
An Example of Heterogeneous Structured Specification: a

Travel Agency ⋆

Sophie Coudert, Pascale Le Gall and Gilles Bernot

L.a.M.I., Université d’Évry, Cours Monseigneur Roméro, 91025 Evry Cedex, France
{coudert,bernot,legall}@lami.univ-evry.fr

Résumé. Notre spécification formelle simplifiée d’une agence de voyage combine 7
modules et utilise 3 formalismes de spécification différents (équationnel finiment en-
gendré, observationnel et non déterministe), une primitive d’ oubli d’opérations et 5
ponts hétérogènes permettant de connecter les composants. Sur cette spécification,
nous montrons comment mener une preuve hétérogène. Notre système de preuve
utilise aussi bien les relations d’inférence associées aux formalismes que des rela-
tions d’inférence associées aux primitives de structurations. Ceci permet l’ héritage
de propriétés à travers la structure. Parmi ces primitives, nous en présentons une
nouvelle [BCLG96]: un pont hétérogène pour passer d’un formalisme à un autre.
Cet exemple illustre comment composer formalismes de spécification et primitives
de structuration d’une manière générale.

Mots-clés: spécifications formelles, theorie de preuve, spécification hétérogène, preuve
hétérogène, étude de cas, systèmes largement distribués.

Abstract. Our simplified formal specification of a travel agency combines 7 mod-
ules, and uses 3 different specification languages (with respectively finitely generated
equational, behavioural and non deterministic semantics), 1 operation hiding prim-
itive and 5 heterogeneous bridges to glue these heterogeneous components together.
We demonstrate on this specification how a heterogeneous proof can be handled.
Our proof system involves both the inference relations associated to the formalisms
and property inheritance relations associated to the structuring primitives, among
which a new one [BCLG96]: an heterogeneous bridge which allows to move from one
formalism to another. This example illustrates how to combine formal specification
primitives and formalisms in a general way.

Keywords: formal specification, proof theory, heterogeneous specification, heteroge-
neous proof, case study, widely distributed system, feature integration.

⋆ This work was partly supported by the ESPRIT-IV Working Group 22704 ASPIRE, the ESPRIT-IV Working
Group 23531 FIREworks and the French “PRC-GDR de programmation.”

Introduction

Widely distributed systems are now mostly built by successive additions of “ready to use”
already specified and implemented components or features. This new practice induces a growing
interest for the introduction of heterogeneity in formal specifications, where modules have to
cohabit with less hierarchical components (e.g., features [KC95]) and components are specified
according to different specification languages.

The example explained in this article is a simplified specification of a travel agency. It remains
representative enough to demonstrate all the mechanisms needed to perform a formal proof in
such a heterogeneous setting. So, this example shows that heterogeneity in formal specifications
and proofs is within the reach of the current researches in formal methods.

Section 1 briefly outlines the underlying heterogeneous framework and the definition of a
heterogeneous proof system. This underlying theoretical approach consists in unifying the dif-
ferent notions of specification module, specification primitive and “heterogeneous bridge” by the
definition of specification generator with associated proof mechanisms. Section 2 contains the
informal specification in 2.1, some remainders in 2.2 about the three needed formal specifica-
tion logics (equational, behavioural and non deterministic), the definition of four heterogeneous
bridges in 2.4, and the heterogeneous formal specification itself in 2.3. Section 3 shows how to
prove the optimal agency choice of a given operator for a given travel between two cities.

1 Theoretical Foundations

1.1 Heterogeneous Structured Specifications

Heterogeneous structured specifications are build on homogeneous specification frameworks and
specification building primitives called constructors.

– Homogeneous specification frameworks are general logics [Mes89] except that, as in [BCLG96],
the satisfaction condition and the ⊢-translation are required on signature isomorphisms only.
These conditions are translated in the heterogeneous frame later on, in order to define mod-
ular constructors.

– Constructors generalize the common aspects of usual specification building primitives such
as use, forget, restrict, basic specifications and so on. From the syntactic side, all of them take
as input some specifications (with an associated signature) and return as output a global
structured specification (whose signature is uniquely determined by the input signatures).
From the semantic side, they characterize the models of the output specification from the
ones of the input specifications, and from the logic side they define the proof mechanism to
inherit properties through the specification structure.

Indeed, constructors encompass as well the heterogeneity of structured specifications. In our
framework, the input signatures of a constructor can belong to different general logics. We
consider a category Sig which is the union of all the signature categories of all the considered
homogeneous specification frameworks.

