
interval [a,b] according to the uniform distribution. To
implement such kind of generator, we make the classical
assumption ([7]) that we can rely on a perfect generator
that simulates a uniform distribution on [0, 1] as a sub-
set of the reals. generate[intInterval[{a,b},d]],
where d is a density function that assigns a probabil-
ity to each element of [a,b], draws numbers in [a,b]

according to d. For example, we can set:

d[0]:=1/3;d[1]=2/3

int01:=intInterval[{0,1},d]

and in average, 1 will be drawn twice as much as 0.
We can also consider a uniform distribution on bounded
natural numbers:

bnat:=intInterval[{0,MaxInt}]

Enumerated Set

Since finite sets can be seen as mapped integer intervals,
their generation is straightforward; for example, with
the previous d, we can generate a boolean with:

bool:=finiteSet[{false,true},d]

Moreover, for practical purposes, we introduce a
Singleton operation with an obvious meaning.

Cartesian Product

Given any tuple of simulation pairs (Di, γi), it is easy to
build the simulation pair (

∏

i Di, γ) where γ is the tuple
whose i-th component is equal to γi. The probability
to draw a given tuple (u1, · · · , ui, · · ·) is equal to the
product of the probabilities to draw each ui according
to the distributions of the γi. For example:

fprod:=product[int01,bool]

generate[fprod] will return pairs (i, b) where i is
drawn in [0, 1] according to d and b is a boolean drawn
according to d too.

Union

Given a tuple of simulation pairs (Di, γi)1≤i≤n and a
family of strictly positive weights (wi)1≤i≤n, it is possi-
ble to build a generation function on ∪iDi: one has to
draw an index i0 on the interval [1, n] according to the
distribution given by the wi and then draw in Di0 .

If the carrier sets Di are disjoint, then the wi can be
interpreted as the relative frequency with which values
will be drawn in the Di. The probability to draw in
∪iDi an element u of a given Dj is equal to the product
of

wj
P

i wi
by the probability to draw u in Dj according

to γj . For example, one may have defined:

int01prime:=Union[{{Singleton[0],1/3},

{Singleton[1],2/3}}]

and the distributions associated to int01 and
int01prime would have been identical.

Mapping

Given any simulation pair (D, γ) and any function g

whose domain coincides with D, it is possible to build
a generation function on the codomain of g by simply
first drawing a value in D and then mapping it with g.
The probability of an element u of g(D) is the sum of
the probabilities of the antecedents of u by g. One may
have thus defined:

g[0]:=false;g[1]:=true

boolprime:=map[int01,g]

and the distributions associated to bool and boolprime

would have been identical.

Countable Set

Given any family of positive real numbers wi that sum
up to 1, it is possible to build a distribution on the set
of natural numbers, denoted nat that assigns a proba-
bility wi to i. That is the goal of the primitive nat[w]

where w is the weight function. By default, the following
distribution is assigned to nat:

nat:=Union[{{intInterval[{0,MaxInt}],1-EPS},

{intInterval[{MaxInt+1,INFINITY}],

EPS}}]

Any interval of the form intInterval[{x,INFINITY}]
is provided by default with a generation function
poisson which is the density of a Poisson distribution
whose intensity is 1:

poisson[n,lambda,x]:=Exp[-lambda]

lambda^(n-x+1)/Factorial[n-x+1]

The intuition behind nat is to have a uniform distribu-
tion up to a prespecified number MaxInt mixed with a
rapidly decreasing distribution for numbers greater than
MaxInt, the weight attributed to this last distribution
being controlled by a constant EPS.

By mapping, this allows to build a distribution on any
countable set that is defined as the range of some given
map on the set of natural numbers.

Subset

It is often convenient to define a setD′ as the subset of a
bigger one D through a predicate p. If this predicate is
executable and if we have a generation function on D,
γ, the rejection method ([7]), which amounts to draw
in D as long as the predicate is not satisfied, gives a
general method to build a generation function on D′.
The greater the probability of D′ under the distribution
associated with γ, the shorted the average time needed
to draw in D′.

Given that the function IsPrime checks that a given
natural number is prime, it is easy to draw prime num-
bers:

prime:=subset[nat,IsPrime]

The efficiency of the previous generation function is not
so bad since the asymptotical density of prime numbers

is log(n)
n

.

