
1

Course on

 Neural Networks

Abdallah Zemirline1, Pascal Ballet1, Lionel Marcé1, Gill es Bernot2, Franck Delaplace2, Jean-Louis Giavitto2, Olivier

Michel2, Jean-Marc Delosme2, Patrick Amar3, Roberto Incitti4, Paul Bourgine5, Christophe Godin6, François Képès7

, Phili ppe Tracqui8, Vic Norr is9, Janine Guespin9, Maurice Demarty9, Camill e Ripoll9

1 EA2215, Département d'Informatique, Université de Bretagne Occidentale, Brest
2 Laboratoire de Méthodes Informatiques, CNRS UMR 8042, Université d'Evry, 91025 Evry

3 Laboratoire de Recherche en Informatique, Université Paris-Sud, Orsay
4 Lacl, Université de Marne La Vallée

5 CREA - Ecole Polytechnique
6 UMR Cirad/Inra modélisation des plantes, TA40/PSII , Montpelli er
7 Atelier de Génomique Cogniti ve CNRS ESA8071/genopole, Evry

8 Lab. TIMC-IMAG, Equipe DynaCell , CNRS UMR, 5525, Faculté de Médecine, La Tronche
9 Laboratoire des Processus Intégratifs Cellulaires, UPRESA CNRS 6037, Faculté des Sciences & Techniques ,

Université de Rouen, 76821, Mont-Saint-Aignan
France

 The development of neural networks had initially as objective the modeling information

processing and learning in the brain, in order to understand how a population of interconnected

biological neurons performs a cerebral function. Now, neural networks are used in several practical

applications, in various fields including computational molecular biology [23, 24], and the artificial

neurons are quite remote from biological neurons.

1. Biological neural networks

 A neuron [22] is a nervous cell having a cytoplasm body and several cytoplasm extensions

(axons and dendrites) that allow it to dispatch (axons) and to receive (dendrites) signals. The

exchanged information by two neurons is accomplished by means of electrical signals, which are

the result of potassium-sodium ion exchanges. The electrical signal exchanges are made at the level

of the synapses, which link the axons of neurons to the dendrites of other neurons. A neuron may

have 1 000 to 10 000 synapses and can receive information from 1 000 other neurons. Besides,

although the synapses are often constituted between axons of cells and dendrites of other cells,

there are other types of synaptic junctions : between axon and axon, between dendrite and dendrite,

between axon and cellular body. The human brain may contain until 10
11

 neurons.

 The complexity of biological neural networks (BNNs) is very variable. There are some BNNs

like the ganglions that are constituted of heaps of neurons, as there exist sophisticated BNNs like

the complex BNNs of the neocortex. These ones are able to modify their functioning and even their

structures as well as they are capable of computing, memorizing and learning. Memorizing and

2

learning of the BNNs are made by means of some modifications at the synaptic level. The synapses

may modulate their activity, as exciting or inhibiting a neuron, and in this way to let possible the

writing of an information in a memory area. In 1949, Hebb [2] made the hypothesis that the abili ties

of BNNs are the result of the self-organization of their connections : The efficiency of a synapse

increases when the neurons that it connects are at the same time either all active or all inactive;

otherwise the efficiency lessens.

2. Ar tificial neural networks

 2.1. Neural network models

An artificial neural network (ANN) can be described as a set of interconnected units evolving in

time and operating in parallel; the units represent axons and dendrites and each connection (j,i) from

unit j to unit i has a weight µij that modulates the influence of unit j on unit i. Thus, an ANN is a

weight-directed graph in which to each node i are associated a bias or threshold si and a transfer

function fi, so that unit i will produce an output yi of the form : yi = fi (∑j
 µij xj – si), where xj is the

jth input of this unit and ∑
j
 µij xj is the sum of all i ts weighted inputs. If this sum is greater than the

threshold si, unit i is activated for producing the output yi; otherwise unit i is in an inactive state

(Figure 1). The parameters µij and si can be adjusted so that the neural network produces some

desired behavior. Namely, the neural network can be trained to achieve some particular job by

adjusting the weight and bias parameters.