Moreover, even if a tuple of specifications has exported signatures which cope with the input
signatures of a constructor, the output specification is not necessarily acceptable. It means that
domains of acceptable specifications have to be considered. We will call feature a “constructor”
where no consideration of domain is taken into account. A feature is not necessarily suitable
when added to some previously existing heterogeneous structured specifications, thus features
have no associated proof mechanism to inherit properties.

Definition 1. A feature is a tuple (f, Semf), where f is the feature denotation provided with
a profile Σ1 · · ·Σn → Σ in Sig+ and Semf is the feature semantics: a set of functions from
mod(Σ1) × · · · × mod(Σn) to mod(Σ)

A set F of features being given, a heterogeneous specification is simply a well typed F -
term and its semantics is obtained by the corresponding composition of the possible semantic
functions of the occurring features. Then a heterogeneous structured specification on a set F of
constructors will be a heterogeneous specification which satisfies the domain restrictions at each
constructor occurrence.

Definition 2. A constructor is a tuple (f : Σ1 · · ·Σn → Σ,Semf ,Domf ,
f), where (f, Semf)

is a feature, the constructor domain Domf is a subset of
∐

i

mod(Σi), and
f is a binary relation

included in P(
∐

i

sen(Σi))×sen(Σ), sound with respect to Domf (according to the heterogeneous

specification semantics described above).

All classical homogeneous specification building primitives [Wir93,HST94] give rise to a set
of constructors. For example, a specification module △P which uses two sub-specifications P1

and P2 is modelized in general by a constructor f = use△P whose profile is Σ1Σ2 → Σ (where
Σ = △Σ∪Σ1∪Σ2 whatever the union means). The deduction mechanism
f contains the direct
translations of Σ1- and Σ2-sentences into Σ-sentences, as well as the axiom introductions from
△P . The semantic side can be to the one of [Bid87] for instance. For such constructors f based
on the use primitive, the satisfaction condition and the ⊢-translation are consequently retrieved.

A new kind of constructor is used in our example in order to allow heterogeneity (see section
2.4). It is based on morphisms of specification formalisms.

Definition 3.

Let a = (Siga, sena,moda,⊢a, |=a) and b = (Sigb, senb,modb,⊢b, |=b) be specification formalisms.
A morphism µ : a → b consists of

– A functor Trµ : Siga → Sigb, called signature transposition functor
– A Siga-indexed family Extµ such that Extµ,Σ : moda(Σ) → modb(Trµ(Σ)) are partial

functions called model extraction functions
– A family
µ indexed by Siga, such that
µ,Σ is a binary relation included in P(sena(Σ)) ×

senb(Trµ(Σ)), called heterogeneous inference bridge

such that the following properties are satisfied:

– Extµ is a (partial) natural transformation from moda to modb ◦ Trµ

–
µ is monotonic
–
-translation: for any isomorphism σ : Σ → Σ′ in Siga , any Γ ⊆ sena(Σ), and any

ϕ ∈ senb(Trµ(Σ)) , Γ
µ,Σ ϕ if and only if σ(Γ)
µ,Σ′ Trµ(σ)(ϕ)
– heterogeneous soundness: for any Σ ∈ Siga, for any Γ ⊆ sena(Σ), for any ϕ ∈ senb(Trµ(Σ)),

if Γ
µ,Σ ϕ then for all M ∈ moda(Σ), we have [M |=a Γ =⇒ Extµ,Σ(M) |=b ϕ]

The main peculiarity of this definition with respect to other notions of specification formalism
morphisms [AC92,GB84,SS92,Mes89] is the covariance and partiality of Extµ, which is coherent
with the needed covariance and domains of the constructor semantics.

Similarly to the other primitives, morphisms of specification formalisms allow to define a
family of heterogeneous bridge constructors from a formalism to another one in a natural way
(the profile of f = hetµ,Σ is Σ → Trµ(Σ)).

1.2 Proof system and term structure

Our proof system (�) for structured specifications recursively combines two kinds of inference
steps:

– The homogeneous inferences allow to deduce properties about the model of a specification at
a given level of the structure from properties about the same level, by using the corresponding
homogeneous inference system ⊢.

– The structure inferences allow to deduce, from properties about imported specifications,
properties about the exported one, by using the constructor inference bridges
f . The struc-
ture inferences allow to extract properties through the structure of the specification.

With such steps, we can deduce a sentence ξ from the axioms of a heterogeneous specification
SP , as illustrated on the following figure. We write SP � ξ. Of course our proof system is sound1

and ξ will be satisfied by all the models of SP .

