1 The Role of Formal Specifications

Marie-Claude Gaudel' and Gilles Bernot?

! Université de Paris-Sud, LRI, CNRS UMR 8623, Batiment 490,
F-91405 Orsay Cedex, France
2 Université d’Evry, LaMI, CNRS EP738, F-91025 Evry Cedex, France

Abstract. This introductory chapter aims at stating the context and the motiva-
tions of the rest of the book. The first section is a brief general reminder of the role
of specifications in the software development process. Important concepts such as
abstraction, refinement, validation, and verification are introduced informally. The
second section gives a characterization of formal specifications, sketches a classi-
fication, and discusses the possibilities that they bring for software development.
Section 3 is devoted to the use of formal specifications for requirement engineer-
ing and validation. Section 4 addresses the notions of refinement and verification.
Section 5 discusses what kind of tools can be developed on the basis of formal
specifications.

1.1 The role of specifications in software development

Software (and hardware) systems have to be developed following rigorous
guidelines to have a chance of being dependable, finished on time, and easy
to maintain. The aim of software engineering is to define criteria to evaluate
software-intensive systems, as well as methods and techniques to develop
them and satisfy these criteria. The search for these criteria, methods, and
techniques requires a study of the characteristics of such systems and their
development process.

The software development process can be seen as the construction of
a sequence of more and more detailed descriptions of the software under
development, leading to a final set of documents which contains an executable
program and its documentation. This view is clearly oversimplified since it
ignores the essential role of backtracking and iterations in such a process
[Hum90, GMSB96], but it is sufficient for the purpose of this introductory
chapter.

At every stage of the development process but the last one, the core of
the description document is a specification of the future software, namely a
definition of what it must do, without a complete description of how it will
do it.

Because it plays a special role, it is interesting to distinguish the earliest
specification document: we will call it the global specification, while the other
ones are called intermediate or detailed specifications.

Clearly, the concept of specification is a cornerstone of software devel-
opment: the global specification is the basis of the agreement between the



2 Marie-Claude Gaudel and Gilles Bernot

developers and the users (some authors see it as a “contract”); global and
intermediate specifications are essential for communication of precise infor-
mation between the developers.

At each stage of the development, the current description of the future
system must be checked against inconsistencies and omissions.

Moreover, it must be validated if it is the first one, or verified with respect
to the previous one. Namely, it is necessary:

e to validate the global specification with respect to the requirements, the
needs of the clients;

e to verify every intermediate specification with respect to the previous
specification;

e to verify every piece of program with respect to its detailed specification;

e to verify the integrated final system with respect to its global specifica-
tion.

Validation aims at establishing that the future system will fit for its opera-
tional mission. Verifications aim at establishing that it will satisfy the global
specification. Validation, verification, consistency, and completeness checks
are crucial activities since it has been recognized for a long time [Boe81] that
the later a fault is discovered in the development process, the more expensive
it is to correct.

The ability to use the specifications effectively for verification and val-
idation is a major issue. For example, depending of the kind of developed
system, a specification technique should provide some support for prototyp-
ing, correctness proofs, elaboration of test data, and failure detection when
running these tests.

As said above, the role of the global specification is to establish as clearly
as possible what has to be done. This must be understood and stated before
deciding how to realize it. In practice, it is often difficult to write “unbiased”
specifications at each level, i.e., specifications that stay within the boundaries
of the “what,” without premature choices which mention unnecessary “how”
aspects. However this effort of abstraction is profitable:

e A priori: before the software under consideration is finished, an abstract
specification is a powerful reference document for discussions and elab-
oration of the design; besides, abstraction prevents local design choices
which could result in a poor global design;

e A posteriori: a sequence of specifications, progressing from abstract to
concrete, provides a trace of the design activity and makes easier the
reuse, evolution, and maintenance of the software.