Even if we do not provide any intersection operation as
such, it is often possible to express the intersection of
two sets as the subset of one of them and the above
rejection method applies.

Sequence

One has often to deal with “product” sets where one
factor of the product depends on some other factors.
For example,

{

(x, y) ∈ bnat2| x ≤ y
}

is such a set.

It is often more efficient to express explicitly this de-
pendency than to consider such a set as the subset of
a bigger one. That is why we provide a Sequence op-
eration that allows us to describe the previous set as:

DBNat := Sequence[{bnat,

Function[x,intInterval[x,MaxInt]]}]

and this amounts to first draw x0 in bnat and then
to draw uniformly in [x0,MaxInt] and the probability
to draw (x, y) is 1

(MaxInt+1)(MaxInt−x+1) . We can also

describe the set
{

(x, y) ∈ nat2| x ≤ y
}

by:

DNat := Sequence[{nat,

Function[x,intInterval[x,INFINITY]]}]

The tool allows in fact to deal with any such “depen-
dent product set” (corresponding to the classical de-
pendent types in computer science) where one can find
a permutation of the components such that in the re-
ordered tuple, the i-th component depends only on the
1 . . . (i− 1)-components.

Recursive Structures

Inductively defined sets are omnipresent in computer
science. In order to keep things simple and short in
this article, we will only deal with “linear” recursive
structures like lists (the interested reader can consult [3]
for a more general presentation).

Free Linear Recursive Structures
They can be seen as some least fixpoint for some build-
ing total functional. In the formal specification setup, it
is convenient to work with the set of all the terms built
on the signature of a given data type, and the functional
is then called a free constructor .

The generation of free structures is very simple. For
example, if one wants to generate lists of integers at
random, one just has to draw first the length l of the
list, and then iteratively l times, draw an integer and
apply the free constructor “cons” to get a list. More
precisely, given the following signature Σ:

op nil : -> List

op cons _ _ : Nat List -> List

op head _ : List -> Nat

op tail _ : List -> List

lists can be defined as the set of all the terms generated
over nil by the constructor cons. Their general form
is:

cons(x1,cons(x2,...(cons(xn,nil))...))

This can be expressed as the least subset of all the Σ-
terms satisfying:

X = {nil} ∪ cons(nat,X)
where nat denotes the carrier set containing all the val-
ues of type Nat (previously provided with its own gen-
eration function).

list:=RecStruct[Sig->Sigma,

Base->Singleton[nil],

Cons->{cons}]

where Sigma is defined in an obvious way.

By default, all the lengths3 up to MaxInt are considered
equivalent and the other lengths are neglected. This
is implemented via a default function NDistrib which
draws the length l according to the nat distribution. If

3the length being defined here as the number of constructors.

we want to privilege short lists over longer lists, we can
modify the distribution that controls the length of the
generated structure with:

shortList:=

ModifyDistrib[list,

NDistrib-> Union[{

{intInterval[{0,SmallInt}],1/2},

{intInterval[{SmallInt+1,INFINITY}],

1/2}}]]

To generate non-empty lists, there are several possibili-
ties:

• one first solution is to consider them as a subset of
the lists and to define them as:
NeList1:=subset[list,

Function[x,Not[IsEmpty[x]]]]

• a second solution is to modify the distribution on
the lengths to exclude a length of 0.
NeList2:=

ModifyDistrib[list,

NDistrib->intInterval[{x,INFINITY}]]

• a third solution is to proceed from the ground up
and to set as the base set the lists of length 1:
NeList3:=

RecStruct[Sig->Sigma,

Base->map[nat,

Function[x,cons[x,nil]]],

Cons->{cons}]

Constrained Linear Recursive Structures
The main difference with the previous case is that the
building functional can be partial. The domain of the
functional is often defined by a predicate. The algo-
rithm we provide here works if this predicate is defined
in terms of a recursive function on whose range a gen-
eration function is available.

Let us take the example of non empty sorted lists
SortedList. The building functional can be written as:
∀(x, e) ∈ list× nat,







x ∈ SortedList & e ≤ head(x) ⇒
cons(e, x) ∈ SortedList

cons(e, nil) ∈ SortedList
Let us notice that the constraint is expressed in terms
of the recursive function head whose range is nat: the
property we required from the predicate is thus satisfied.

