
1 The Role of Formal Speci�cationsMarie-Claude Gaudel1 and Gilles Bernot21 Universit�e de Paris-Sud, LRI, CNRS UMR 8623, Bâtiment 490,F-91405 Orsay Cedex, France2 Universit�e d'�Evry, LaMI, CNRS EP738, F-91025 �Evry Cedex, FranceAbstract. This introductory chapter aims at stating the context and the motiva-tions of the rest of the book. The �rst section is a brief general reminder of the roleof speci�cations in the software development process. Important concepts such asabstraction, re�nement, validation, and veri�cation are introduced informally. Thesecond section gives a characterization of formal speci�cations, sketches a classi-�cation, and discusses the possibilities that they bring for software development.Section 3 is devoted to the use of formal speci�cations for requirement engineer-ing and validation. Section 4 addresses the notions of re�nement and veri�cation.Section 5 discusses what kind of tools can be developed on the basis of formalspeci�cations.1.1 The role of speci�cations in software developmentSoftware (and hardware) systems have to be developed following rigorousguidelines to have a chance of being dependable, �nished on time, and easyto maintain. The aim of software engineering is to de�ne criteria to evaluatesoftware-intensive systems, as well as methods and techniques to developthem and satisfy these criteria. The search for these criteria, methods, andtechniques requires a study of the characteristics of such systems and theirdevelopment process.The software development process can be seen as the construction ofa sequence of more and more detailed descriptions of the software underdevelopment, leading to a �nal set of documents which contains an executableprogram and its documentation. This view is clearly oversimpli�ed since itignores the essential role of backtracking and iterations in such a process[Hum90,GMSB96], but it is su�cient for the purpose of this introductorychapter.At every stage of the development process but the last one, the core ofthe description document is a speci�cation of the future software, namely ade�nition of what it must do, without a complete description of how it willdo it.Because it plays a special role, it is interesting to distinguish the earliestspeci�cation document: we will call it the global speci�cation, while the otherones are called intermediate or detailed speci�cations.Clearly, the concept of speci�cation is a cornerstone of software devel-opment: the global speci�cation is the basis of the agreement between the

2 Marie-Claude Gaudel and Gilles Bernotdevelopers and the users (some authors see it as a \contract"); global andintermediate speci�cations are essential for communication of precise infor-mation between the developers.At each stage of the development, the current description of the futuresystem must be checked against inconsistencies and omissions.Moreover, it must be validated if it is the �rst one, or veri�ed with respectto the previous one. Namely, it is necessary:� to validate the global speci�cation with respect to the requirements, theneeds of the clients;� to verify every intermediate speci�cation with respect to the previousspeci�cation;� to verify every piece of program with respect to its detailed speci�cation;� to verify the integrated �nal system with respect to its global speci�ca-tion.Validation aims at establishing that the future system will �t for its opera-tional mission. Veri�cations aim at establishing that it will satisfy the globalspeci�cation. Validation, veri�cation, consistency, and completeness checksare crucial activities since it has been recognized for a long time [Boe81] thatthe later a fault is discovered in the development process, the more expensiveit is to correct.The ability to use the speci�cations e�ectively for veri�cation and val-idation is a major issue. For example, depending of the kind of developedsystem, a speci�cation technique should provide some support for prototyp-ing, correctness proofs, elaboration of test data, and failure detection whenrunning these tests.As said above, the role of the global speci�cation is to establish as clearlyas possible what has to be done. This must be understood and stated beforedeciding how to realize it. In practice, it is often di�cult to write \unbiased"speci�cations at each level, i.e., speci�cations that stay within the boundariesof the \what ," without premature choices which mention unnecessary \how"aspects. However this e�ort of abstraction is pro�table:� A priori : before the software under consideration is �nished, an abstractspeci�cation is a powerful reference document for discussions and elab-oration of the design; besides, abstraction prevents local design choiceswhich could result in a poor global design;� A posteriori : a sequence of speci�cations, progressing from abstract toconcrete, provides a trace of the design activity and makes easier thereuse, evolution, and maintenance of the software.The transition from a speci�cation to a more detailed one is often calleda re�nement. Most speci�cation techniques provide some support for suchre�nements and the corresponding veri�cations. Veri�cation may cause some