The transition from a specification to a more detailed one is often called
a refinement. Most specification techniques provide some support for such
refinements and the corresponding verifications. Verification may cause some



1 The Role of Formal Specifications 3

iterations on the refinement until its result, namely the more detailed speci-
fication, is satisfactory with respect to the original specification.

Specifications are more abstract than the corresponding programs, but
in many cases they are big enough to require some way for mastering size
and complexity when writing them. As for programming languages, this is
mainly provided by decomposition and modularity principles (see Chapters 6
and 8 of this book), or, more recently, by object-orientation (see Chapter 12).
However, it is worth to note that the structure of a specification is mainly
dictated by understanding the role of the future system. It is not the case
of the structure of the implementation, which may be very different due to
considerations such as efficiency, security, or reuse [FJ90, Gau92]. Thus, elab-
oration of the software architecture [SG96] may lead to a structure different
from the organization of the specifications.

Like the choice of a programming language, the choice of a specification
technique depends on the kind of system to be specified. For certain projects,
it can even depend on the components to be specified: for example, certain
components may require to specify real time aspects, while some other parts
may require a careful specification of complex data structures without time
constraints. A specification technique which would deal with all the possible
aspects of all the possible systems would have a good chance to be too com-
plex to be usable. This justifies the existence of a variety of languages and
methods, each of them emphasizing particular aspects of some application
domain and some class of target programs. As a consequence, in some cases
it may be useful to write several specifications using different specification
techniques for some component, in order to enlighten different aspects.

In the current state of practice, specifications are often written using
diagrams or tables, enriched by comments in natural language [Dav93]. These
diagrams and comments are the major media for dialog between the actors
of the development. However, they often admit several interpretations. This
plurality of interpretations results from ambiguities in the used notations.
Such ambiguities of informal specifications do not necessarily prevent from
producing software of good quality. However, they may raise some problems,
especially when checking, validating, or verifying.

This book presents a class of formal specification techniques. Formal spec-
ification techniques make it possible to remove any ambiguities in the expres-
sion of the specifications of a program, in order to provide a sound basis for
checking, validating, and verifying.

1.2 Formal specifications

A specification written in a formal specification language defines rigorously
all the acceptable behaviors of the specified system. Besides, it is possible to
perform some reasoning on the specification and its refinements.



4 Marie-Claude Gaudel and Gilles Bernot

A formal specification technique must provide at least three well defined
facets: a syntax, some semantics and an inference system.

e The syntax exhaustively defines what a specifier is allowed to write to
obtain a specification, as it is the case for programming languages. Thus
the text of a formal specification has a structure which makes possible
powerful computer aided treatments. In particular, a specification con-
tains properties which are written as well formed formulas of some logic
(these properties are often called axioms or sentences in this book).

e The semantics describes the models associated to a given specification. A
model is a mathematical object which defines the behaviors of the accept-
able realizations of the specification. “Acceptable” implies in particular
that each model satisfies the properties of the specification. The role of
the semantics is precisely to avoid ambiguities.

e The inference system serves to define the deductions that can be made
from a formal specification. These deductions allow some formulas to be
derived, which are consequences of the properties listed in the specifica-
tion. Such derivations are mechanically checkable as developed in Section
4. So, the inference system can help to partly automate theorem proving,
functional testing, prototyping, verification of refinements, etc.

This classical view of formal specifications leads to distinguish (at least)
two classes of formal specification techniques. They are called respectively
“model oriented” and “property oriented” (or “constructive” and “declara-
tive”).

In the model oriented approaches (such as VDM, Z, or B) the specifier
builds a unique model, from a choice of built-in data structures and construc-
tion primitives that the specification language offers [Jon90], [Spi92], [Abr96].
Then, a program is correct with respect to the specification if the functions
it provides have the same behaviors than in the specified model.