The basic idea of the generation algorithm is then to try
to solve a problem of the form:

{

head(x0) = e0

size(x0) ≤ n

where size denotes the number of constructor calls
needed to build x0 and n is a natural number. n controls
the size of the generated structure and will be drawn at
random in order to generate structures of different sizes.

The next idea is to write x0 under the form:
x0 = cons(e1, x1)

x0 can be in SortedList if and only if x1 is in SortedList
and e1 ≤ head(x1). Moreover we must have head(x0) =
e0. Because of the axiom relative to head (see the next
section), we have:

{

e1 ≤ head(x1)

e0 = e1
Let us consider the subset Gu,n of nat×nat defined by:

{

v1 ≤ v2

u = v1
This set can be expressed as:

G[u_,n_]:=Sequence[{Singleton[u],

Function[x,

intInterval[{x,INFINITY}]]}]

Once a pair (e1, e2) has been drawn in Gu,n, we have to
solve the following problem:

{

head(x1) = e2

size(x1) ≤ n− 1

which leads to a straightforward recursive solution of
the generation problem.

The recursion stops when:

• either Gu,n = ∅ (which never happens here as can
be seen from its expression above) and with the
previous notations, x1 is drawn in B.

• or n = 0 and once again, x1 is drawn in B.

The distribution that results from the above algorithm
is naturally parameterizable through the choice of a dis-
tribution:

• on the size of structure;
• on the set Gu,n;
• on the range of the recursive function for which the

equation is solved (head here).

AN EXAMPLE

We now will illustrate on an example of a List specifi-
cation how to implement our approach of probabilistic
functional testing. This specification will be written in
the system OBJ which is a specification environment
based on order sorted equational logic. A main advan-
tage of OBJ is to provide a strong type system by using
the notion of subsort which allows to support overload-
ing, coercion, error handling. It facilitates the descrip-
tion of the domain of each formula.

The List Specification

We give below a List specification module (called a the-
ory in OBJ) which specifies the abstract data type List
by giving on the one hand the module interface (i.e.
the set of the specified sorts and operations) and on the
other hand properties on this module interface (i.e. well
typed equations or conditional equations).

th List is sorts List EmptyList

NeList SortedList .

subsorts SortedList < NeList < List .

subsorts EmptyList < List .

protecting NAT BOOL .

op nil : -> EmptyList .

op cons__ : Nat List -> NeList .

op cons__ : Nat EmptyList -> SortedList .

op head_ : NeList -> Nat .

op tail_ : NeList -> List .

op ins__ : Nat SortedList -> SortedList .

op sort_ : NeList -> SortedList

op sorted_ : List -> Bool .

var I J : Nat . var N : NeList .

var S : sortedList . var L : List .

eq head(cons(I,L)) = I .

eq tail(cons(I,L)) = L .

cq ins(I,cons(J,S)) = cons(I,cons(J,S))

if sorted(cons(J,S)) and I <= J .

cq ins(I,cons(J,S)) = cons(J,ins(I,S))

if sorted(cons(J,S)) and J < I .

eq sort(cons(I,nil)) = cons(I,nil) .

eq sort(cons(I,N)) = ins(I,sort(N)) .

eq sorted(nil) = false .

eq sorted(cons(I,nil)) = true .

eq sorted(cons(I,cons(J,L))) =

(I <= J) and sorted(cons(J,L)) .

endth

We detail below some elements of the specification:

• List, Emptylist, NeList and SortedList are the
new specified sorts introduced by the List module.

• s1 < s2 declares that the sort s1 is a subsort of the
sort s2. It means that any term of sort s1 may be
also interpreted as a term of sort s2. For example,
the non-empty lists of sort NeList and non-empty
sorted lists of sort SortedList are also of sort List.

• The List module is defined by importing and pro-
tecting the NAT and BOOL modules of natural
numbers and booleans where the operations <=, <
and and are specified.

• Operations are declared, their type being defined
by a Cartesian product of (sub)sorts for their do-
main and by a sort for their codomain. For ex-
ample, the operations tail and head are only de-
fined on non-empty lists. It prevents from having
to manage exceptional terms such as head(nil.

• Axioms of the List data type express the required
properties. They are introduced either by the no-
tation eq or the notation cq depending on whether
they are equations or conditional equations. The
role of the if statement is to restrict the domain
on which the principal equation holds. All these
axioms are implicitly universally quantified with re-
spect to all the variables occuring in them.

