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The development of neural networks had initially as objedive the modeling information
processng and leaning in the brain, in order to understand how a population of interconneded
biologicd neurons performs a ceebral function. Now, neura networks are used in severa pradicd
applicaions, in various fields including computational moleaular biology [23, 24], and the atificial

neurons are quite remote from biologicd neurons.

1. Biological neural networks

A neuron [22] is a nervous cdl having a ostoplasm body and several cytoplasm extensions
(axons and dendrites) that allow it to dispatch (axons) and to receve (dendrites) signals. The
exchanged information by two neurons is accomplished by means of eledricd signals, which are
the result of potassum-sodium ion exchanges. The dedricd signal exchanges are made & the level
of the synapses, which link the axons of neurons to the dendrites of other neurons. A neuron may
have 1 000to 10 000synapses and can recave information from 1 000 other neurons. Besides,
although the synapses are often constituted between axons of cdls and dendrites of other cdls,

there ae other types of synaptic junctions : between axon and axon, between dendrite and dendrite,

between axon and cdlular body. The human brain may contain until 10" neurons.

The complexity of biologicd neural networks (BNNS) is very variable. There ae some BNNs
like the ganglions that are anstituted of hegps of neurons, as there exist sophisticaed BNNs like
the cmplex BNNSs of the neocortex. These ones are ale to modify their functioning and even their

structures as well as they are cgable of computing, memorizing and leaning. Memorizing and



learning of the BNNs are made by means of some modificaions at the synaptic level. The synapses
may modulate their adivity, as exciting or inhibiting a neuron, and in this way to let possble the
writing of an information in a memory area In 1949 Hebb [2] made the hypothesis that the abilities
of BNNSs are the result of the self-organization of their connedions : The dficiency of a synapse
increases when the neurons that it conneds are & the same time dther al adive or al inadive;

otherwise the dficiency lessens.

2. Artificial neural networks

2.1. Neural network models
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x il Figure 1. A neuron model

An artificial neural network (ANN) can be described as a set of interconneded wnits evolving in
time and operating in parallel; the units represent axons and dendrites and ead connedion (j,i) from

unit j to unit i has aweight (4, that modulates the influence of unit j on uniti. Thus, an ANN isa
weight-direded graph in which to ead nodei are assciated abias or threshold s and a transfer

functionf,, so that unit i will produce an output y, of theform: vy, =f, ( zj K% —S ), wherex isthe
jthinput of this unit and zj 1% isthe sum of all its weighted inputs. I this sum is greaer than the

threshold s, unit i isadivated for producing the output y;; otherwise unit i isin an inadive state
(Figure 1). The parameters i; and 5 can be ajusted so that the neural network produces sme

desired behavior. Namely, the neural network can be trained to achieve some particular job by
adjusting the weight and bias parameters.

The transfer functions widely used are nonlinea, smoath, increasing and bounded such as
sigmoid functions (so cdled from their “S” shape). However, sometimes the transfer function is

linea like the identity function. When f,(x) = 1 if x> 0 and f,(x) = O otherwise, unit i is cdled a

threshold gae. As threshold functions are discontinuous, they are often replaced by sigmoidal



transfer functions that are mntinuous and dfferentiable, such as f(x) = arctan(x) and f(x) = tanh(x),
or by other transfer functions suchas f(x) =1/ (1 + €.

One drawbadk of this neuron model appeaed when it was used to describe what eledro-
chemicd triggering phenomena takes place & the adive cdl membranes of biologicd neurons. It
was noticed that the description of signal transformations in complicated neural networks needs an
analysis computationally too heary. Wherea T. Kohonen [13] suggested the following simple

nonlinea dynamic model for a neuron (Figure 2) :

dy/dt=1L-ny), y.=20 (D

Figure 2. A nonlinear dynamic

X neuron model

InFigure 2, the x and 'y, are nonnegative scdar variables, the input adivation I; is ome function
of the X and of some internal parameters. The function Yy, is the leskage term, a nonlinea

function of output adivity. In order to guarantee good stability in feedbadk networks y must be
convex (i.e., its oond derivative with resped to y, must be positive). The leekage term ;) takes

in acount al different losses and dead-time dfeds in the neuron, as a progressve function of

adivity.