ϕ

use△P

λ

ξ

Ax4Ax3
basicP1

basicP1

δ1(λ)

basicP2

hetµ,Σ2

Ax1
basicP2

use∆P
δ2(ϕ)

hetµ,Σ2

Ax2

P1

SP =

P2

basicP2
� ϕ1 and basicP2

� ϕ2

ϕ1 ϕ2

µ
2 1

∆P

use∆P (hetµ,Σ2
(basicP2

), basicP1
) � ξ

use∆P (hetµ,Σ2
(basicP2

), basicP1
) � δ2(ϕ)

use∆P (hetµ,Σ2
(basicP2

), basicP1
) � δ1(λ)

basicP1
� λ

hetµ,Σ2
(basicP2

) � ϕ

This shape illustrates how the structure of the proof follows the term structure of the specifi-
cation and introduces our conventional proof notations. The different intensities of grey represent
different underlying homogeneous frameworks. The white interstices separate the input/output
sides in the structure. Properties get over it with the
f -relations (doubles lines). On this shape
we inherit δ1(λ) from P1 and δ2(ϕ) from P2 to prove ξ in the ∆P module, using its homogeneous
inference ⊢ (simple lines). The properties inherited from P2, which are expressed in another
formalism, have to pass through an inference bridge, corresponding to the heterogeneous con-
structor hetµ,Σ2. We obtain not only a structured ([HST94,Wir93,HW]but also a heterogeneous
inference system.

2 The Example

2.1 Informal specification

We specify a travel agency which selects for its customers the operator which potentially offers
the less expensive path from a city to another city. We have classical modules for booleans and
positive integers (Bool and Int). In a module Map, we specify cities and direct links between
them. In a module Netwk, we specify networks as sets of links. Then, in a module Path, we
define paths in a network as lists of links verifying certain properties. In a module Oper we
specify two operators, each of them owning its own network. Finally, the agency is specified in
the module Agency. Each module of this problem has its own “natural” specification language
and semantics. We use three formalisms:

– Most of the modules (Bool, Int, Map, Path, Agency) are specified according to the classical
equational logic [GTW78,EM85] with finitely generated semantics (denoted FG).

– The networks (Netwk) are sets. They are specified in a natural way according to a formalism
with observational semantics [BHW95](denoted OBS), which is especially adequate for this.

– Oper is specified according to a formalism with non-deterministic semantics (denoted ND)
[WM95]. Indeed, as in general routing problems, there can be several paths for a given travel,
so that an operator proposes them in a non deterministic way.

1 It comes from the soundness of both ⊢ and

On this specification, we show how to perform a sound formal proof in such a heterogeneous
setting. The property we demonstrate is that for a travel from the city A to the city B, the Agency

A

B

A

B
1

C
O O2

C

will select the first operator (O1). The underlying intuition is trivial:
an operator can only propose paths belonging to its own network,
and O1 can propose a direct link from A to B which is impossible for
O2, as we can see on the figure. The cost of a path is its length, to

simplify things. So, the operator which offers the less expensive path is O1.

2.2 Homogeneous Specification Frameworks

In this section, we briefly recall the homogeneous specification frameworks we use in the speci-
fication.
FG: We adopt a “locally finitely generated” framework where signatures Σ = (G,S,Ω, F) sat-
isfy that (S,F) is a usual signature of equational logic as in [GTW78], G ⊆ S is the set of
locally finitely generated sorts, and Ω = {Ωs}s∈G is the generator family, which is included in F.
Sentences are defined as usual in equational logic (on (S,F)). Lastly, a Σ-algebra A is required

to satisfy that eval : TΩ(
∐

s∈S\G

As) → A is surjective. Then, obviously, the corresponding ho-

mogeneous inference system is the equational calculus enriched with structural induction on Ωs

for s ∈ G.
OBS: The syntax is the one of classical equational logic [GTW78] except that each signature
Σ = (S,Obs, F) defines a set of observable sorts Obs ⊆ S. The satisfaction of equalities is defined
“up to observation,” i.e., t ≈t′ if and only if for any context c of sort in Obs, c(t) is actually equal
to c(t′). The corresponding homogeneous inference system is the equational calculus enriched
with context induction as defined by Rolf Hennicker, e.g., in [Hen91].
ND: A sentence is a clause made of the three kinds of atoms described below. t =̇ t′ means that
t and t′ are deterministic and have the same result. t 6= t′ means that t and t′ cannot have the
same results. t ≺t′ means that all possible results of t are also possible results of t′ (i.e., t is more
deterministic than t′). The semantics is defined in such a way that a term t evaluates to a set of
possible results. An algebra is said deterministic if any evaluation results in a singleton. Notice
that for such algebras, the atoms t =̇ t′ and t ≺t′ are equivalent, and equivalent to the negation
of t 6= t′. Lastly, the inference system is given in Annex A.