• An operation f can be specified by partitioning its
domain into smaller subdomains by using pattern-
matching on its arguments. Using patterns allows

to give a syntactic description of some well chosen
terms. For example, the operation sorted is first
specified for the empty list (the pattern nil) , then
for the list of length 1 (the pattern cons(I,nil)),
and finally for the list of length strictly greater than
1 (the pattern cons(I,cons(J,L))). These three
patterns cover all the cases of building a List term.

The axioms specify the operations of the List specifica-
tion accordingly to the intended meaning. For example,
sorted is a predicate checking whether a list is sorted
or not.

Testing from a Specification

To simplify, a specification in OBJ is simply a set of
axioms over a signature, which are formulas of the form
(the if statement part being optional) :

f(exp1, · · · , expn) = exp if cond
where the expressions exp1, . . . expn, exp and cond de-
pend on the variables x1, . . . xn of the formula.

In order to consider such formulas within our setting of
probabilistic functional testing, it remains to make clear
on which domains such formulas hold.

Each variable occuring in the formula is declared in a
given sort and, thus can be replaced by any term of this
sort. As the domain covered by a variable corresponds
to a term set defined by simple combination of enumera-
tion set, Cartesian product or recursive structure, a sort
defines a term set belonging to S (the set of the simu-
lation pairs handled by our tool defined in the previous
sections). For example, the variable L of sort List cov-
ers a free linear recursive structure defined by the the
free constructor cons. In the previous section, we gave
a simulation pair (Sets, γs) for each sort s occuring in
the List specification (i.e., for Bool, Nat, EmptyList,
NeList, SortedList and List.)

Each pattern expi may be seen as a mapping from the
term sets denoted by the formula variables on to a sub-
set of Sets where s1 · · · sn → s is the type of f . For
example, the pattern cons(I,cons(J,L)) in the last
axiom specifying sortedmay be seen as a mapping from
Set2

Nat
× SetList to a subset of SetList. Thus, from the

previous section, there is no difficulty to build a gener-
ation function on the codomain of the patterns expi.

When the formula includes an if statement, there are
several ways of defining the domain of the formula :

• The first one consists in considering that the for-
mula is a composed one including the if statement
and that its domain is simply described by the
Cartesian product of the patterns expi codomain.

• The second one consists in considering that the
formula to be considered is only an equation (i.e.
f(exp1, · · · , exprn) = exp) but that its domain
is the subdomain of the whole previous Cartesian

product defined by the predicate cond. This sub-
domain is called the validity domain of the axiom.

For example, the first axiom specifying ins can be seen
either as the formula:

i ≤ j ⇒ ins(i, cons(j, s)) = cons(i, cons(j, s))
on the domain Set2

Nat
× SetSortedList or as the formula:

ins(i, cons(j, s)) = cons(i, cons(j, s))
on the domain DNat × SetSortedList where DNat de-
notes the set {(x, y) ∈ Set2

Nat
|x ≤ y} (we gave a gener-

ation function for such a sequence set).

In the first case, the generation function is directly de-
rived from the generation functions γs associated to each
sort s. In the second case, if the predicate cond defines
a subdomain D belonging to the class S of simulation
pairs under the form (D, γD), then it suffices to use γD.
Otherwise, one can apply the rejection method.

In any case, the axioms can be provided with a do-
main in such a way that the resulting formulas fit in
with our setting of probabilistic functional testing. In
order to test a system against a specification, one can
test the system against each axiom and get a distinct
(µ, ǫ, α)-validation for each axiom, depending on the rel-
ative importance given by the tester to each axiom. If
the tester wants to provide a global (µ, ǫ, α)-validation,
then it suffices to give weights to the axioms and then
to draw test cases accordingly to these weights.

As a simple example and provided that the two param-
eters α and ǫ are given, if one wants to test the first ax-
iom head(cons(I,L)) = I, it suffices to draw at least

log(α)
log(1−ǫ) couples (i, l) by using the generation function

(γNat, γList). The building of these generation func-
tions are assisted by our tool as already explained in
the previous sections.