1 The Role of Formal Speci�cations 3iterations on the re�nement until its result, namely the more detailed speci-�cation, is satisfactory with respect to the original speci�cation.Speci�cations are more abstract than the corresponding programs, butin many cases they are big enough to require some way for mastering sizeand complexity when writing them. As for programming languages, this ismainly provided by decomposition and modularity principles (see Chapters 6and 8 of this book), or, more recently, by object-orientation (see Chapter 12).However, it is worth to note that the structure of a speci�cation is mainlydictated by understanding the role of the future system. It is not the caseof the structure of the implementation, which may be very di�erent due toconsiderations such as e�ciency, security, or reuse [FJ90,Gau92]. Thus, elab-oration of the software architecture [SG96] may lead to a structure di�erentfrom the organization of the speci�cations.Like the choice of a programming language, the choice of a speci�cationtechnique depends on the kind of system to be speci�ed. For certain projects,it can even depend on the components to be speci�ed: for example, certaincomponents may require to specify real time aspects, while some other partsmay require a careful speci�cation of complex data structures without timeconstraints. A speci�cation technique which would deal with all the possibleaspects of all the possible systems would have a good chance to be too com-plex to be usable. This justi�es the existence of a variety of languages andmethods, each of them emphasizing particular aspects of some applicationdomain and some class of target programs. As a consequence, in some casesit may be useful to write several speci�cations using di�erent speci�cationtechniques for some component, in order to enlighten di�erent aspects.In the current state of practice, speci�cations are often written usingdiagrams or tables, enriched by comments in natural language [Dav93]. Thesediagrams and comments are the major media for dialog between the actorsof the development. However, they often admit several interpretations. Thisplurality of interpretations results from ambiguities in the used notations.Such ambiguities of informal speci�cations do not necessarily prevent fromproducing software of good quality. However, they may raise some problems,especially when checking, validating, or verifying.This book presents a class of formal speci�cation techniques. Formal spec-i�cation techniques make it possible to remove any ambiguities in the expres-sion of the speci�cations of a program, in order to provide a sound basis forchecking, validating, and verifying.1.2 Formal speci�cationsA speci�cation written in a formal speci�cation language de�nes rigorouslyall the acceptable behaviors of the speci�ed system. Besides, it is possible toperform some reasoning on the speci�cation and its re�nements.

4 Marie-Claude Gaudel and Gilles BernotA formal speci�cation technique must provide at least three well de�nedfacets: a syntax , some semantics and an inference system.� The syntax exhaustively de�nes what a speci�er is allowed to write toobtain a speci�cation, as it is the case for programming languages. Thusthe text of a formal speci�cation has a structure which makes possiblepowerful computer aided treatments. In particular, a speci�cation con-tains properties which are written as well formed formulas of some logic(these properties are often called axioms or sentences in this book).� The semantics describes the models associated to a given speci�cation. Amodel is a mathematical object which de�nes the behaviors of the accept-able realizations of the speci�cation. \Acceptable" implies in particularthat each model satis�es the properties of the speci�cation. The role ofthe semantics is precisely to avoid ambiguities.� The inference system serves to de�ne the deductions that can be madefrom a formal speci�cation. These deductions allow some formulas to bederived, which are consequences of the properties listed in the speci�ca-tion. Such derivations are mechanically checkable as developed in Section4. So, the inference system can help to partly automate theorem proving,functional testing, prototyping, veri�cation of re�nements, etc.This classical view of formal speci�cations leads to distinguish (at least)two classes of formal speci�cation techniques. They are called respectively\model oriented" and \property oriented" (or \constructive" and \declara-tive").In the model oriented approaches (such as VDM, Z, or B) the speci�erbuilds a unique model, from a choice of built-in data structures and construc-tion primitives that the speci�cation language o�ers [Jon90], [Spi92], [Abr96].Then, a program is correct with respect to the speci�cation if the functionsit provides have the same behaviors than in the speci�ed model.In the property oriented approaches, the speci�er declares �rst a list of\function names" and by default there is an in�nity of models that provide,in all the possible ways, a function for each name. Next, the speci�er statesseveral properties (i.e., formulas, which are often called \axioms" as theyhave not to be proved: they are required). Among all the previously mentionedmodels only a few of them satisfy the required properties; all the other models\do not satisfy the speci�cation" and are discarded. Then, a program iscorrect with respect to a speci�cation if it provides all the declared functionnames and de�nes a model that satis�es the speci�cation. It is this class ofspeci�cation techniques, also called algebraic speci�cations, which is studiedin this book.Among other classes of formal speci�cation techniques, there are opera-tional speci�cations. Starting from a set of elementary actions, these tech-niques describe the computations, i.e., the sequences of actions, that thesystem can perform. Some representatives of these techniques are Petri nets