In the property oriented approaches, the specifier declares first a list of
“function names” and by default there is an infinity of models that provide,
in all the possible ways, a function for each name. Next, the specifier states
several properties (i.e., formulas, which are often called “axioms” as they
have not to be proved: they are required). Among all the previously mentioned
models only a few of them satisfy the required properties; all the other models
“do not satisfy the specification” and are discarded. Then, a program is
correct with respect to a specification if it provides all the declared function
names and defines a model that satisfies the specification. It is this class of
specification techniques, also called algebraic specifications, which is studied
in this book.

Among other classes of formal specification techniques, there are opera-
tional specifications. Starting from a set of elementary actions, these tech-
niques describe the computations, i.e., the sequences of actions, that the
system can perform. Some representatives of these techniques are Petri nets



1 The Role of Formal Specifications 5

[Rei85] and process algebras [Hen88]. Extensions of algebraic specifications
on this direction are presented in the Chapter 13 of this book.

Formal specifications define unambiguously the correctness of a program
with respect to its specification. They are indeed the only way to have a rig-
orous definition of correctness. Consequently, formal specifications must be
used if correctness proofs are foreseen for some verifications. From a logical
point of view, the notion of correctness of a program, without a formal spec-
ification, is a nonsense. Nevertheless, making use of formal specifications is
a demanding process and should be suitably targeted. There are many cases
where formal specifications would be a mere luxury.

In most projects where formal specification were used, informal specifi-
cations and formal ones were mixed. Some components and steps were for-
malized, some others not. The decision to use formal specifications mainly
depends on the criticality of the component, in term of consequences of a
fault (human lives, cost) and of the complexity of its requirements or of its
development.

There are also some aspects of the development process which are beyond
the scope of formal development methods and correctness proofs [Gau95].
The figure below shows the boundary of what can be formal in software de-
velopment. The right hand side shows a purely formal process which goes
from a high level abstract formal specification to the program. The left hand
side of the figure mentions informal entities such as needs, opinions, or physi-
cal systems which belong to the real world. The formalization of such entities
always induces some schematization [McD91], and is a delicate activity where
some misunderstanding or error may occur.

The figure is slightly simplified since some validation against the actual
needs may take place after each refinement, as developed in [Gau95], and
some kinds of verification may skip some intermediate specifications.

Formal methods make it possible to perform a stepwise refinement process
(from the global specification to the most concrete one) in a provably correct
way. But the validation of the global specification with respect to the needs
of the clients is a special case, because these needs are not formally specified
(otherwise this specification itself would be the global specification and would
have to be validated ... ).

For the crucial parts of a software project, formal specifications oblige the
specifier to treat a lot of particular cases that would have been forgotten or
ambiguously specified otherwise. They also facilitate a “mutual validation”
between two texts written according to formal syntactical rules (specification
against program texts, or against lower level specifications).

In the remainder of this introductory chapter we develop some of the
main contributions of formal specifications in general, and of algebraic spec-
ifications in particular, to sofware development activities. In Section 3, we
discuss the new possibilities that formal specifications bring to requirement



6 Marie-Claude Gaudel and Gilles Bernot

specification
—_— . .
first (most abstract) formal specification

|

intermediate specifications..

actual needs (informal)

"?
validation

reﬁnementl Tveriﬁcation

intermediate specifications..

al

last (most concrete) formal specification|

vorification (test)
ffication (test) coding verification

of program correctness

-~
installation program texts

Fig. 1.1. Formal and informal aspects in software development

verificAtion (test)

validgtion (test)

final system

engineering and validation. In Section 4, we make more precise the notions of
refinements and verifications. In Section 5, under the heading “mechanization
of formal specifications”, we briefly presents some of the development tools
that formal specifications make possible. Finally, in Section 6, a quick tour
of industrial use of formal specifications is presented.

1.3 Requirement engineering and validation

Even if it seems obvious, it is always useful to recall that a formal specification
may be wrong. It may be wrong for two reasons: some misunderstanding of
the users needs; some error in the expression of these needs. However, as
said above, the notion of a formal correctness proof is meaningless in the
case of a global specification since there is no formal correctness reference.
Thus, the only possibility is to use “testing-like” methods. However, the great
advantage of using formal specifications is that some tools exist to analyze
and sometimes animate them. Such tools can be used to guide and support
the validation activity.