Remark Let us recall that all this process is only pos-
sible under the hypothesis that the specified operations
(resp. the equality predicates) can be submitted (resp.
interpreted) by the system under test. But it may hap-
pen that it exports an equality predicate only for some
sorts called observable (e.g. booleans or integers). For
example, most of the time, when lists are implemented
using pointers, the equality of two lists is only available
if a specific equality predicate has been implemented.
Nevertheless, lists can be observed through the observ-
able contexts (for example the terms head(tailn(l))).
The set C of all the observable contexts allows to distin-
guish lists: in other words, two lists l1 and l2 are equal
if and only if for each context4 c of C, c[l1] = c[l2] (see
[19] for more details on the impact of observability on
testing). Finally, a formula such as:

∀(i, j, s) ∈ D, sort(cons(i, n)) = ins(i, sort(n))
is replaced by the formula:

4c[l1] denotes the term c where l has been replaced by l1.

∀(i, j, s, c) ∈ D×C, c[sort(cons(i, n)] = c[ins(i, sort(n))]
Now the set C of observable contexts is only an induc-
tively defined set, therefore one can provide a function
generation on C. (see [3] for more explanations, in par-
ticular when C is not linear).

RELATIONSHIP WITH SOME OTHER AP-

PROACHES

Partition Testing

Partition testing ([15, 28, 26, 4]) is a classical testing
method which consists in breaking the input domain D
in several pieces and in drawing uniformly in each
subdomain Di a given number of data ni.

The result of such a test can be expressed in terms of a
(µ, ǫ, α)-validation. More precisely, let us denote:

wi = ni
P

j nj
µ̄ =

∑

i wiµi n̄ =
∑

i ni

where µi is the uniform distribution on Di. Then, we
have the following result:

Proposition 3 From the success of the previous par-
tition test, it is possible to deduce a (µ̄,

∑

i wi(1 −
ni
√
α), 1 − (1 − α)n̄)-validation.

Proof: Let α ∈]0, 1[. For each subdomain Di, the test
of length ni is a (µi, 1− ni

√
α, α)-validation. This means

that if one denotes by Fi the set Di ∩ F , the following
holds:

µi(Fi) ≤ 1 − ni
√
α

where one has a probability of at most α to err. By
linear combination of the previous inequalities with co-
efficient wi, it follows that:

µ̄(F) ≤ ∑

i wi(1 − ni
√
α)

where one errs if at least, one of the assertions about Fi

is wrong. But one is then in the complementary of a set
whose probability is at least (1 − α)n. �

Statistical Structural Testing

Statistical structural testing [25, 21] consists also in
breaking the input domain into subdomains Di. Rather
than choosing arbitrary values in each subdomain, the
authors of the method suggest to draw at random on the
whole domain, arguing that this compensates for the im-
perfection of any prespecified criterion. More formally,
the distribution µ is constructed in such a way that for
each subdomain Di, the probability that one value is
drawn in Di must be greater than a prespecified quan-
tity q termed the test quality.

A straightforward computation shows that the length n
of such a test must verify the following relation:

n ≥ maxi
log(1−q)

log(1−µ(Di))

The next proposition follows immediately from this ob-
servation:

Proposition 4 Given a successful statistical structural

test with distribution µ, partition Di and test quality
q, it is possible to deduce, for any given α in]0, 1[, a
(µ, 1 − n̄

√
α, α)-validation, with:

n̄ = maxi⌈ log(1−q)
log(1−µ(Di))

⌉

Let us finally notice that the generation tool described
previously helps one to build the functions needed by a
partition test as well as by a statistical structural test.

Operational profile

The operational profile is a distribution, often invoked
in software engineering, which models the actual client’s
relative use of the data in the input domain. When the
client furnishes this distribution, say µop, then if µop is
complete, it can of course be used to build a (µ, ǫ, α)-
validation. However µop is not necessarily complete and
it is suitable to also consider other distributions to check
exceptional cases, such as ringing alarms, etc. To sum-
marize, we think that the final distribution µ should
be defined as a barycentre of several dedicated distribu-
tions. The choice of the relative weights of each distri-
bution to get the final µ has to be negotiated between
the vendor and the client.

Deterministic Functional Testing

Once a successful test has been conducted, if we want
to increase the reliability evaluation in order to reach a
greater confidence in the system under test, then we get
two different scenarios depending on whether the test
data selection is deterministic or probabilistic:
• Deterministic: we can refine the criteria, and it will

result into numerous smaller subdomains in which
a few test cases (“nominal” or “to the limits”) are
selected.