2.3 Structure of the formal specification

The structure of the formal specification has three FG-modules (Int, Bool, Map, Agency),
one ND-module (Oper) and one OBS-module (Netwk), connected as shown on the figure. Bool is
a basic module, the other ones are use modules. In order to connect heterogeneous compo-

1 2

9

8765

3

4

U

FG
ND

OBS

Path

Map

IntOper

Bool

Agency

Netwk

M
a
p

In
t

B
o
o
l

nents, we need heterogeneous bridges. For ex-
ample, the bridge numbered 6, on the figure
allows the Oper module to have a view of the
Path module, which is FG while the operator is
ND. Under the bridge numbered 9, between the
Agency and the Oper

modules, we have another example of structur-
ing primitive: the forget constructor. It allows
us to forget the nondeterministic operations of
the Oper module, in order to retrieve determin-
istic algebras before the heterogeneous bridge.
With our constructor representation, the spec-
ification and its sub-specifications can be de-

noted by terms. Let △P denotes the specification with △P as top module, let heti denote the
bridge numbered i, and let △P denote the constructor use△P (Bool denotes basicBool) for short.

We have:

Bool = Bool, Int = Int(Bool), Map = Map(Bool),

Netwk = Netwk(het1(Map), het2(Bool))

Path = Path(Map, het3(Netwk),Bool, Int)

Oper = Oper(het4(Netwk), het5(Map), het6(Path), het7(Bool), het8(Int))

Agency = Agency(Map, het9(U(Oper)),Bool, Int)

2.4 Heterogeneous Bridges

The heterogeneous bridges from a homogeneous specification framework to another one are
almost obvious for FG, OBS and ND (according to definition 3). Lest us very briefly outline the
ones we use.

From OBS to FG (used for het3): Trµ simply removes SObs from the signatures; Extµ,Σ is
the quotient by the observational congruence ≡Obs as defined in [BHW95];
µ leaves formulas
unchanged (more formally, it is the reverse membership).

From FG to OBS (used for het1 and het2): Trµ makes any sort observable (SObs = S); Extµ,Σ

is the identity;
µ leaves formulas unchanged.

From FG to ND (used for het5 to het8): Trµ is the identity; Extµ,Σ turns a FG-algebra into
a ND-algebra by translating the value v of an evaluation into the singleton {v};
µ translates
any positive conditional formula into the corresponding clause, and ignores the other formulas.

From ND to FG (used for het9): Trµ is the identity; Extµ,Σ is the reverse translation (from
{v} to v) on deterministic algebras and is undefined elsewhere;
µ translates a clause into a
positive conditional formula when possible, and ignores the other clauses.
Comment: before applying het9, we apply a forgetful functor to the imported ND-specification,
thus all remaining algebras are deterministic and Ext9 is total. Indeed, this ensures the modular
consistency of the heterogeneous structured specification. A detailed study about the consistency
of heterogeneous structured specification can be found in [Cou].

From OBS to ND (used for het4): simply the composition from OBS to FG and then to ND.

2.5 Main Modules

The modules Int and Bool are classical ones. The Map module simply specifies cities (A, · · ·),
links (l(,)) between cities and the corresponding equalities; we only give its signature. We
focus on the other specification modules. For Netwk, we specify sets of links with membership
as observation (⋄ being the infix insertion).

Map, FG

Inputs: 1:Bool

Sorts: city, link

Operations:

*l() : city × city → link;
*A :→ city; *B :→ city;
*C :→ city; *D :→ city;
eqc() : city × city → bool;
eql() : link × link → bool;

Netwk, OBS

Inputs: 1:Map, 2:Bool

Sorts: net Obs: bool

Operations:

∅ :→ net; ⋄ : link × net → net;
∈ : link × net → bool;

Axioms:

1: l ∈∅≈F

2: eql(l, l
′) ≈T ⇒ l ∈ l′ ⋄s ≈T

3: eql(l, l
′) ≈F ⇒ l ∈ l′ ⋄s ≈ l ∈s

Path, FG

Inputs:

1:Map, 2:Netwk, 3:Path, 4:Bool,
5:Map,

Sorts: list

Operations:

*[] : link → list;
* :: : link × list → list;
p() : list, city × city × net → bool;
$() : list → nat;

Axioms:

1: p([l(c, c′)], c1, c
′

1, n) ⇒ c= c1

2: p([l(c, c′)], c1, c
′

1, n) ⇒ c′ = c′1
3: p([l(c, c′)], c1, c

′

1, n)= T ⇒ l(c, c′) ∈n

4: c= c1 ∧ c′ = c′1 ∧ l(c, c′) ∈n

⇒ p([l(c, c′)], c1, c
′

1, n)