2.2. Network architedures

Usually, three important architedures are mnsidered for the ANNs : layered architedure,
feadforward architedure and reaurrent or feedback architedure. A reaurrent architedure contains
direded cycles; therefore, the signal paths can return to a same node. The feedbadk ANNSs are
difficult to implement. A feedforward architedure is devoid of direded cycles, thus the signal paths
never return to a same node. A layered architedure is an architecure where the units are partitioned
into classes, cdled layes, and where the cnnedivity patterns are defined between the dasses.

Besides, the unit set is partitioned into visible units (those in contad with the external world
such as inpu and output units) and hidden units. Often, the input units are grouped in aninpu layer
and the output unitsin an output layer. A hidden layer is congtituted of hidden units.



2.3. Three main categories of ANNs

It is customary to distinguish three caegories of ANNSs : adapive signd transfer networks,
state transfer networks, and competiti ve-learning or self-organzing networks.

The signd transfer networks have their output signals depending uniquely on input signals.
These ae often layered feedforward networks such as the multil ayer Perceptron [3], the Maddine
[4], the feadforward network in which leaning is defined by means of an error propagdion
algorithm [5], and the radial-basis-function networks[6].

The state transfer networks are reaurrent ANNSs in which the feedbads and nonlineaities are
very strong so that the adivity state quickly converges to one of its equili brium points (attradors).
Indeed, input information sets the initial adivity state and once the network is in operation the
output is fed badk as the input until the network output will settle on one of its dable values.
Typicd representatives of these ANNSs are the Hopfield network [7] and the Boltzmannmachine [8].

The cdls of the competitive-learning or self-organzing retworks, which generally recave
identicd input information, compete in their adivities by means of lateral interadions. Eac cdl or
cdl group is ®nsitized to a different domain of vedorial input signal values, and ads as a decoder
of that domain [9, 10]. Besides, both of the adapiveresonarcetheory models of Grosserg and
Carpenter [11,12] and the Sdlf-Organizing Maps of T. Kohonen [14] belong of course to this
category.

2.4. Phases of development of neural models

Three phases of development of models in ANN theory are distinguished : memoryless

models, adapgivemodels and plasticity-control models

Memoryless Models : In this first modeling phase, which starts with the dasscd McCull och-Pitts
network [1], the transfer properties of the network were assumed fixed. And when feedbadk
connedions were alded, such as in some interconneded networks [3] and also in some state
transfer models [7, 8], only the relaxation of adivity distributions was considered. There, the
dynamic state equation iswritten as: dA/dt = f(l, A) ; where signal adivity A is a function of
location, | isthe external input ading on the same locations, and f is a general function of | and A,

and of locaion.

Adaptive Models : These models take in acmunt the adagation and memory properties that result
from parametric changes in the network. The equations, which describe the alaptive signal-transfer
circuits, are: dA/dt = f(I, A, M), dM/dt=g(l,A,M); where : M denotes the set of
system parameters (M may be afunction of locaion and represent an adaptive bias), and f and g
are general functions of 1, A, and M . These ajuations were used in the first endeavors to model

emergence of feaure sensitive cdls and elementary forms of self-organizing mappings.



Plagticity-Control Models : T. Kohonen [14, 15] was not convinced that a model with adaptive
connedivity parameters is acairate ewough to cgpture d aspeds of self-organization, such as, for
instance, the leaning rate of a synaptic connedion, which is cdled plagticity in neurophysiology.
And in 1993 he [15] advanced the ideathat the plasticity should be described and controlled by a
third group of state variables cdled P and wrote the system equations as :

dA/dt = f(I, A, M), dM/dt=g(l, A, M, P), dP/dt=h(l, A, M,P) ; where f, g, and h are

genera functionsand where P does not take part in the control of adivity A.