1 The Role of Formal Speci�cations 5[Rei85] and process algebras [Hen88]. Extensions of algebraic speci�cationson this direction are presented in the Chapter 13 of this book.Formal speci�cations de�ne unambiguously the correctness of a programwith respect to its speci�cation. They are indeed the only way to have a rig-orous de�nition of correctness. Consequently, formal speci�cations must beused if correctness proofs are foreseen for some veri�cations. From a logicalpoint of view, the notion of correctness of a program, without a formal spec-i�cation, is a nonsense. Nevertheless, making use of formal speci�cations isa demanding process and should be suitably targeted. There are many caseswhere formal speci�cations would be a mere luxury.In most projects where formal speci�cation were used, informal speci�-cations and formal ones were mixed. Some components and steps were for-malized, some others not. The decision to use formal speci�cations mainlydepends on the criticality of the component, in term of consequences of afault (human lives, cost) and of the complexity of its requirements or of itsdevelopment.There are also some aspects of the development process which are beyondthe scope of formal development methods and correctness proofs [Gau95].The �gure below shows the boundary of what can be formal in software de-velopment. The right hand side shows a purely formal process which goesfrom a high level abstract formal speci�cation to the program. The left handside of the �gure mentions informal entities such as needs, opinions, or physi-cal systems which belong to the real world. The formalization of such entitiesalways induces some schematization [McD91], and is a delicate activity wheresome misunderstanding or error may occur.The �gure is slightly simpli�ed since some validation against the actualneeds may take place after each re�nement, as developed in [Gau95], andsome kinds of veri�cation may skip some intermediate speci�cations.Formal methods make it possible to perform a stepwise re�nement process(from the global speci�cation to the most concrete one) in a provably correctway. But the validation of the global speci�cation with respect to the needsof the clients is a special case, because these needs are not formally speci�ed(otherwise this speci�cation itself would be the global speci�cation and wouldhave to be validated : : :).For the crucial parts of a software project, formal speci�cations oblige thespeci�er to treat a lot of particular cases that would have been forgotten orambiguously speci�ed otherwise. They also facilitate a \mutual validation"between two texts written according to formal syntactical rules (speci�cationagainst program texts, or against lower level speci�cations).In the remainder of this introductory chapter we develop some of themain contributions of formal speci�cations in general, and of algebraic spec-i�cations in particular, to sofware development activities. In Section 3, wediscuss the new possibilities that formal speci�cations bring to requirement

6 Marie-Claude Gaudel and Gilles Bernot� -

?6� �� ZZ��ZZ
666�������

���7
��������3������*

???
6

���PP��bbb����AAaaa""bb##LL��BB

���AA��@@���� �� DD!!!!��LL...................AA....................................

validationspeci�cation

veri�cationcodingprogram texts�nal system last (most concrete) formal speci�cation
�rst (most abstract) formal speci�cation

veri�cation (test)veri�cation (test)validation (test)veri�cation (test)
of program correctnessinstallation

re�nement veri�cation
actual needs (informal) intermediate speci�cations...intermediate speci�cations...