Two classes of specification faults are of special interest in the case of
formal specifications: adequacy faults, and underspecifications (for a more
complete classification see for instance [Par89]). Adequacy faults arise when
some of the properties expressed in the specification are in contradiction with



1 The Role of Formal Specifications 7

the informal requirements. There is some underspecification when all the
properties expressed in the specification are adequate, but some models of
the specification correspond to unacceptable behaviors, i.e., the specification
is not precise enough. A third class of specification faults are overspecifica-
tions. In these cases, the specification is too prescriptive, not abstract enough,
and jumps to implementation choices which eliminate other acceptable, and
maybe better, implementation possibilities.

In formal specifications, adequacy faults and underspecification may ap-
pear as inconsistencies or incompletenesses.

Inconsistency arises when contradictory properties are required. Thus
there exists no implementation satisfying such a specification.

Incompleteness may (or may not) correspond to some underspecification:
some properties, which are expressible in the specification language, cannot
be stated as being either compatible or contradictory with the specification.
Either some cases have been forgotten (underspecification) or it is just that
these properties are irrelevant: it does not matter whether or not they are
fulfilled by the future system.

Besides these fundamental faults, there are all the possible “typographic”
faults: the cause of these faults is not a misunderstanding of the problem, but
a mistake in writing the specification. It can come from a lack of attention
(using one identifier in the place of another, etc.) or from difficulty in master-
ing the specification language. Clearly, as above, the resulting specification
will be inadequate, inconsistent, or incomplete.

First, we discuss briefly how to prevent specification faults by applying
some methodologic principles when developing a specification, then we give
some hints on how to detect and remove such faults, making use of formal
techniques.

Concerning the first kind of specification faults (those coming from a
misunderstanding of the problem), an obvious methodological principle for
avoiding them is to try to ensure simplicity and conciseness of the global spec-
ification. The main concept for achieving both simplicity and conciseness is
abstraction [LZ74], [Neu89]. Abstraction is a key concept of algebraic speci-
fications, the formal specification technique which is presented in this book.
It is also present in most formal specification languages. However, this is not
always sufficient to get abstract and concise specifications, just as modules
in a programming language do not ensure that any programmer will write
modular programs.

For expressing formally the required properties of a system, it is always
necessary to formalize some aspects of the application domain or of the en-
vironment. This is one of the reasons why most case studies in formal spec-
ification result in apparently large specifications: it does not come from the
formalization of the system itself but from the number of concepts which
are necessary to the formal expression of the system functionalities. Here, as
elsewhere in software engineering, structure and reuse improve the situation.



8 Marie-Claude Gaudel and Gilles Bernot

By reuse we mean reuse of theories: mathematicians do not reinvent Peano’s
axioms each time they use natural numbers. In computer science, a good
example is the specification of compilers where accumulated knowledge is
sufficient to guide and facilitate any new specification. Another less classical
example of reusing pieces of formal specifications specific to an application
domain is discussed in [GD90).

As indicated above, the only possible methods for validation are “testing-
like” methods, in the sense that these methods can provide some evidence
that the specification is wrong; they can only increase confidence in the claim
that it is satisfactory. However, thanks to the deduction possibilities of formal
techniques, these methods consist, most of the time, of proving or refuting
consequences of the specification.

More precisely, given some conjectures (which play the role of “test data”)
that should be consequences of the formal specification, a theorem prover sup-
porting the inference system of the specification technique is used to try to
prove them. In [GG90] this technique is called “theory containment”. Sim-
ilarly, some properties which must not hold can be refuted. In [Rus93], the
properties to be proved or refuted are called “challenges”. This method is
very powerful for detecting adequacy faults. The main difficulty is the inven-
tion of pertinent challenges which often requires a very good knowledge of
the application domain.