• Probabilistic: we can either tune the distribution
in order to privilege some special cases or increase
the number of generated test cases in order to get
a more interesting triple (µ, ǫ, α).

The first scenario presents the advantage that the new
subdomains exhibit cases addressed either by the pro-
gram or by the specification that are likely to reveal
errors. However, it cannot always be done automati-
cally. The second scenario presents the advantage that
the test has a length under control and can be automat-
ically generated provided that the generation function
is available. In return, there is no guarantee of quickly
revealing some prespecified test cases (in relation to the
structure of either the system or the specification).

In the field of functional testing, B. Marre has devel-
oped LOFT, a tool for deterministic test data selection
from classical positive conditional algebraic specifica-
tions [20]. It is written in Prolog and is based on
an equational resolution procedure with some control
mechanisms. The main mechanism for defining subdo-
mains is the decomposition based on a case analysis.

This case analysis is achieved by unfolding the validity
domain of the axioms w.r.t. the structure of the speci-
fication into a partition of smaller validity subdomains.
It would be interesting to combine LOFT with our tool
of probabilistic test generation in order to benefit from
the fine decomposition into small subdomain provided
by LOFT and from our quantitative reliability evalua-
tion. The main difficulty comes from the fact that the
subdomains given by LOFT are characterized by predi-
cates and thus do not necessarily belong to our class S of
simulations pairs. Such a combination of the two tools
requires to find an intermediate level where subdomains
can be described both by a predicate (as in LOFT) and
by using building primitive (as in our approach).

CONCLUSION AND PERSPECTIVES

We have defined a framework for probabilistic functional
testing. Our first contribution is the formalization of
the testing activity in term of (µ, ǫ, α)-validation. It
allows to associate to any successful test of length N
drawn according to the distribution µ two useful quan-
titative measures: ǫ which gives a probabilistic upper
bound of the potential error domain and α which gives
a clue to help the tester/vendor to estimate the risk
(s)he takes in underestimating the measure of the error
domain. These two measures give a quantitative eval-
uation of the reliability. We also explain how one can
generate appropriate distributions for data domains in-
cluding intervals of integers, unions, cartesian products,
inductively defined sets which are the most common do-
mains in computer science. According to this theory, we
have proposed a tool to assist test generation on the-
ses domains. Our tool is only a first prototype which
proves the applicability of our method. The main re-
maining difficulty is the ability to properly describe an
input domain in term of the primitives offered by our
tool. There are some ongoing researches in order to as-
sist the activity of producing such domain descriptions,
from the specification directly, and in such a way that
the corresponding generated distributions are valuable
from the testing point of view. Moreover, in order to
fully illustrate the interest of our method, one should
compare or combine it with other approaches on some
real sized case studies. Of course, for this, our tool
should offer a more user-friendly interface.

REFERENCES

[1] A. Arnould, P. Le Gall, B. Marre: Dynamic test-
ing from bounded data type specifications. Proc. of
EDCC-2, Second European ependdable Computing
Conference, Taormina, Italy. 1996.

[2] B. Beizer: Software testing techniques. Van Nos-
trand Reinhold, New-York, Second edition. 1990.

[3] L. Bouaziz: Méthodes probabilistes pour la valida-
tion de formules et applications au test de logiciel.

Thèse de Doctorat, Ecole Nationale des Ponts et
Chaussées, Paris. 1996.

[4] T.Y. Chen, Y.T. Yu: On the expected number
of failures detected by subdomain testing and ran-
dom testing. IEEE Trans. on Software Engineering,
Vol.22, No.2, p.109-119, February. 1996.

[5] P.D. Coward: A review of software testing. In-
formation and Software technology, U.K., Vol.30,
No.3, Butterworth & Co Pub. Ltd, p.189-198. 1988.

[6] D. Daccunha-Castelle, M. Duflo: Probabilités et
Statistiques: Problèmes à temps fixe. Masson. 1982.

[7] L. Devroye: Non-uniform random variate genera-
tion. New-York, Springer. 1986.

[8] J. Dick, A. Faivre: Automating the generation and
sequencing of test cases from model-based specifica-
tions. Proc. of Formal Methods Europe (FME 93),
Springer-Verlag LNCS 670, p.268-284. 1993.