 The transfer functions widely used are nonlinear, smooth, increasing and bounded such as

sigmoid functions (so called from their “S” shape). However, sometimes the transfer function is

linear like the identity function. When fi(x) = 1 if x > 0 and fi(x) = 0 otherwise, unit i is called a

threshold gate. As threshold functions are discontinuous, they are often replaced by sigmoidal

3

transfer functions that are continuous and differentiable, such as f(x) = arctan(x) and f(x) = tanh(x),

or by other transfer functions such as f(x) = 1 / (1 + e- x).

 One drawback of this neuron model appeared when it was used to describe what electro-

chemical triggering phenomena takes place at the active cell membranes of biological neurons. It

was noticed that the description of signal transformations in complicated neural networks needs an

analysis computationally too heavy. Whereat T. Kohonen [13] suggested the following simple

nonlinear dynamic model for a neuron (Figure 2) :

In Figure 2, the xj and yi are nonnegative scalar variables, the input activation I i is some function

of the xj and of some internal parameters. The function γ(yi) is the leakage term, a nonlinear

function of output activity. In order to guarantee good stabili ty in feedback networks γ must be

convex (i.e., its second derivative with respect to yi must be positive). The leakage term γ(yi) takes

in account all different losses and dead-time effects in the neuron, as a progressive function of

activity.

 2.2. Network architectures

 Usually, three important architectures are considered for the ANNs : layered architecture,

feedforward architecture and recurrent or feedback architecture. A recurrent architecture contains

directed cycles; therefore, the signal paths can return to a same node. The feedback ANNs are

difficult to implement. A feedforward architecture is devoid of directed cycles, thus the signal paths

never return to a same node. A layered architecture is an architecture where the units are partitioned

into classes, called layers, and where the connectivity patterns are defined between the classes.

 Besides, the unit set is partitioned into visible units (those in contact with the external world

such as input and output units) and hidden units. Often, the input units are grouped in an input layer

and the output units in an output layer. A hidden layer is constituted of hidden units.

4

 2.3. Three main categor ies of ANNs

 It is customary to distinguish three categories of ANNs : adaptive signal transfer networks,

state transfer networks, and competitive-learning or self-organizing networks.

 The signal transfer networks have their output signals depending uniquely on input signals.

These are often layered feedforward networks such as the multil ayer Perceptron [3], the Madaline

[4], the feedforward network in which learning is defined by means of an error propagation

algorithm [5], and the radial-basis-function networks [6].

 The state transfer networks are recurrent ANNs in which the feedbacks and nonlinearities are

very strong so that the activity state quickly converges to one of its equili brium points (attractors).

Indeed, input information sets the initial activity state and once the network is in operation the

output is fed back as the input until the network output will settle on one of its stable values.

Typical representatives of these ANNs are the Hopfield network [7] and the Boltzmann machine [8].

 The cells of the competitive-learning or self-organizing networks, which generally receive

identical input information, compete in their activities by means of lateral interactions. Each cell or

cell group is sensitized to a different domain of vectorial input signal values, and acts as a decoder

of that domain [9, 10]. Besides, both of the adaptive-resonance-theory models of Grossberg and

Carpenter [11,12] and the Self-Organizing Maps of T. Kohonen [14] belong of course to this

category.

 2.4. Phases of development of neural models

 Three phases of development of models in ANN theory are distinguished : memoryless

models, adaptive models and plasticity-control models

Memoryless Models : In this first modeling phase, which starts with the classical McCulloch-Pitts

network [1], the transfer properties of the network were assumed fixed. And when feedback

connections were added, such as in some interconnected networks [3] and also in some state

transfer models [7, 8], only the relaxation of activity distributions was considered. There, the

dynamic state equation is written as : dA/dt = f(I, A) ; where signal activity A is a function of

location, I is the external input acting on the same locations, and f is a general function of I and A,

and of location.

Adaptive Models : These models take in account the adaptation and memory properties that result

from parametric changes in the network. The equations, which describe the adaptive signal-transfer

circuits, are : dA/dt = f(I, A, M) , dM/dt = g(I, A, M) ; where : M denotes the set of

system parameters (M may be a function of location and represent an adaptive bias), and f and g

are general functions of I, A, and M . These equations were used in the first endeavors to model

emergence of feature sensitive cells and elementary forms of self-organizing mappings.

5

Plasticity-Control Models : T. Kohonen [14, 15] was not convinced that a model with adaptive

connectivity parameters is accurate enough to capture all aspects of self-organization, such as, for

instance, the learning rate of a synaptic connection, which is called plasticity in neurophysiology.