For some formal specification languages, there is a possibility of detect-
ing inconsistencies via some specific tool: for instance, such tools exist for
algebraic specifications with equational or positive conditional axioms (see
Chapter 10 of this book). It is also possible to give sufficient conditions for
(some adapted notion of) completeness, which are mechanizable. Sufficient
completeness [LG86] is such a criterion for algebraic specifications. As indi-
cated above, the fact that a specification is consistent and complete does not
mean that it is adequate. However, inconsistency reveals the presence of a
fault, and incompleteness may correspond to some underspecification.

1.4 Refinements

Once a global formal specification has been stated, it has to be refined in order
to incrementally obtain more and more concrete specifications and to make
the implementation more and more precise. Each successive intermediate
specification adds some implementation choices, until the last one is detailed
enough to be easily translatable into a program.

In algebraic specifications, elementary refinement steps are called abstract
implementations. A classical example is the representation of an abstract
data type, such as set or collection, by another one, closer to a programming
language, such as list or array. Another example is the choice of a precise
recursive specification of a sorting algorithm, for instance a quicksort, to
implement an abstract sorting operation, originally specified as returning any



1 The Role of Formal Specifications 9

ordered permutation of a list. The specification of an abstract implementation
consists of the definition of an abstraction function from the “implementing”
data type into the “implemented” one, and the specification of a realization
of each implemented operation, using the implementing data type and its
operations.

The resulting (more) concrete specification must be correct with respect
to the original specification, and this must be verified.

The definition of an adequate notion of implementation correctness is
a crucial point in a formal specification technique. It should coincide with
current practice and accept or reject the same realizations. But capturing
a universal notion of implementation correctness turns out to be far from
obvious. Different respectable definitions of implementation correctness may
coexist for the same technique, depending on the application domain or on
the operational context. A well-known example is the Lotos language [Bri89],
and more generally process algebras.

A key point in such a definition is the fact that the implementation may be
very different from the original specification, provided that these differences
are not observable. Thus notions such as observable equivalences or behavioral
equivalences play an essential role in such definitions. It is important to note
that these notions are characterized by the kind of observations which are
performable. They depend on the developed system and its environment.
Thus the observability of the future system must be specified, or at least
taken into account, in the verification activities. For instance, in the case
of algebraic specifications, observations can be restricted to some observable
data types, or to the results of some observable operations, or even to the
fact that some observable formula holds or not.

To make a long story short, in almost all formal techniques the correct-
ness criteria require that a refined specification “satisfies observationally”
the properties stated in the original specification, the notion of observational
satisfaction being the core of the correctness definition. These points are de-
veloped in Chapter 7.

The problem of verifying implementation correctness is made harder by
the fact that in the development process, a specification evolves in two ways.

First, it is developed in a “horizontal” way, in the sense that the ab-
straction level is constant (and high). Most specification techniques provide
structuring facilities. In this case the specification is developed piece by piece
(or more likely as a collection of components which are written more or less
concurrently). The result of this horizontal development is a structured spec-
ification, made of related components. The aim of horizontal development is
adequacy and completeness with respect to the user needs.

The second evolution is the refinement process mentioned above, which
is often called “vertical development” because the level of abstraction is de-
creasing. The aim of vertical development is efficiency and correctness of the
implementation.



10 Marie-Claude Gaudel and Gilles Bernot

These two evolutions must be compatible, i.e., the composition of refined
and correct pieces of specifications must be correct with respect to the com-
position of the original pieces.

Consequently, the definitions of “how to structure formal specifications”
and “how to refine formal specifications” are often deeply interrelated ac-
cording to the underlying specification theories.

1.5 Mechanization of formal specifications

Since there are precise rules to manipulate them, formal specifications consti-
tute good raw material for mechanized treatments. Moreover, the soundness
of these treatments can be justified with respect to their semantics. This
makes it possible to support advanced aspects of computer aided software
design, where each tool has a deep meaning which is sound with respect to
some formal semantics.