[9] R.K. Dong, Ph.G. Frankl: The ASTOOT approach
to testing object-oriented programs. ACM Transac-
tions on Software Engineering and Methodology,
Vol.3, p.39. 1994.

[10] J.W. Duran, S.C. Ntafos: An evaluation of ran-
dom testing. IEEE Trans. on Software Engineering,
Vol.10, p.438-444, July. 1984.

[11] M. Dyer: The cleanroom approach to quality soft-
ware development. John Wiley and sons. 1992.

[12] M.C. Gaudel: Testing can be formal, too. Proc.
of TAPSOFT’95, Theory and Practice of Software
Developement, 6th International Joint Conference
CAAP/FASE, Aarhus, Denmark, Springer-Verlag
LNCS 915. 1995.

[13] J.V. Guttag, J.J. Horning: Report on the LARCH
shared language. Science of Computer Program-
ming Journal, Vol.6, No.2, p.103-134. 1986.

[14] R. Hamlet: Theoretical comparison of testing meth-
ods. Proc. of the 3rd Symposium on Software Test-
ing, Analysis and Verification (TAV-3), Key West,
USA, Software Engineering Notes, Vol.14, No.8,
p.28-37, December. 1989.

[15] R. Hamlet, R. Taylor: Partition testing does not
inspire confidence. IEEE Trans. on Software Engi-
neering, Vol.16, p.1402-1411, December. 1990.

[16] T. Higashino, G.V. Bochmann: Automated analy-
sis and test case derivation for a restricted class of
LOTOS expressions with data parameters. IEEE
Trans. on Software Engineering, Vol.9, p.29-42,
January. 1994.

[17] C.B. Jones: Systematic software development using
VDM. Prentice Hall. 1986.

[18] C. Kirchner, H. Kirchner, J. Meseguer: Operational
semantics of OBJ3. Proc. of the 15th International
Colloquium on Automata, Languages and Pro-
gramming (ICALP), Springer-Verlag LNCS 317,
p.287-301. 1988.

[19] P. Le Gall, A. Arnould: Formal Specifications and
Test: Correctness and Oracle. Recent Trends in
Data Type Specification, M. Haveraaen, O. Owe,
O-J. Dahl eds, Springer-Verlag LNCS 1130, p.342-
358. 1996.

[20] B. Marre: Toward automatic test data set selec-
tion using algebraic specifications and logic pro-
gramming. Proc. of the 8th Intl. Conference on
Logic Programming (ICLP’91), Paris, June 1991,
Logic Programming M.I.T. Press, p.202-219. 1991.

[21] B. Marre, P. Thévenod, H. Waeselynk, P. Le Gall,
Y. Crouset: An experimental evaluation of formal
testing and statistical testing. Proc. of Safety of
Computer Control System 1992 (SAFECOMP’92),
Zurich, October 1992, IFAC (Heinz H. Frey Ed.),
Pergamon Press, p.311-316. 1992.

[22] J.D. Musa, A. Iannino, K. Okumoto: Software reli-
ability : measurement, prediction, application. Mc
Graw-Hill, New-York. 1987.

[23] J.M. Spivey: The Z notation: a reference manual.
Prentice Hall. 1989.

[24] P. Stocks, D.A. Carrington: Test templates: A
specification-based testing framework. Proc. of the
15th Intl Conf. on Software Engineering, p.405-414,
May. 1993.

[25] P. Thevenod, H. Waeselynck, Y. Crouset: An ex-
perimental study on software structural testing: de-
terminisitc versus random input generation. Proc
of the 21st IEEE Symposium on Fault-Tolerant
Computing, Montreal, p.410-417. 1991.

[26] M.Z. Tsoukalas, J.W. Duran, S.C. Ntafos: On
some reliability estimation problems in random and
partition testing. IEEE Transactions on software
Engineering, July. 1993.

[27] E.J. Weyuker: On testing non testable programs.
The Computer Journal Vol.25, No.4, p.465-470.
1982.

[28] E.J. Weyuker, B. Jeng: Analysing partition test-
ing strategies. IEEE Trans. Software Engineering,
Vol.17, No.7, p.703-711, July. 1991.

[29] S. Wolfram: Mathematica: A System for doing
Mathematics. Addison Wesley. 1995.

