[I 1 [[[S0
Some aspects of

Test Data Selection from
Formal Specifications

Agnes ARNOULD
Pascale LE GALL

e [y

3 <

Gilles BERNOT

Plar
L T T T T 1wl

= Main difficulties
s Contributions of formal methods

s Probabillistic approach
s Deterministic approach
m Focus on Lustre specifications

Introductior
I EEEEE

Object :to checkadequacy / inadequacy
between :

— the system under test
— the specification reference object

Activities of testing :
— selection of test cases

— execution of tests
— success / failure decision

Selectiol
L T T T T 1wl

= functional
= Structural
[] domain- subdomains
= deterministic
= probabillistic
[] coverage criteria

or

or

Test executiC
L T T T T 1wl

= good modularity
= adequate entry points
A0 = adeqguate observation poit

m INSstrumentation

[] Impact on the early specifications

Success/fallure decision (Orax
[[[[[IS

Predictions of the expected outputs ?
[1 formal specifications can solve the prob

Other difficulties:

s the software gives not enough observati
m the specification says nothing

s the specification says nothing usable

[1 Increase the number and the size of tes

Quantitative ISsu
I R

" | guarantee that the rate of failure will b
less thare "

IS a non-sense without a rigkto be wrong
w.r.t. this affirmation.

Formal specificatior

can let you save mon
[I 1 [[[S0

m cost of 1 test= 1/2 engineer day
= computer aided selection and oracle < 1
= automatic manipulations

[require formal specifications

rog. or spec.

selection criteria

'

Testing automatic
[I 1 [[[S0

y

Generator

Submession

executable prog. correctness refere!

(spec.)
oracle selec

- l criterias

test inputs
\

testing document

test outputs

Oracle

succes / failure

decision

What Is a formal specificatior
| [[[[[[S

s program interface sorted : List— Bool

desciption
sorteo
= propertes sortec
sorteo

(
(
(

[]) = true
X]) =true
X,y | L]) =

(x <y) and sorted([y | L

What Is a formal test
I EEEEn

st = formula without variable
operation(inputs) = output
sorted([1, 2, 3]) = true

uch better:

observable formula deduced from the specificati
sorted([1, 2, 3]) = (¥ 2) and sorted([2, 3])

Plar
L T T T T 1wl

= Main difficulties
s Contributions of formal methods

s Probabillistic approach
s Deterministic approach
m Focus on Lustre specifications

Probabilistic testin
I e

= the vendor affirms to the client "at most |
faillures for N input values”

= the risk that the vendor takes with this

affirmation (over 100 test sets of N tests, almos
less than 108 test sets may have more thanfisilu

N > log(a) / log(1-¢€)

Choice of the test cac
I EEEEn

ow to produce the N relevant test cases:

= acompletedistribution on the domain of
variables (has to be discussed with the clit

‘oblems:
—to formalize the discussion Info
—to generate test cases according to

To automate the probabilistic t
| [[I [[[s

A prototype of generator

= generates tests from a set description of
domains of variablegartesien product, unio
recursive definition ...)

= hides probabilistic manipulations behind
descriptions: offers default distributions.

\dvantages of probabilistic test
[[[[[IS

= allows rough subdomain splitting

= quantitative estimate of the future syster
with an operational profile

= quantitative estimate of the exceptional
behaviour with other criteria

= formal specification & domain descriptior
[] automatic test generation

Deterministic testin
I EEEEn

s cover the definitions case by case

sorted(|
X]) = true

sorted(

ex :
sorted(L) sorted(

) = true

X,y L)) =

// \ (x<y) and sorted([\

= [X] =[x, y[L]
where (< y) and sorted([y | L']) = tru

///\

[[X’ y] L — ')
Wher | LT =[] Where x<y=true Where ...

X, Y, Z|

To automate deterministic test
I e

s Solve constraints for each domain

= generate any one value in the domain

[1 use constraint solving methods
(logic programing technigues)

dvantages of deterministic test
[[[[[IS

s automate current practice of functional
testing

s allows thin subdomain splitting
[] automatic coverage of exceptional ca:
s extracts the oracle from the specification

= opens the door to a standardization of
functional coverage criterias

Application to the Lustre langa
| [[[[[[S

Lustre is a functional and dataflow langua
a Lustre node as a cyclic behavior

)yde mem(On : bool ; Of : bool ; Init : bool)
turns (Out : bool) ;
|
Ut = if On then (true)
else (if Of then (false)
else ((Init) > (pre(Out)))) ;

Coverage criter
[[[1 [[[S0

m coverage on the last cycle
[] one stream values per test case

s A =If Bthen Celse D

—2cases:. B =(..., true)
B=(.., false)

IA:B—>C

— 2 cases: last cycle = first cycle
last cycle = further cycle

Coverage criter
[[[1 [[[S0

to cover all operators :

Ut =if On then (true)
else (f Of then (false)
else ((Init)- (pre(Out)))) ;

oduces 4 test cases:

mem((..., true), (...,), (...,) = (..., true)
mem((..., false), (..., true), (...,)) = (..., false)
mem((false), (false), (V)) = (V)

mem((..., , false), (..., , false), (..., ,) =¢(...,

LOFT, a test genera
(developed by B. MARR

| |] | | || [k

m ON Ohe component:.
— 1386 lines of Lustre
— 13 nodes
— 101 inputs and 1 output
m 2 different selection criterias
— 982 test cases genered in 20 s. per case
— 33 test cases genered in 35 s. per case

= N0 limit to the test quality

Conclusiol
L T T T T 1wl

Formals specifications allow to automate
testing activities, including Oracle.

= functional probabilistic testing becomes
reachable

= deterministic testing automate current
empirical methods