5: p(p, c′, c′′, n) ∧ l(c, c′) ∈n

⇔ p(l(c, c′) :: p, c, c′′, n)

6: $([l])= s(0) 7: $(l :: p)= s($(p))

Oper, ND

Inputs:

1:Netwk, 2:Map, 3:Path, 4:Bool, 5:Int

Sorts: oper

Operations:

O1 :→ oper; O2 :→ oper;
nw() : oper → net;
pt() : oper × city × city → list;
d, , : oper × city × city → nat;

Axioms:

1: O1 =̇ O1 2: O2 =̇ O2

3: nw(O1) =̇ l(A,B) ⋄ l(B,C) ⋄ [l(C,A)] ⋄∅

4: nw(O2) =̇ l(C,B) ⋄ l(B,A) ⋄ [l(A, C)] ⋄∅

5: p(pt(o, c, c′), c, c′,nw(o))

6: [l(A,B)] ≺pt(O1,A, B)

7: $(pt(o, c, c′)) ≥ ô, c, c′

8: ô, c, c′ ≺$(pt(o, c, c′))

Agency, FG

Inputs: 1:Map, 2:Oper, 3:Bool, 4:Int

Operations: sl() : city × city → oper;
Axioms: 1:
Ô2, c, c′ > Ô1, c, c′ ⇔ sl(c, c′)= O1

Conventionally, a star before
an operation name in a FG-
signature means “belongs to
Ω”. Moreover, in order to
increase legibility, we some-
times use a predicate nota-
tion for boolean terms. So we
write p(x) for p(x)= T (resp.
p(x) ≈T in OBS or p(x) =̇ T in
ND), and so on.
With these conventions, we
specify paths from a city to
another one, in a network, as
non empty lists of links such
that the links belong to the
network and are consecutive:
p(p, c, c′, n) means that p is a
path from c to c′ in the net-
work n. Their cost ($()) is
their length. This is done with
the FG homogeneous frame-
work. There are two operators
(O1, O2), each of them hav-
ing its own network (nw()).
They propose paths between
cities with a non-deterministic
operation pt() because there
can be several possibilities. A
function (d, ,) gives the best
price an operator can propose
for a given travel. For such a
travel, the agency will select
the operator with the best op-
timum. In our proof example,
this operator is O1, who pro-
poses a direct link (axiom 6).
Notice that this optimum op-
eration is deterministic; it will
be preserved by the forget

module U , and then inherited
by Agency.

3 A heterogeneous proof

The general aspect of the proof is drawn in the following figure.

Agency

Nat.

Netw.

Basics

Oper.

Path

he
t

he
t

he
t

he
t

U he
t

ax

$
([

l(
A

,B
)]

)
=

1

$
([

l(
A

,B
)]

)
=̇

1

⇒
sl

(A
,B

)
=

O
1

1
≥

Ô
1
,A

,B
=̇

T

A
=̇

A

I
n
d

[l
(A

,B
)]

∈
♣

=
F

Ô
2
,A

,B
≥

2
=̇

T

B
=̇

B

B
=

B
A

=
A

1
≥

Ô
1
,A

,B
=

T

x
≥

2
∧

1
≥

z
⇒

x
>

z

p
(p

,A
,B

,♣
)
=

F
⇒

$
(p

)
≥

2

e
q

l(
l(

A
,B

),
l(

A
,
C
))

≈
F

[l
(A

,B
)]

∈
♣

≈
F

e
q

l(
l(

A
,B

),
l(

A
,C

))
=

F

Ô
2
,A

,B
≥

2
=

T
x

≥
2

∧
1

≥
z
⇒

x
>

z

sl
(A

,B
)
=

O
1

Ô
2
,A

,B
>

Ô
1
,A

,B

p
(p

,
A

,B
,♣

)
6=

T
∨

$
(p

)
≥

2

This figure only mentions the main lemmas to get the result sl(A,B)= O1. It should hopefully
help the reader to follow the formal proof given below.

Let x ≥2 ∧ 1 ≥z ⇒ x >z be denoted @1 and l(A,B) ∈♣ ≈F be denoted @2, where ♣ denotes the
network of O2: l(C,B) ⋄ l(B,A) ⋄ [l(A,C)] ⋄∅. We prove sl(A,B)= O1 in Agency, using the inherited
properties 1 ≥ ̂O1,A,B=̇ T denoted @5 and using Ô2,A,B ≥2 =̇ T denoted @11 which are proved
later on in Oper. (@1 and @2 are proved in [Cou])

The annotation to the right of each inference line follows the following conventions: ax means
axiom introduction (resp. as when substituted); u means imported via a use constructor (resp.
h for a heterogeneous bridge); the subscript of ax or as indicates the source module (its first
character) and the superscript indicates the axiom number; the subscript of u indicates the top
level module of the use constructor and the superscript indicates the number of the considered
import slot; the subscript of h indicates the number of the bridge on the specification shape.
Moreover, obvious sequences of elementary inference rules are contracted into one step. For
example: the axioms are often introduced in an already instancied form; we exploit directly any
useful consequence of modus ponens. We also abreviate s(s(0)) as 2 (resp. s(0) as 1).