Fig. 1.1. Formal and informal aspects in software developmentengineering and validation. In Section 4, we make more precise the notions ofre�nements and veri�cations. In Section 5, under the heading \mechanizationof formal speci�cations", we brie
y presents some of the development toolsthat formal speci�cations make possible. Finally, in Section 6, a quick tourof industrial use of formal speci�cations is presented.1.3 Requirement engineering and validationEven if it seems obvious, it is always useful to recall that a formal speci�cationmay be wrong. It may be wrong for two reasons: some misunderstanding ofthe users needs; some error in the expression of these needs. However, assaid above, the notion of a formal correctness proof is meaningless in thecase of a global speci�cation since there is no formal correctness reference.Thus, the only possibility is to use \testing-like" methods. However, the greatadvantage of using formal speci�cations is that some tools exist to analyzeand sometimes animate them. Such tools can be used to guide and supportthe validation activity.Two classes of speci�cation faults are of special interest in the case offormal speci�cations: adequacy faults, and underspeci�cations (for a morecomplete classi�cation see for instance [Par89]). Adequacy faults arise whensome of the properties expressed in the speci�cation are in contradiction with

1 The Role of Formal Speci�cations 7the informal requirements. There is some underspeci�cation when all theproperties expressed in the speci�cation are adequate, but some models ofthe speci�cation correspond to unacceptable behaviors, i.e., the speci�cationis not precise enough. A third class of speci�cation faults are overspeci�ca-tions. In these cases, the speci�cation is too prescriptive, not abstract enough,and jumps to implementation choices which eliminate other acceptable, andmaybe better, implementation possibilities.In formal speci�cations, adequacy faults and underspeci�cation may ap-pear as inconsistencies or incompletenesses.Inconsistency arises when contradictory properties are required. Thusthere exists no implementation satisfying such a speci�cation.Incompleteness may (or may not) correspond to some underspeci�cation:some properties, which are expressible in the speci�cation language, cannotbe stated as being either compatible or contradictory with the speci�cation.Either some cases have been forgotten (underspeci�cation) or it is just thatthese properties are irrelevant: it does not matter whether or not they areful�lled by the future system.Besides these fundamental faults, there are all the possible \typographic"faults: the cause of these faults is not a misunderstanding of the problem, buta mistake in writing the speci�cation. It can come from a lack of attention(using one identi�er in the place of another, etc.) or from di�culty in master-ing the speci�cation language. Clearly, as above, the resulting speci�cationwill be inadequate, inconsistent, or incomplete.First, we discuss brie
y how to prevent speci�cation faults by applyingsome methodologic principles when developing a speci�cation, then we givesome hints on how to detect and remove such faults, making use of formaltechniques.Concerning the �rst kind of speci�cation faults (those coming from amisunderstanding of the problem), an obvious methodological principle foravoiding them is to try to ensure simplicity and conciseness of the global spec-i�cation. The main concept for achieving both simplicity and conciseness isabstraction [LZ74], [Neu89]. Abstraction is a key concept of algebraic speci-�cations, the formal speci�cation technique which is presented in this book.It is also present in most formal speci�cation languages. However, this is notalways su�cient to get abstract and concise speci�cations, just as modulesin a programming language do not ensure that any programmer will writemodular programs.For expressing formally the required properties of a system, it is alwaysnecessary to formalize some aspects of the application domain or of the en-vironment. This is one of the reasons why most case studies in formal spec-i�cation result in apparently large speci�cations: it does not come from theformalization of the system itself but from the number of concepts whichare necessary to the formal expression of the system functionalities. Here, aselsewhere in software engineering, structure and reuse improve the situation.