3. Learning and Evolution

Adaptation refers to a @ntrol of parameters in order to optimize some performance measure,
or to a behavioral modification that depends on experiences and that improves the performance of a
system. In classcd ANNs adapation is cdled learning or aso training. Besides, in ewlution,
adapation is the aljusting of spedes to environment by natural seledion or by behavioral change.
Hence in evolutionary artificial neural networks (EANNS), which are a spedal class of ANNS,
adapationis cdled ewlution. Thus, in ANNs adagation takes two fundamental forms : Learning

and Evolution.

3.1. Learning

Following the Hebb's assumption and in order that the ANNs may develop an asciative
memory, it is necessary that the dficiency of the connedions, which link the atificial neurons, may
be computed. Since the fifties, severa rules appeaed, espedaly the Perceptron rule [3] and the
Widrow-Hoff leaning rule [4]. These rules put the ANN on a supervised leaning, which can be
summarized as follows: After having presented to the input units what it must be memorized, the
ANN answer is <anned. Since the rred answer is known then it is attempted to reduce the gap
between these two answers by ading on the dficiencies of the connedions that link the atificial

neurons, more particularly on the thresholds 5 and the weights p;. When these dficiencies gabilize,

the learning phase eds.

More generally, Leaning in ANNs can roughly be partitioned onto supervised,
unsupervised, and reinforcement learning :
Supervised learning makes a dired comparison between the aurrent output of an ANN and the
corred output, which is known. This comparison is often made by means of a minimization of an
error function such as the total mean square eror between the ad¢ual output and the desired outpti.
In order to minimize this error, a gradient descent-based optimizaion algorithm such as
badkpropagation [4] can then be used to adjust connedion weights in the ANN interadively.

Reinforcement learning is a spedal case of supervised leaning where the only known information



is whether or not the arrent output is corred (the desired output is unknown). In thislearning mode
adaptive dhanges of the parameters due to reward or punishment depend on the final outcome of a
whole sequence of behaviour.

Unsupervised learning works only on the crrelations among input data; there is not any other
information for learning. It is without a priory knowledge aout the dassfication of samples.

Sed. 3.1.2. describes the Perceptron learning algorithm. Sed. 3.1.3. is devoted to competitive-
learning networks and to an unsupervised learning which is used to get a representation of high-
dimensional nonlinealy related dataitemsin aill ustrative two-dimensional display [14].

Finaly, notice that the essence of a learning algorithm is certainly its learning rule (i.e., for
example, a weight-updating rule which determines how the signals sould modify the aaptive
connedion input weights or other parameters of the neurons in leaning) and that its correaness
needs to make dea what the ANN submitted to leaning is supposed to do (for instance, its

function is asociative memory or detedion of elementary patterns).

3.1.1. Some Learning Laws
3.1.1.1Hebb'sLaw

Consider first the simplest classcd leaning law for neurons like the one defined in Figure 1. If the
ANNs made of such reurons are supposed to refled simple memory efeds, espedaly those of
assciative or content-addressable memory, a model law that describes changes in the wnnedions
is based on Hebb's hypaothesis[2] :

"When an axon of cdl A is nea enough to excite a cé B and repeaedly or persistently
takes part in firing it, some growth processor metabolic change takes placein one or both
cdls, such that A's efficiency, as one of the cdlsfiring B, isincreased"

This means that the weight i, is varying acording to du; 1 dt = ay;x ()
where X is the jth input (the presynaptic "adivity”) of unit i, Y, is the output of unit i (the
postsynaptic "adivity"), and a is a scdar parameter named learning-rate factor. This law,

generaly cdled Hebb's law, has given rise to some dementary asociative memory models,

named corr elation matrix memories [16-18]. In vedor form, it can be written as:

1 . T .
dm/dt=ayx @) ; where m=y, ..., H,) ; y, = zj i %
= me = me ; xT:(xl, ..., X) and n thenumber of inputs of ead unit.