@1

x ≥2 ∧ 1 ≥z ⇒ x >z
u4

A

̂O2,A, B ≥2 ∧ 1 ≥ ̂O1,A,B ⇒ ̂O2,A,B > ̂O1,A,B
SUB

@5

1 ≥ ̂O1,A,B= T

h9u
2

A

̂O2, A,B ≥2 ⇒ Ô2,A,B > ̂O1,A,B @12
MPG

̂O2,A,B > Ô1,A,B ⇒ sl(A, B)= O1

as1

A

@12

@11

̂O2, A,B ≥2= T

h9u
2

A

̂O2,A,B > Ô1,A,B
MP

sl(A,B)= O1

MP

Proof of 1 ≥ ̂O1,A, B=̇ T @5 in the Opermodule.

$(pt(o, c, c′)) ≥ ô, c, c′
ax7

O
A = A

REF

A =̇ A
h5u

2

O

B = B
REF

B =̇ B
h5u

2

O O1 =̇ O1

ax1

O

$(pt(O1 ,A,B)) ≥ ̂O1,A,B @4
sub

@4 [l(A,B)] ≺pt(O1,A,B)
ax6

O

$([l(A,B)]) ≥ ̂O1, A,B
rg3

$([l(A, B)])= 1
as6

P

$([l(A, B)]) =̇ 1
h6u

3

O

1 ≥ ̂O1,A,B @5
rg2

Proof of @11 in Oper, using @8 p(p,A,B,♣) ⇒ $(p) ≥2 (proof in Annex B).

p(pt(o, c, c′), c, c′,nw(o))
ax5

O
A =̇ A

REF h5u
2

O B =̇ B
REF h5u

2

O O2 =̇ O2

ax2

O

p(pt(O2,A,B),A,B,nw(O2)) @6
sub

@6 nw(O2) =̇♣
ax4

O

p(pt(O2, A,B),A, B,♣) @7
rg2

@7

@8

p(p,A, B,♣) 6= T ∨ $(p) ≥2
h6u

3

0 pt(O2,A,B) =̇pt(O2,A,B)
h6u

3

O

p(pt(O2,A,B),A,B,♣) 6= T ∨ $(pt(O2,A,B)) ≥2
sub

$(pt(O2 ,A,B)) ≥2 @9
cut

ô, c, c′ ≺$(pt(o, c, c′))
ax8

0

A =̇ A
REF h5u

2

O
B=̇ B

REF h5u
2

O
O2 =̇ O2

ax2

O

̂O2,A, B ≺$(pt(O2,A,B)) @10
sub

@10 @9

̂O2,A,B ≥2 @11
rg3

4 Conclusion

The example developed here has been inspired by a more general routing problem in telecom-
munication networks. This agency example is of course considerably simplified with respect to
the original problem, however it remains representative enough to illustrate our approach.

Our approach is resolutely both formal and pragmatic. We do not so much care about
completeness, totality or exhaustiveness in our definitions. We preferably care about a good
compromise between a sufficient power to prove what we need and a reasonable simplicity in
order to preserve legibility as much as possible.

– Completeness: we do not require for a homogeneous inference system to be complete (e.g.,
⊢FG is not complete) and we never ask for a heterogeneous bridge to be complete in any
sense.

– Totality : we do not require for the morphisms of specification framework to completely map
the power of one logic into another one (e.g., Extµ is a partial functor) and each constructor
has a given domain, which means that it can be inadequate for some imported specifications.

– Exhaustiveness: the reader may have noticed that our heterogeneous bridges are rather simple
and that it would have been possible to extract more formulas from a formalism to another
one (e.g., the restriction to positive conditional formulas in the bridge from FG to ND is
arbitrary, but it has the advantage to be easily understandable).

Our aim has been to show on an example that “cross-country” formal proofs are possible in a
heterogeneous setting, while remaining perfectly sound.