8 Marie-Claude Gaudel and Gilles BernotBy reuse we mean reuse of theories: mathematicians do not reinvent Peano'saxioms each time they use natural numbers. In computer science, a goodexample is the speci�cation of compilers where accumulated knowledge issu�cient to guide and facilitate any new speci�cation. Another less classicalexample of reusing pieces of formal speci�cations speci�c to an applicationdomain is discussed in [GD90].As indicated above, the only possible methods for validation are \testing-like" methods, in the sense that these methods can provide some evidencethat the speci�cation is wrong; they can only increase con�dence in the claimthat it is satisfactory. However, thanks to the deduction possibilities of formaltechniques, these methods consist, most of the time, of proving or refutingconsequences of the speci�cation.More precisely, given some conjectures (which play the role of \test data")that should be consequences of the formal speci�cation, a theorem prover sup-porting the inference system of the speci�cation technique is used to try toprove them. In [GG90] this technique is called \theory containment". Sim-ilarly, some properties which must not hold can be refuted. In [Rus93], theproperties to be proved or refuted are called \challenges". This method isvery powerful for detecting adequacy faults. The main di�culty is the inven-tion of pertinent challenges which often requires a very good knowledge ofthe application domain.For some formal speci�cation languages, there is a possibility of detect-ing inconsistencies via some speci�c tool: for instance, such tools exist foralgebraic speci�cations with equational or positive conditional axioms (seeChapter 10 of this book). It is also possible to give su�cient conditions for(some adapted notion of) completeness, which are mechanizable. Su�cientcompleteness [LG86] is such a criterion for algebraic speci�cations. As indi-cated above, the fact that a speci�cation is consistent and complete does notmean that it is adequate. However, inconsistency reveals the presence of afault, and incompleteness may correspond to some underspeci�cation.1.4 Re�nementsOnce a global formal speci�cation has been stated, it has to be re�ned in orderto incrementally obtain more and more concrete speci�cations and to makethe implementation more and more precise. Each successive intermediatespeci�cation adds some implementation choices, until the last one is detailedenough to be easily translatable into a program.In algebraic speci�cations, elementary re�nement steps are called abstractimplementations. A classical example is the representation of an abstractdata type, such as set or collection, by another one, closer to a programminglanguage, such as list or array. Another example is the choice of a preciserecursive speci�cation of a sorting algorithm, for instance a quicksort, toimplement an abstract sorting operation, originally speci�ed as returning any

1 The Role of Formal Speci�cations 9ordered permutation of a list. The speci�cation of an abstract implementationconsists of the de�nition of an abstraction function from the \implementing"data type into the \implemented" one, and the speci�cation of a realizationof each implemented operation, using the implementing data type and itsoperations.The resulting (more) concrete speci�cation must be correct with respectto the original speci�cation, and this must be veri�ed.The de�nition of an adequate notion of implementation correctness isa crucial point in a formal speci�cation technique. It should coincide withcurrent practice and accept or reject the same realizations. But capturinga universal notion of implementation correctness turns out to be far fromobvious. Di�erent respectable de�nitions of implementation correctness maycoexist for the same technique, depending on the application domain or onthe operational context. A well-known example is the Lotos language [Bri89],and more generally process algebras.A key point in such a de�nition is the fact that the implementation may bevery di�erent from the original speci�cation, provided that these di�erencesare not observable. Thus notions such as observable equivalences or behavioralequivalences play an essential role in such de�nitions. It is important to notethat these notions are characterized by the kind of observations which areperformable. They depend on the developed system and its environment.Thus the observability of the future system must be speci�ed, or at leasttaken into account, in the veri�cation activities. For instance, in the caseof algebraic speci�cations, observations can be restricted to some observabledata types, or to the results of some observable operations, or even to thefact that some observable formula holds or not.To make a long story short, in almost all formal techniques the correct-ness criteria require that a re�ned speci�cation \satis�es observationally"the properties stated in the original speci�cation, the notion of observationalsatisfaction being the core of the correctness de�nition. These points are de-veloped in Chapter 7.The problem of verifying implementation correctness is made harder bythe fact that in the development process, a speci�cation evolves in two ways.First, it is developed in a \horizontal" way, in the sense that the ab-straction level is constant (and high). Most speci�cation techniques providestructuring facilities. In this case the speci�cation is developed piece by piece(or more likely as a collection of components which are written more or lessconcurrently). The result of this horizontal development is a structured spec-i�cation, made of related components. The aim of horizontal development isadequacy and completeness with respect to the user needs.The second evolution is the re�nement process mentioned above, whichis often called \vertical development" because the level of abstraction is de-creasing. The aim of vertical development is e�ciency and correctness of theimplementation.