Noticethat with this law the aciative memory function is omitted. Moreover, as feature-sensitive

cdls have cantral rolesin the dasdficaion functions both at the input layers of the neura networks,



as well as insde them, some modificaions of Hebb's law were considered : the perceptron leaning
law, the Riccati learning law, and the principal-comporent-andyzer (PCA) law.
3.1.1.2. Perceptron Learning Law

The perceptron leaning rule is a modified form of Hebb's leaning law. It was proposed by F.
Rosenblatt [3] in the late 195Gs. It is the following : dm/dt=a (yic—yi) X A3 ;
where yic isthe desired output (i.e., the corred output).

Thisrule is also known as badk-propagation rule, LMS (least mean squares) rule, or as deltarule.

3.1.1.3. The Widrow-Hoff Learning Law
This law, which stems from Widrow [4] , was introduced for multilayer feedforward
networks. It can be dso written as (3) and where the least mean of square aror criterion is applied

and the optimizaion is performed by Robbins-Monro stochastic goproximation.

3.1.1.4. The Riccati-Type Learning Law

A magjor revison [14] made to Hebb's law introduces a scalar-valued pasticity-control
function P that may depend on many fadors (adivities, diffuse chemicd control, etc ...) and that
shall have atime-dependent sampling effedt on the learning of the signals x. On the other hand, it
was assumed that the weights ; are dfeded proportionally to X. In this way, the first term of the
leaning equation is written as P X, where P is a general functional that describes the dfed of

adivity in the surroundings of neuroni.

The second major revision is inclusion of an “adive forgetting” term that guarantees that the
p; remains finite. This involves the introduction of a scaar-valued forgetting rate functiond Q,
which is ©me function of synaptic adivities of neuroni. Therefore, the equation, which describes
akind of “adive leaning and forgetting” and where the plasticity control P affeds the total learning
rate, isthefollowing: du; /dt=P(x—-Qgy) .  In this equation, P can be seen as describing
extracdlular effeds and Q intracdlular effeds. Moreover, it seams proper to assume that the “adive

forgetting” effed at synapse j is proportiona to Zk M, % , where the sum extends over the whole
cdl, including synapse j itself. Then the latter equation can be written as the Ricati-type eguation :
dpy 1dt =P (x — uijZkuika) ; orinwvedor form with a=P and B =PQ as
dm/dt:ax—Bmme 4

3.1.1.5. The PCA-Type Learning Law
This leaning law, which was introduced by E. Oja [19], is analogous to (4), except that its

right-hand side is multiplied by the expresson vy, = zj % = X' m



The differential equation of this law is the following : dm/dt=ayx— By ? m or

dm/dt:amex— ,B(meme)m (5) .

3.1.2. Perceptron Learning Algorithm [3] [5] [20]
The perceptron leaning algorithm obeys perceptron leaning rule (3). It applies to feedforward
neural networks where the neuron model is the one of Figure 1. Training patternsx are presented to

the neural network; the output y; is computed. Then the weights p; are modified acording to :

m(t+ 1) =m() + a (y —y) x wherem = (ty, .., ) -
Heredter, the single-layer perceptron leaning algorithm and the bad-propagation perceptron
learning algorithm are described.
1) A single-layer perceptron reural network comprises one or more atificial neuron in parallel.

Likein Figure 1 eat neuron has n inputs and one output. The perceptron leaning algorithm for a

single-layer perceptron reural network is the following :

(0) Initidlizethe weights 1 and threshold s to small random numbers; t=0;
(1) Present an input vedor X = (X, ... ,xn)T: x(t) and the desired output yc, (wherenisthe
number of input units), and cdculate the output y =y (t) acording to
y = f(zj ;% - ), where f isagiven transfer function
(f can bethe sigmoid function: f(Xx)=1/(1+¢€7) );
(2) Update the weights (4 acoording to @ p(t+ 1) = y(t) + a (y “0) -y () x(t)
j=1,...,n; where 0.0<a<10); t=t+1,

(3) Reped steps (1) and (2) until the iteration error is lessthan a user-spedfied error threshold
or a predetermined number of iterations have been completed.