There are four main kinds of activity where the mechanization of formal
specifications can play a useful role, namely theorem proving, prototyping,
code generation, and testing.

Theorem proving seems to be the first natural activity when formal meth-
ods are under consideration. Proving properties of a formal specification can
be useful, as said in Section 3, for validation or, as developed in the previous
section, to verify refinement steps. However, even if the underlying logic of a
specification technique has a complete inference system, the truth of a for-
mula with respect to a specification is not decidable in general as the proof
tree can be infinite. So, theorem provers rely on strategies, and the various
existing strategies make a significant difference between their possibilities.

The less powerful tools are proof checkers, which are already very useful
to detect human errors in reasoning. Among more powerful tools, a distinc-
tion can be made between two classes of theorem provers: General theorem
provers, such as HOL [GM93] or PVS [ORS92] among many others, can be
adapted to specific formal specification techniques; Specialized ones, such as
LP [GGY0] for the LARCH language or MURAL [BFLM94] for VDM, are
specific to a formal specification technique.

A general remark is that the more expressive is the underlying logic, the
more difficult is the design of effective proof strategies. Thus interesting proofs
can rarely be performed completely automatically. However, as claimed in
[RvH93], the user of such a theorem prover has to struggle with its implacable
logic, and this is very fruitful for debugging the specification.

Theorem proving for algebraic specifications is developed in Chapters 9,
10, and 11 of this book.

Prototyping is also an activity which is facilitated by formal specifications.
Of course, ad hoc simulation tools can be developed. But techniques based on
logic, such as rewriting techniques (see Chapter 9) or resolution algorithms,



1 The Role of Formal Specifications 11

provide powerful bases for executing specifications written in some restricted
logic.

Almost all specification languages have subparts which make it possible
to write ezecutable specifications. This is the case for algebraic specifications,
when the axioms are restricted to equational clauses. Then, the prototyping
activity can be seen as a sort of refinement process whose target is to write
a specification within the boundaries of this sublanguage.

If the specification is executable, it can be tested and, since there is a
formal syntax, some coverage criteria for the text of the specification, similar
to those existing for programs, can be defined.

Code generation from formal specifications has been successfully stud-
ied for a long time, the pioneering project in this domain being the CIP
project [?]. Almost all formal specification environments have a code gener-
ator. Code generation considerably facilitates good programming disciplines
and eliminates programming errors. In order to avoid problems of efficiency
of the generated code, it is recommended to start from a rather detailed
specification, obtained by successive refinements of the global specification,
as discussed in the previous section.

However, the correctness of the translation may be difficult to state. An-
other approach to code generation, which avoid this problem, is to try to
obtain a program directly from an abstract specification by synthesis. These
methods are based on the expression of an induction principle attached to
each data structure and they can be based on intuitionistic constructive log-
ics. A classical approach consists in proving the realizability of a specification
of the form: for each symbolic input I of a specified function f, there exists an
acceptable output O for f(I) (where “acceptable” means “that satisfies the
specification”). Then, since the way to prove the property is constructive, it
is possible to extract the computation of O from the proof. This computation
is a correct realization of f and the program is correct by construction.

Such techniques are presented in Chapter 14.

Formal specifications can play a useful role for the testing activities as
well [Bri89, BGM91, DF93]. Mainly two of the difficult aspects of testing can
be aided: test data selection and decision on success or failure of a test ex-
periment.

The test selection activity corresponds to functional testing since the
choice of the test data is based on the specification, not on the code of the pro-
gram under test. In the case of algebraic specifications [BGM91], test cases
are extracted from each axiom of the specification and “interesting” sub-
cases are determined by some case analysis based on an adapted resolution
algorithm.