10 Marie-Claude Gaudel and Gilles BernotThese two evolutions must be compatible, i.e., the composition of re�nedand correct pieces of speci�cations must be correct with respect to the com-position of the original pieces.Consequently, the de�nitions of \how to structure formal speci�cations"and \how to re�ne formal speci�cations" are often deeply interrelated ac-cording to the underlying speci�cation theories.1.5 Mechanization of formal speci�cationsSince there are precise rules to manipulate them, formal speci�cations consti-tute good raw material for mechanized treatments. Moreover, the soundnessof these treatments can be justi�ed with respect to their semantics. Thismakes it possible to support advanced aspects of computer aided softwaredesign, where each tool has a deep meaning which is sound with respect tosome formal semantics.There are four main kinds of activity where the mechanization of formalspeci�cations can play a useful role, namely theorem proving , prototyping ,code generation, and testing .Theorem proving seems to be the �rst natural activity when formal meth-ods are under consideration. Proving properties of a formal speci�cation canbe useful, as said in Section 3, for validation or, as developed in the previoussection, to verify re�nement steps. However, even if the underlying logic of aspeci�cation technique has a complete inference system, the truth of a for-mula with respect to a speci�cation is not decidable in general as the prooftree can be in�nite. So, theorem provers rely on strategies , and the variousexisting strategies make a signi�cant di�erence between their possibilities.The less powerful tools are proof checkers , which are already very usefulto detect human errors in reasoning. Among more powerful tools, a distinc-tion can be made between two classes of theorem provers: General theoremprovers, such as HOL [GM93] or PVS [ORS92] among many others, can beadapted to speci�c formal speci�cation techniques; Specialized ones, such asLP [GG90] for the LARCH language or MURAL [BFLM94] for VDM, arespeci�c to a formal speci�cation technique.A general remark is that the more expressive is the underlying logic, themore di�cult is the design of e�ective proof strategies. Thus interesting proofscan rarely be performed completely automatically. However, as claimed in[RvH93], the user of such a theorem prover has to struggle with its implacablelogic, and this is very fruitful for debugging the speci�cation.Theorem proving for algebraic speci�cations is developed in Chapters 9,10, and 11 of this book.Prototyping is also an activity which is facilitated by formal speci�cations.Of course, ad hoc simulation tools can be developed. But techniques based onlogic, such as rewriting techniques (see Chapter 9) or resolution algorithms,

1 The Role of Formal Speci�cations 11provide powerful bases for executing speci�cations written in some restrictedlogic.Almost all speci�cation languages have subparts which make it possibleto write executable speci�cations . This is the case for algebraic speci�cations,when the axioms are restricted to equational clauses. Then, the prototypingactivity can be seen as a sort of re�nement process whose target is to writea speci�cation within the boundaries of this sublanguage.If the speci�cation is executable, it can be tested and, since there is aformal syntax, some coverage criteria for the text of the speci�cation, similarto those existing for programs, can be de�ned.Code generation from formal speci�cations has been successfully stud-ied for a long time, the pioneering project in this domain being the CIPproject [?]. Almost all formal speci�cation environments have a code gener-ator. Code generation considerably facilitates good programming disciplinesand eliminates programming errors. In order to avoid problems of e�ciencyof the generated code, it is recommended to start from a rather detailedspeci�cation, obtained by successive re�nements of the global speci�cation,as discussed in the previous section.However, the correctness of the translation may be di�cult to state. An-other approach to code generation, which avoid this problem, is to try toobtain a program directly from an abstract speci�cation by synthesis. Thesemethods are based on the expression of an induction principle attached toeach data structure and they can be based on intuitionistic constructive log-ics. A classical approach consists in proving the realizability of a speci�cationof the form: for each symbolic input I of a speci�ed function f , there exists anacceptable output O for f(I) (where \acceptable" means \that satis�es thespeci�cation"). Then, since the way to prove the property is constructive, itis possible to extract the computation of O from the proof. This computationis a correct realization of f and the program is correct by construction.Such techniques are presented in Chapter 14.Formal speci�cations can play a useful role for the testing activities aswell [Bri89, BGM91,DF93]. Mainly two of the di�cult aspects of testing canbe aided: test data selection and decision on success or failure of a test ex-periment.The test selection activity corresponds to functional testing since thechoice of the test data is based on the speci�cation, not on the code of the pro-gram under test. In the case of algebraic speci�cations [BGM91], test casesare extracted from each axiom of the speci�cation and \interesting" sub-cases are determined by some case analysis based on an adapted resolutionalgorithm.Moreover formal speci�cations can help the decision on success or failureof the selected test cases, since the correctness of the obtained results isde�ned by the speci�cation. A formal speci�cation provides formal \oracle"predicates characterizing this correctness. If the notions of observability in