2) Multi-layer Perceptron Leaning Algorithm, or Badk-Propagation Leaning Algorithm :

The dgorithm for multi-layer perceptron leaning is based on the badk-propagation rule (3)

and on a gradient descent in error space The aror is defined as E = Zp Ep (6)
where Ep: (zi (yic—yi )2)/2 @) where vy, isthe adual output and

yic is the desired output and where the sum is over the output units of the network.
A change of weights can be made acording to the gradient of the eror:  Au=-a OE (8
where o isa ongtant scding and [ isthe gradient operator. The weight change for the mnnedion

fromunit j to unit i, of this error gradient can bewrittenas: Ay, =-o U;E = - 0E/ dy 9



But 0E /o, = (0E/0y;) (0y,/02) (0z/ 0p) (10 with z= zk g Yy - Hence

0z/0py =073 MgY !/ op;=3 0 (Vi) /oty =% ((Oug! opy) Y + g (OY, [ Opty) ) .
Examining the first partial derivative, noticethat oy / o iszero unless k=1i. And examining
the second partial derivative 0y, / op; for observing that if 14 is not zero then there exists a
connedion from unit k to unit j, which implies that  dy, / dy; ~ must be zeo, otherwise the
network would not be feedforward. Therefore, we get from (11) : 0z/ oy =y, (12
We now consider the middle partial derivative of (10) : ay,/ 0z . Since y,=f(z)  then
f(z) =1/(1+€% wouldimplythat  dy/dz = 0 (1+¢€°) Y19z = (1+€y7¢€?’
=(1-y) Y, . Inthisway: oy,/0z = (1-y;) (13
Now, return to the first derivative of (10): 0E/dy; And recd that E= szp and

Ep = (zi (yic—yi )2)/2 where the sum is over the output units of the network.

Two casescan bedistinguished : | isanoutput unit; | isnot an output unit.

- If j isanoutput unit then the derivative 0E /dy; can be computed as :
OE/dy, = a(3, (v -y)) /219y, = 5 0 -%) o -y) /oy = -0 -y) (14
- If j isnot an output unit then we neal to rely on the dhain rule, applied over the unitsk conneded
to unit j:
OE/dy, = 3, (9E/dy,) (3y,/02) i (15
where : 9y, /0z isgiven by (13 and 0E / 0y, iscomputed reaursively.
We ae now in position to describe the bad-propagation leaning algorithm :

(0) Initidlizethe weights p; and threshold s to small randomvalues; t=0;
Present an input vedor X = (X, , ... ,xn)T and atarget output yc
wheren isthe number of input units and m the number of output units yc;

(x and yc represent the patternsto be aswociated) ;

(1) Calculate the atual output : Each layer cdculates yk = f(zj K% —9) ;

(where f isdefinedby :  f(2) =1/(1+€?) )
Thisis then passs this to the next layer as an input. The final layer outputs value yv )

(2) Adapts weights : Starting from the output yv and working backwards, do



it + 1) = p(0) + ayv EJ_ ; Where EJ_ isan error term corresponding to the input

¥ of node j;
such that : for output units: EJ_ = ayv (1- yv) (yC - yv)
for hidden units : EJ_ = ayv (- yv) kzlq Ek t  Wherethesumis

over dl the g nodesin the layer above node | .

(o isthe stegonessparameter in the sigmoidal function)

3.1.3. The Self-Organizing Map (SOM) algorithm [14] [2]]
The SOM agorithm, which stems from Kohonen [14], deds with the mmpetitive leaning
and self-organizing networks. It operates as a nonparametric regresson which involves fitting a
number of reference vedors to the distribution of vedoria input samples (In regresson some

smple mathematica function is fitted to the distribution of sample values). The reference vedors m

are onsdered here to approximate the probability distribution of the input signals x and are dso
used to define the nodes of a kind of “hypotheticd elastic network”. Indeed, the distribution of the
vedors m should refled the probability distribution of the input signals x, which is not given

explicitly but only through the sample of vedorsx.