Moreover formal specifications can help the decision on success or failure
of the selected test cases, since the correctness of the obtained results is
defined by the specification. A formal specification provides formal “oracle”
predicates characterizing this correctness. If the notions of observability in



12 Marie-Claude Gaudel and Gilles Bernot

the specification and the program are sufficiently close, it becomes possible
to automatically derive the oracle.

These possibilities bring interesting perspectives of intensive functional
testing of critical software-based systems (see for instance [DGM93]).

Toward industrial use

The transfer of formal methods into industrial practice has been slow. There
are several reasons for these difficulties. Some of them are: problems of train-
ing of the developers, lack of good tool support, lack of well-documented
methodologies, and poor integration of these methods into the usual soft-
ware development models.

However, formal methods are more and more used for critical software,
clearly because the effort is justified and sometimes mandatory. Some cer-
tification agencies require them, and some standards recommend their use
[BH94]. An interesting list of industrial projects where such methods were
used can be found in [CGR93], with a discussion of the way these methods
were used, and the positive and negative effects of their use. Other examples
can be found in [GH90], [DGM93], [Siv96]. The proceedings of the Formal
Methods Europe symposia also report practical experiences in the use of
these methods (see [GW96], [FJLI7], which are the last two volumes), and
the numerous workshops on industrial applications of formal methods which
are flourishing now.



Bibliography

[Abr96]
[BBB*85]

[BFLMO94]

[BGMO1]

[BHO4]
[Boe81]

[Brig9]

[CGRO3]

[Dav93]

[DF93]

[DGM93]

[FJ90]

[FIL97]

[Gau92]

J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

F. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,
R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Briickner, A. Laut, T. Matzner,
B. Méller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, H. Wéssner, and
M. Wirsing. The Munich Project CIP. Volume I: The Wide Spectrum
Language CIP-L, volume 183 of Lecture Notes in Computer Science.
Springer, 1985.

J.C. Bicarregui, J.S. Fitzgerald, P.A. Lindsay, and R. Moore. Proofs in
VDM, a practitionner’s guide. Springer, 1994.

G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based on
formal specifications: a theory and a tool. Software Engineering Journal,
6(6):387-405, 1991.

J. Bowen and M. Hinchey. Formal methods and safety critical standards.
Computers, 27(8):68-71, 1994.

B.W. Boehm. Software engineering economics. Advances in Computing
Science and Technology Series. Prentice Hall, 1981.

E. Brinksma. A theory for the derivation of tests. In The Formal De-
seription Technigue LOTOS, pages 235—247. Elsevier Science Publishers,
North-Holland, 1989.

D. Craigen, S. Gerhart, and T. Ralston. On the use of formal methods
in industry — an authoritative assessment of the efficacy, utility, and
applicability of formal methods to systems design and engineering by
the analysis of real industrial cases. Report to the us national institute
of standards and technology, 1993.

A.M. Davis, editor. Software requirements, objects, functions and states.
Prentice-Hall, 1993.

J. Dick and A. Faivre. Automating the generation and sequencing of
test cases from model-based specification. In Proc. FME’98, volume 670
of Lecture Notes in Computer Science, pages 268-284. Springer, 1993.
P. Dauchy, M.-C. Gaudel, and B. Marre. Using algebraic specifications
in software testing: a case study on the software of an automatic subway.
Journal of Systems and Software, 21(3):229-244, 1993.

J.S. Fitzgerald and C.B. Jones. Modularizing the formal description of
a database system, volume 428 of Lecture Notes in Computer Science.
Springer, 1990.

J. Fitzgerald, C.B. Jones, and P. Lucas, editors. Proc. FME’97, In-
dustrial applications and strenghtened foundations of formal methods,
volume 1313 of Lecture Notes in Computer Science. Springer, 1997.
M.-C. Gaudel. Structuring and modularizing algebraic specifications:
the PLUSS specification language, evolutions and perspectives. In
9th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’92), volume 577 of Lecture Notes in Computer Science, pages
3-18. Springer, 1992.