12 Marie-Claude Gaudel and Gilles Bernotthe speci�cation and the program are su�ciently close, it becomes possibleto automatically derive the oracle.These possibilities bring interesting perspectives of intensive functionaltesting of critical software-based systems (see for instance [DGM93]).Toward industrial useThe transfer of formal methods into industrial practice has been slow. Thereare several reasons for these di�culties. Some of them are: problems of train-ing of the developers, lack of good tool support, lack of well-documentedmethodologies, and poor integration of these methods into the usual soft-ware development models.However, formal methods are more and more used for critical software,clearly because the e�ort is justi�ed and sometimes mandatory. Some cer-ti�cation agencies require them, and some standards recommend their use[BH94]. An interesting list of industrial projects where such methods wereused can be found in [CGR93], with a discussion of the way these methodswere used, and the positive and negative e�ects of their use. Other examplescan be found in [GH90], [DGM93], [Siv96]. The proceedings of the FormalMethods Europe symposia also report practical experiences in the use ofthese methods (see [GW96], [FJL97], which are the last two volumes), andthe numerous workshops on industrial applications of formal methods whichare
ourishing now.

Bibliography[Abr96] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.[BBB+85] F. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Br�uckner, A. Laut, T. Matzner,B. M�oller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, H. W�ossner, andM. Wirsing. The Munich Project CIP. Volume I: The Wide SpectrumLanguage CIP-L, volume 183 of Lecture Notes in Computer Science.Springer, 1985.[BFLM94] J.C. Bicarregui, J.S. Fitzgerald, P.A. Lindsay, and R. Moore. Proofs inVDM, a practitionner's guide. Springer, 1994.[BGM91] G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based onformal speci�cations: a theory and a tool. Software Engineering Journal,6(6):387{405, 1991.[BH94] J. Bowen and M. Hinchey. Formal methods and safety critical standards.Computers, 27(8):68{71, 1994.[Boe81] B.W. Boehm. Software engineering economics. Advances in ComputingScience and Technology Series. Prentice Hall, 1981.[Bri89] E. Brinksma. A theory for the derivation of tests. In The Formal De-scription Technique LOTOS, pages 235{247. Elsevier Science Publishers,North-Holland, 1989.[CGR93] D. Craigen, S. Gerhart, and T. Ralston. On the use of formal methodsin industry { an authoritative assessment of the e�cacy, utility, andapplicability of formal methods to systems design and engineering bythe analysis of real industrial cases. Report to the us national instituteof standards and technology, 1993.[Dav93] A.M. Davis, editor. Software requirements, objects, functions and states.Prentice-Hall, 1993.[DF93] J. Dick and A. Faivre. Automating the generation and sequencing oftest cases from model-based speci�cation. In Proc. FME'93, volume 670of Lecture Notes in Computer Science, pages 268{284. Springer, 1993.[DGM93] P. Dauchy, M.-C. Gaudel, and B. Marre. Using algebraic speci�cationsin software testing: a case study on the software of an automatic subway.Journal of Systems and Software, 21(3):229{244, 1993.[FJ90] J.S. Fitzgerald and C.B. Jones. Modularizing the formal description ofa database system, volume 428 of Lecture Notes in Computer Science.Springer, 1990.[FJL97] J. Fitzgerald, C.B. Jones, and P. Lucas, editors. Proc. FME'97, In-dustrial applications and strenghtened foundations of formal methods,volume 1313 of Lecture Notes in Computer Science. Springer, 1997.[Gau92] M.-C. Gaudel. Structuring and modularizing algebraic speci�cations:the PLUSS speci�cation language, evolutions and perspectives. In9th Annual Symposium on Theoretical Aspects of Computer Science(STACS'92), volume 577 of Lecture Notes in Computer Science, pages3{18. Springer, 1992.