Given an ANN constituted of N neurons, where to every node (neuron) i ,i=1,...,N,is
asciated a weight-vedor m = (U, ... , um)T O R". Between the units of the ANN there eists a
set C, possbly empty, C O {1, ..., N}2 of neighborhood connedions supposed unweighted and
symetric. Besides, from the annedion set C, construct a two-dimensional grid G, having N nodes,
so that two nodesi, j are neighborsin G if and only if (i,j) O C. Let x = (x,, ... ,xn)T O R" be an
input vedor supposed conreded to ead reuron i, via the weight-vedor m = (4, ... , um)T.
Vedor x iscompared with al the m in some metric, the auclidean metric for instance, in order to
determine anode ¢ O {1, ... , N} suchthat |x-m]| = min{|lx—m||; i =1, ..., N}; unit cis
caled the winner. In this grid, a decaing topologicd neighborhood N, ={ i O {1, ..., N}; (ci) O
C} of node c is defined such that ¢ O N(t) for every t and N(t + 1) is drictly contained in N(t);

wheret =0, 1, 2, ... isthe discrete time @ordinate (see Figure 3). During leaning at time t, those

nodes of the grid that are in N_(t) will adivate eat other to lean something from the same input x.

10
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Indedad, the following learning processis proposed in [14] :
m(0) isarbitrary; andfort=0,1,2, ...

m(t+1) = m(t) + hy() (x(O) - m(0)) (16)
where hy(t) must - O when t - o ; otherwise the sequence (my(t )),, , does not converge.
The form of h(t) and its average width charaderize the “stiffness’ of the dastic surfacedefined by
the points m of /Rn.

Frequently, h,(t) istakenequal to O if i JN(t) and hy(t) =a(t) if i ON(). a(t) is cdled a
learning-rate factor and is suichthat O<a(t) <1. Furthermore, both a(t) and the radius of N(t)

are deaeasing monotonicdly in time.

Another choicefor hy(t) which widely ocaursiis the following :
hy(®) = a) @p (- k-1l 120°1) (17)
where : a(t) isanother valued leaning rate fador ;
r. adr, belongto|R2 and are respedively the locaion vedorsof nodes ¢ and i inthegrid;

o(t) denotes the width of N(t).

The self-organizing feaure map algorithm is the following, where Nit is a predetermined number of
iterations to be completed :

(0) Initializethe ANN to contain N units. Each unit i has n entries and an associated

referencevedor m=(u_, ..., u)' O R chosen randomly ;

Initiizethe cnnedion set Cto formaredangular or asquared gridG; t=0;

(1) While (t < Nit) do
(1.1) Generate & random an input signal x [J /Rn acording to a mntinuous

probabili ty density function p(¢), & O /Rn;

11



(1.2) Determine aunit ¢ {1, ..., N} such that
- myfl = min{[[x—m]|; i=1 .., N};
and consider the topologicd neighborhood N(t) ;

(1.3) Adapt eadrunit i [ N(t) acordingto (16) and (17); t=t+1;
End while

3.2. Evolution

Evolutionary artificial neural networks (EANNS) denote a spedal class of ANNSs, where
another form of adaptation, cdled evolution and distinct from learning, takes a prominent part. This
evolutionary approach of adaptation applies evolutionary algorithms to ANNSs for evolving weight

training, evolution of architedures, evolution of leaning rules, evolution of input feaures, etc.

3.2.1. Evolutionary algorithms

An ewlutionay algorithm (EA) refers to a population-based stochastic seach algorithm
inspired by natural evolution. Three medianisms drive natural evolution (reproduction, mutation
and seledion) by ading on the cdrromosomes containing the genetic information of the individual
(the genotype), rather than on the individual itself (the phenotype) : By the reproduction mecdhanism
new individuals are introduced into a population, these offspring chromosomes inherit from their
both parents a mixture of genetic information (crosover). The mutation process brings small
changes into the inherited chromosomes. And the seledion medanism alows only the fittest
individuals (the best adapted to their environment) to survive and reproduce

To solve aproblem by means of an EA makes use of a metaphor of natural evolution : All the
possble solutions congtitute a population living in an environment that is the problem itself. The
phenotype of ead individual (eat candidate solution) is encoded in some manner into its genome
(genotype). The aaptability of ead individual is measured by means of a fitnessfunction. And the
natural evolutionary mecdhanisms are modeled by appropriate genetic operators. Starting from an
initial population and by applying genetic operators to introduce progressvely “niece genetic
material” into the successve populations, an EA produces dep by step better solutions to the
problem.