14

[Gau95]

[GDYO]

[GG90]

[GHO0]

[GM93]

Marie-Claude Gaudel and Gilles Bernot

M.-C. Gaudel. Advantages and limits of formal approaches for ultra-high
dependability. In Randell et al., editors, Predictably Dependable Com-
puting Systems, Chapter IV-A, Springer Basic Research Series, pages
241-251. Springer, 1995.

D. Garlan and N. Delisle. Formal specifications as reusable framework,
volume 428 of Lecture Notes in Computer Science. Springer, 1990.

S.J. Garland and J.V. Guttag. Using lp to debug specifications. In
IFIP TC2 Working Conference on Programming Concepts and Methods.
North-Holland, 1990.

G. Guiho and C. Hennebert. SACEM software validation. In 12th IEEE-
ACM Intl. Conference on Software Engineering, pages 186-191, 1990.
M.J. Gordon and T.F. Melham. Introduction to HOL: a theorem proving
environment for higher-order logic. Cambridge University Press, 1993.

[GMSB96] M.-C. Gaudel, B. Marre, S. Schlienger, and G. Bernot. Précis de génie

[GW96]

[Hen88]
[Hum90]
[Jon90]
[LGS6]

[LZ74]

[McD91]

[Neu89]

[ORS92]

[Par89]

[Rei85]

[Rus93]

[RvH93]

[SG96]

logiciel. Masson, Enseignement de I’Informatique, 1996.

M.-C. Gaudel and J. Woodcock, editors. Proc. FME’96, Industrial ben-
efits and advances in formal methods, volume 1051 of Lecture Notes in
Computer Science. Springer, 1996.

M. Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.
W.S. Humphrey. Managing the software process. SEI series in Software
Engineering. Addison-Wesley, 1990.

C.B. Jones. Systematic Software Development Using VDM. Prentice
Hall, 1990.

B. Liskov and J.V. Guttag. Abstraction and Specification in Program
Development. MIT Press, McGraw Hill, 1986.

B. Liskov and S. Zilles. Programming with abstract data types. SIG-
PLAN Notices, 9(4):50-60, 1974.

J. McDermid. Formal methods: Use and relevance for the development
of safety critical systems. In Safety Aspects of Computer Control. But-
terworth/Heineman, 1991.

P.G. Neumann. Flaws in specifications and what to do about them. In
IEEE Intl. Workshop on Software Specification and Design, 1989.

S. Owre, J. Rushby, and N. Shankar. PVS, a prototype verification
system. In D. Kapur, editor, Proc. 11th Intl. Conference on Automated
Deduction, volume 607 of Lecture Notes in Computer Science, pages
748-752. Springer, 1992.

H. Partsch. From informal requirements to a running program: a case
study in algebraic specification and transformational programming. Sci-
ence of Computer Programming, 11(3):263-297, 1989.

W. Reisig. Petri Nets: an Introduction, volume 4 of EATCS Monographs
on Theoretical Computer Science. Springer, 1985.

J. Rushby. Formal methods and the certification of critical system.
Report SRI-CSL-93-07, SRI International, 1993. Available at http://
www.csl.sri.com.

J. Rushby and F. von Henke. Formal verification of algorithms for critical
systems. IEEE Transactions on Software Engineering, SE 19(1):13-23,
1993.

M. Shaw and D. Garlan. Software Architecture. Perspectives on an
emerging discipline. Prentice Hall, 1996.



[Siv6]

[Spi92]

1 The Role of Formal Specifications 15

T. Sivertsen. A case study on the formal development of a reactor safety
system. In M.-C. Gaudel and J. Woodcock, editors, Proc. FME’96, In-
dustrial benefits and advances in formal methods, volume 1051 of Lecture
Notes in Computer Science, pages 18-38. Springer, 1996.

J.M. Spivey. The Z notation, a reference manual. Prentice Hall, 1992.