14 Marie-Claude Gaudel and Gilles Bernot[Gau95] M.-C. Gaudel. Advantages and limits of formal approaches for ultra-highdependability. In Randell et al., editors, Predictably Dependable Com-puting Systems, Chapter IV-A, Springer Basic Research Series, pages241{251. Springer, 1995.[GD90] D. Garlan and N. Delisle. Formal speci�cations as reusable framework,volume 428 of Lecture Notes in Computer Science. Springer, 1990.[GG90] S.J. Garland and J.V. Guttag. Using lp to debug speci�cations. InIFIP TC2 Working Conference on Programming Concepts and Methods.North-Holland, 1990.[GH90] G. Guiho and C. Hennebert. SACEM software validation. In 12th IEEE-ACM Intl. Conference on Software Engineering, pages 186{191, 1990.[GM93] M.J. Gordon and T.F. Melham. Introduction to HOL: a theorem provingenvironment for higher-order logic. Cambridge University Press, 1993.[GMSB96] M.-C. Gaudel, B. Marre, S. Schlienger, and G. Bernot. Pr�ecis de g�enielogiciel. Masson, Enseignement de l'Informatique, 1996.[GW96] M.-C. Gaudel and J. Woodcock, editors. Proc. FME'96, Industrial ben-e�ts and advances in formal methods, volume 1051 of Lecture Notes inComputer Science. Springer, 1996.[Hen88] M. Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.[Hum90] W.S. Humphrey. Managing the software process. SEI series in SoftwareEngineering. Addison-Wesley, 1990.[Jon90] C.B. Jones. Systematic Software Development Using VDM. PrenticeHall, 1990.[LG86] B. Liskov and J.V. Guttag. Abstraction and Speci�cation in ProgramDevelopment. MIT Press, McGraw Hill, 1986.[LZ74] B. Liskov and S. Zilles. Programming with abstract data types. SIG-PLAN Notices, 9(4):50{60, 1974.[McD91] J. McDermid. Formal methods: Use and relevance for the developmentof safety critical systems. In Safety Aspects of Computer Control. But-terworth/Heineman, 1991.[Neu89] P.G. Neumann. Flaws in speci�cations and what to do about them. InIEEE Intl. Workshop on Software Speci�cation and Design, 1989.[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS, a prototype veri�cationsystem. In D. Kapur, editor, Proc. 11th Intl. Conference on AutomatedDeduction, volume 607 of Lecture Notes in Computer Science, pages748{752. Springer, 1992.[Par89] H. Partsch. From informal requirements to a running program: a casestudy in algebraic speci�cation and transformational programming. Sci-ence of Computer Programming, 11(3):263{297, 1989.[Rei85] W. Reisig. Petri Nets: an Introduction, volume 4 of EATCS Monographson Theoretical Computer Science. Springer, 1985.[Rus93] J. Rushby. Formal methods and the certi�cation of critical system.Report SRI-CSL-93-07, SRI International, 1993. Available at http://www.csl.sri.com.[RvH93] J. Rushby and F. von Henke. Formal veri�cation of algorithms for criticalsystems. IEEE Transactions on Software Engineering, SE 19(1):13{23,1993.[SG96] M. Shaw and D. Garlan. Software Architecture. Perspectives on anemerging discipline. Prentice Hall, 1996.

1 The Role of Formal Speci�cations 15[Siv96] T. Sivertsen. A case study on the formal development of a reactor safetysystem. In M.-C. Gaudel and J. Woodcock, editors, Proc. FME'96, In-dustrial bene�ts and advances in formal methods, volume 1051 of LectureNotes in Computer Science, pages 18{38. Springer, 1996.[Spi92] J.M. Spivey. The Z notation, a reference manual. Prentice Hall, 1992.