The EAs comprise severa types : evolution strategies [25, 26], evolutionary programming
[27, 28, 29|, and genetic dgoritms[30, 31]. All proceed asfollows:

12



(0) t = 0; Generate the initial population G(0) at random;

(1) While (termination criterion is not satisfied) do
(1.1) Evaluate eab individual of G(t);
(1.2) From G(t) seled parents P(t) based on their fitnessin G(t);
(1.3) Apply genetic operatorsto P(t) to generate off spring which

constitute G(t + 1);
Qat=t+1;
End while.

3.2.2. The Evolution of Connedion Weights

Most leaning algorithms, such as badpropagation [5], are based on gradient descent. This
use of gradient descent let these dgorithms have drawbadks : They are often incgpable of finding a
global minimum of the eror function and get trapped in loca minima. One way to overcome these
shortcomings is to formulate the training process as the evolution of connedion weights in the
environment defined by the achitedure and the assciated learning rule. Indeed, EAs can be used
in the evolution to find a nea-optima set of connedion weights globally. Unlike the cae in
gradient-descent-based learning algorithms, the fitness (or error) function of an ANN does not have
to be differentiable or even continuous.

The evolutionary approach to weight training in EANNSs comprises two phases.
The first phase deds with the dhoice of a representation of connedion weights, either the binary
representation or the red-number representation. In a binary representation, ead connedion weight
is represented by a number of bits with a given length; then the concaenation of al the wnnedion
weights of the network encodes the ANN in the ciromosome. In ared number representation, ead
connedion weight is represented by a red number; in this way ead individua (i.e., ANN) in an
evolving population is encoded by ared vedor.
The second phase is the evolutionary process smulated by an EA, in which genetic operators duch
as crosover and mutation have to be dedded in conjunction with the representation scheme. The
evolution stops when the fitnessis greaer than a predefined value (i.e., the training error is gnaller
than a cetain value) or the population has converged.

A typicd cycle of the evolution of connedion weightsis the following [32] :

(1) Dewmde eab individual (genotype) in the arrent generation into a set of connedion
weights and construct with the weights a arresponding ANN.

(2) Evaluate eath ANN by computing its total mean square aror between acual and target
outputs. The fitnessof an individual is determined by the aror. The higher the aror, the

lower the fitness The optimal mapping from the aror to the fitnessis problem
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dependent. A regularization term may be included in the fitnessfunction to
penalize large weights.

(3) Seled parents for reproduction based on their fitness

(4) Apply genetic operators, such as crosover and/or mutation, to parentsto

generate off spring, which form the next generation.

3.2.3. The Evolution of Architedures

The achitedure of an ANN includes its topologicd structure (connedivity, and the transfer
function of ead node in the ANN). Architecure design is crucia in the succesdul applicaion of
ANNs becaise the achitedure has sgnificant impad on a network's information processng
cgpabilities.

Like in the evolution of connedion weights, two major phases involved in the evolution of
architedures are the genotype representation scheme of architecures and the EA used to evolve
ANN architedures. Encoding an ANN architecure implies dedding how much information about
this architedure should be encoded in the diromosome. At one extreme, al the details, i.e., every
conredion and node of an architedure can be spedfied by the dromosome; this kind of
representation scheme is cdled dired encoding. At the other extreme, only the most important
parameters of an architedure, such as the number of hidden layers and hidden nodes in ead layer
are encoded; more details about the achitedure ae left to the training processto dedde; this kind
of representation scheme is cdled indired encoding. The indired encoding is used in order to
reduce the length of the genotypicd representation of architecures.