Annex A

FG inference system: (for a signature Σ = (G, S, Ω, F)

α ⇒ α TAU t = t
REF

Γ ⇒ α

Γ ∧ β ⇒ α
MON

Γ ⇒ t = t′

Γ ⇒ t′ = t
SYM

Γ ⇒ t = t′ Γ ⇒ t′ = t′′

Γ ⇒ t = t′′
TRA ∀ρ : TΣ(V) → TΣ(V), Γ ⇒ α

ρ(Γ) ⇒ ρ(α)
SUB

∀f ∈ Σ,
Γ ⇒ ti = t′i (i = 1..n)

Γ ⇒ f(t1, · · · , tn) = f(t′1, · · · , t
′

n)
REM

Γ ∧ α ⇒ β Γ ⇒ α

Γ ⇒ β
MP

and the structural induction: for each set of sentences Φ and property φ,

∀s ∈ G,
Φ

φ(xs)
INDs iff ∀f ∈ Ωs,

Φ ∪ {φ(x1), · · · , φ(xn)}

φ(f(x1, · · · , xn))
Σ ∪ {x1, · · · , xn}

,

where x1, · · · , xn are the s-inputs of f

ND inference system:
Rules:

R1: a- x 6= y, x =̇ y
rg1

b- x 6= t, x ≺ t
rg1

x, y ∈ V

R2:

Cx
t D, s =̇ t

Cx
s , D

rg2

R3:

Cx
t D, s ≺ t

Cx
s , D

rg3
x not in a right-hand side of ≺ in C.

R4:

C, s � t D, s 6= t

C, D
cut

(� being either =̇ or ≺)

R5:
C

C, e
wea

R6:

C, x 6= t

⊢ Cx
t

eli
x ∈ V − V[t], at most one x in C

Derived rules:

PER: a- x =̇ x
per

b- t ≺ t
per

REN:
C

Cx
y

ner

SUB:

C D, t =̇ t

Cx
t , D

sub

INTR:

C
y
t

Cy
x , x 6= t

inc
y not in a right-hand side of ≺

Annex B

Proof of @8 : p(p,A,B,♣) ⇒ $(p) ≥2

Let Φ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8, ϕ9, ϕ10}, with

p([l(c, c′)],A,B,♣) ⇒ c = A ϕ1

as1

P p([l(c, c′)],A,B,♣) ⇒ c′ = B ϕ2

as2

P

p([l(c, c′)],A,B,♣) ⇒ [l(c, c′)] ∈♣ ϕ3

as3

P

@2

l(A,B)∈♣= F ϕ4

u4

P

$(l :: p)= s($(p)) ϕ6

ax7

P $([l])= s(0) ϕ7

ax6

P s(s(0)) ≥2 ϕ8

as2

Iu
4

P

1 ≥2 =F ϕ5

as4

Iu
4

P x ≥y ∧ y ≥z ⇒ x ≥z ϕ9

ax5

Iu
4

P s(x) ≥x ϕ10

ax3

Iu
4

P

Φ

p(p,A,B,♣) ⇒ $(p) ≥2

INDlist
iff

Φ

p([l],A,B,♣) ⇒ $([l]) ≥2 @8a

Σ
and

Φ ∪ {p(p,A,B,♣) ⇒ $(p) ≥2}

p(l ⋄p,A,B,♣) ⇒ $(l ⋄p) ≥2 @8b

Σ ∪ {p}

Proof of @8a: p([l],A,B,♣) ⇒ $([l]) ≥2 (l is l(c, c′) by induction) .

p([l(c, c′)], A,B,♣) ⇒ c = A

ϕ1

p([l(c, c′)],A,B,♣) ⇒ l(c, c′) ∈♣= l(A, c′) ∈♣ @81
REM

@81

p([l(c, c′)],A,B,♣) ⇒ c′ = B

ϕ2

p([l(c, c′)],A, B,♣) ⇒ l(A, c′)∈♣= l(A,B) ∈♣
REM

p([l(c, c′)],A, B,♣) ⇒ l(c, c′)∈♣= l(A,B) ∈♣
TRA

p([l(c, c′)],A,B,♣) ⇒ l(A,B) ∈♣= l(c, c′) ∈♣ @82
SYM

@82 p([l(c, c′)],A,B,♣) ⇒ l(c, c′) ∈♣
ϕ3

p([l(c, c′)],A,B,♣) ⇒ l(A,B) ∈♣ @83
TRA

l(A,B) ∈♣= F

ϕ4

F= l(A,B) ∈♣
SYM

l(A,B) ∈♣= T ⇒ l(A,B) ∈♣= T
TAU

l(A,B) ∈♣= T ⇒ F = T
TRA

@83

p([l(c, c′)], A,B,♣) ⇒ F =T @84
MP

$([l])= 1

ϕ7

$([l(c, c′)])= 1
SUB

$([l(c, c′)]) ≥2= 1 ≥2
REM

1 ≥2= F
ϕ5

@84

p([l(c, c′)],A,B,♣) ⇒ 1 ≥2 =T
TRA

p([l(c, c′)],A,B,♣) ⇒ $([l(c, c′)]) ≥2= T @8a

TRA

Proof of @8b: p(l :: p,A, B,♣) ⇒ $(l :: p) ≥2, from @86: s($(p)) ≥2 = T:

$(l :: p)= s($(p))
ϕ6

$(l :: p) ≥2= s($(p)) ≥2
REM

@86

$(l :: p) ≥2= T
TRA

p(l :: p,A,B,♣)= T ⇒ $(l :: p) ≥2= T @8b

MON

Φ
s($(p))≥2 @86

INDlist iff
Φ

s($([l])) ≥2 @86a

Σ &
Φ ∪ {s($(p)) ≥2}

s($(l :: p)) ≥2 @86b

Σ ∪ {p}

$([l])= s(0)
ϕ7

s($([l])) ≥2 = s(s(0)) ≥2
REM

s(s(0)) ≥2

ϕ8

s($([l])) ≥2 @86a

TRA

@86b : s($(l :: p)) ≥2 with HR: s($(p)) ≥2

x ≥y ∧ y ≥z ⇒ x ≥z
ϕ9

s(s($(p))) ≥s($(p)) ∧ s($(p)) ≥2 ⇒ s(s($(p))) ≥2
SUB

s(x) ≥x
ϕ10

s(s($(p))) ≥s($(p))
SUB

s($(p)) ≥2 ⇒ s(s($(p))) ≥2 @85
MPG

$(l :: p)= s($(p))
ϕ6

s($(l :: p)) ≥2= s(s($(p))) ≥2
REM

@85 s($(p)) ≥2
HR

s(s($(p))) ≥2
MPG

s($(l :: p)) ≥2 @86b

TRA

References

[AC92] E. Astesiano and M. Cerioli. Relationships between logical frameworks. In LNCS, editor, Recent Trends

in Data Type Specification, volume 655, pages 101–126, Dourdan, 1992.
[BCLG96] G. Bernot, S. Coudert, and P. Le Gall. Towards heterogeneous formal specifications. In AMAST’96,

Munich, volume 1101, pages 458–472. Springer, LNCS, 1996.
[BHW95] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor specifications. Science of

Computer Programming, 25:149–186, 1995.
[Bid87] M. Bidoit. The stratified loose approach : a generalization of initial and loose semantics. In Springer-

Verlag LNCS 332, editor, Recent Trends in Data Type Specification, Gullane, Scotland, pages 1–22,
July 1987.

[Cou] S. Coudert. Cadre de spécifications hétérogènes. Université d’Evry, forthcoming Thesis.
[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations and initial semantics,

volume 6. Springer-Verlag,EATCS Monographs on Theoretical Computer Science, 1985.
[GB84] J.A. Goguen and R.M. Burstall. Introducing institutions. In Springer-Verlag LNCS 164, editor, Proc.

of the Workshop on Logics of Programming, pages 221–256, 1984.
[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach to the specification,

correctness, and implementation of abstract data types. In R.T. Yeh Printice-Hall, editor, Current

Trends in Programming Methodology, volume IV, pages 80–149, 1978. Also IBM Report RC 6487,
October 1976.

[Hen91] R. Hennicker. Context induction: a proof principle for behavioural abstractions and algebraic imple-
mentations. Formal Aspects of Computing, 3(4):326–345, 1991.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured theory presentations and logic representations.
Annals of Pure and Applied Logic, 67:113–160, 1994.

[HW] R. Hennicker and M. Wirsing. Proof systems for structured algebraic specifications: An overview. To

appear in: Proc. FCT ’97.
[KC95] editors: K.E. Cheng, T. Ohta. Proc. of the third conference on feature interactions in telecommunication

systems iii. Amsterdam, 1995. IOS Press., 1995.
[Mes89] J. Meseguer. General logics. In North-Holland, editor, Proc. Logic. Colloquium ’87, Amsterdam, 1989.
[SS92] A. Salibra and G. Scollo. A soft stairway to institutions. In LNCS, editor, Recent Trends in Data Type

Specification, volume 655, pages 320–329, Dourdan, 1992.
[Wir93] M. Wirsing. Structured specifications: syntax, semantics and proof calculus. In Brauer W. Bauer F.

and Schwichtenberg H., editors, Logic and Algebra of Specification, pages 411–442. Springer, 1993.
[WM95] M. Walicki and Meldal. A complete calculus for the multialgebraic and functionnal sémantics of

nondeterminism. ACM Transactions on Programming Langages and Systems, 17: 2, p. 366-393, 1995-
03, 1995.