After a representation scheme has been chosen, the evolution of architedures can progress

acording to the g/cle shown heredter; the o/cle stops when a satisfacdory ANN is found [32].

(1) Dewde eat individual in the aurrent generation into an architecure. If the indired
encoding scheme is used, further detail of the achitedure is gedfied by some
developmental rules or atraining process

(2) Train eadt ANN with the decoded architecure by a predefined learning rule (some
parameters of the learning rule culd be esolved during training) starting from
different sets of random initial connediion weights and, if any, leaning rule
parameters.

(3) Compute the fitnessof ead individual (encoded architedure) acaording to the dove
training result and other performance caiteria such as the cmmplexity of the
architedure.

(4) Seled parents from the aurrent generation based on their fitness

(5) Apply seach operators to the parents and generate off spring which form the next
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generation.

An example of the dired encoding of a feedbad< ANN isthe following (Figure 4) :

00110
1 3 Io1ol Figure 4.
5 00001
— 01001
2 '~ 4 00000 00110 10101 00001 01001 00000
architecture connectivity matrix binary representation

3.2.4. The Evolution of Learning Rules

Designing an efficient leaning rule is very difficult when there is little prior knowledge aout
the ANN's architedure, which is often the cae in pradice Besides, what is often expeded from an
ANN is its ability to adjust its learning rule aaptively acording to the task to be performed and
also to its architedure. These two reasons, and certainly several others, let the evolution of learning
rules be introduced into ANNSs in order to lean their learning rues.

But, as the evolution of leaning rules has to work on the dynamic behavior of an ANN, then
one key isaue is how to encode the dynamic behavior of a leaning rule into static chromosomes.
The answer to this requires the two following assumptions :

(i) Weight-updating depends only on locd information such as the arrent connedion weight, the
adivation of the input node, the adivation of the output node, €tc;
(it) Theleaning rulein an ANN is the same for all its connedions.

Thus, aleaning rule can be expressed by the function [9'] :

o) = 31 e (B M % E=D) (19

where t is the time, Aw(t) is the weight change, X, , X, , ... , X, arelocd variables, and the 6's are
red-valued coefficients witch will be determined by evolution.
In thisway, the evolution of leaning rules amounts to the evolution of red-valued vedors of 6’s.
On the other hand, the evolution of learning rules raises threequestions [32] :
(i) determination of a subset of terms described in EqQ. (18) ;
(i) representation of their coefficients as chromosomes;
(i) the EA used to evolve these diromosomes.

The answers to these isaues lead to the following cycle of the evolution of leaning rules[32] :

(1) Dewode eat individual in the arrent generation into aleaning rule.
(2) Construct a set of ANNs with randomly generated architectures and initial
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connedion weights, and train them using the decoded learning rule.

(3) Compute the fitnessof ead individual (encoded leaning rule) acrding to the
average training result.

(4) Seled parents from the arrent generation acarding to their fithess

(5) Apply genetic operatorsto the parents and generate off spring which formthe next

generation.

3.2.5. Conclusion

Thus, evolution can be used in ANNSs at several levels. The evolution of connedion weights is
quite competitive with regard to the gradient-based training algorithms. It can be dso used to find
quickly an efficient architedure a well as an efficient learning rule acording to some achitecure
and to the task to be performed.

Furthermore, as it was noticed in [32], in many pradicd problems, the possble inputs to an
ANN can be quite large. (There may be some redundancy among dfferent inputs; a large number of
inputs to an ANN increease its $ze and thus require more training data and longer training times).
Preprocessng is often needed to reduce the number of inputs to an ANN. Given a large set of
potential inputs, finding a subset, which has the fewest number of feaures but the performance of
the ANN using this aubset is no worse than that of the ANN using the whole input set, is not trivial.
However, this problem can be implemented using a binary chromosome whose length is the same &
the total number of input feaures, ead ht in the dromosome wrresponds to a feaure : "1"
indicates presence of a feaure, while "0" indicaes absence of the feaure. The evaluation of an
individual is caried out by training an ANN with these inputs and using the result to cdculate its

fitnessvalue.
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