And in 1993, he [15] advanced the idea that the plasticity should be described and controlled by a

third group of state variables called P and wrote the system equations as :

dA/dt = f(I, A, M) , dM/dt = g(I, A, M, P) , dP/dt = h(I, A, M, P) ; where f, g, and h are

general functions and where P does not take part in the control of activity A.

3. Learning and Evolution

 Adaptation refers to a control of parameters in order to optimize some performance measure,

or to a behavioral modification that depends on experiences and that improves the performance of a

system. In classical ANNs adaptation is called learning or also training. Besides, in evolution,

adaptation is the adjusting of species to environment by natural selection or by behavioral change.

Hence in evolutionary artificial neural networks (EANNs), which are a special class of ANNs,

adaptation is called evolution. Thus, in ANNs adaptation takes two fundamental forms : Learning

and Evolution.

 3.1. Learning

 Following the Hebb's assumption and in order that the ANNs may develop an associative

memory, it is necessary that the efficiency of the connections, which link the artificial neurons, may

be computed. Since the fifties, several rules appeared, especially the Perceptron rule [3] and the

Widrow-Hoff learning rule [4]. These rules put the ANN on a supervised learning, which can be

summarized as follows: After having presented to the input units what it must be memorized, the

ANN answer is scanned. Since the correct answer is known then it is attempted to reduce the gap

between these two answers by acting on the efficiencies of the connections that link the artificial

neurons, more particularly on the thresholds si and the weights µij. When these efficiencies stabili ze,

the learning phase ends.

More generally, Learning in ANNs can roughly be partitioned onto supervised,

unsupervised, and reinforcement learning :

Supervised learning makes a direct comparison between the current output of an ANN and the

correct output, which is known. This comparison is often made by means of a minimization of an

error function such as the total mean square error between the actual output and the desired output.

In order to minimize this error, a gradient descent-based optimization algorithm such as

backpropagation [4] can then be used to adjust connection weights in the ANN interactively.

Reinforcement learning is a special case of supervised learning where the only known information

6

is whether or not the current output is correct (the desired output is unknown). In this learning mode

adaptive changes of the parameters due to reward or punishment depend on the final outcome of a

whole sequence of behaviour.

Unsupervised learning works only on the correlations among input data; there is not any other

information for learning. It is without a priory knowledge about the classification of samples.

 Sect. 3.1.2. describes the Perceptron learning algorithm. Sect. 3.1.3. is devoted to competitive-

learning networks and to an unsupervised learning which is used to get a representation of high-

dimensional nonlinearly related data items in a ill ustrative two-dimensional display [14].

 Finally, notice that the essence of a learning algorithm is certainly its learning rule (i.e., for

example, a weight-updating rule which determines how the signals should modify the adaptive

connection input weights or other parameters of the neurons in learning) and that its correctness

needs to make clear what the ANN submitted to learning is supposed to do (for instance, its

function is associative memory or detection of elementary patterns).

 3.1.1. Some Learning Laws

 3.1.1.1 Hebb's Law

Consider first the simplest classical learning law for neurons like the one defined in Figure 1. If the

ANNs made of such neurons are supposed to reflect simple memory effects, especially those of

associative or content-addressable memory, a model law that describes changes in the connections

is based on Hebb's hypothesis [2] :

"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently

takes part in firing it, some growth process or metabolic change takes place in one or both

cells, such that A's efficiency, as one of the cells firing B, is increased"

This means that the weight µij is varying according to dµij / dt = α yi xj (2) ;

where xj is the jth input (the presynaptic "activity") of unit i, yi is the output of unit i (the

postsynaptic "activity"), and α is a scalar parameter named learning-rate factor. This law,

generally called Hebb's law, has given rise to some elementary associative memory models,

named correlation matrix memories [16-18]. In vector form, it can be written as :

dmi / dt = α yi x (2’) ; where mi = (µi1 , … , µin)
 T

 ; yi = ∑
j
 µij xj

= mi

T
 x = x

T
 mi ; x

T
 = (x1 , … , xn) and n the number of inputs of each unit.

Notice that with this law the associative memory function is omitted. Moreover, as feature-sensitive

cells have central roles in the classification functions both at the input layers of the neural networks,

7

as weIl as inside them, some modifications of Hebb's law were considered : the perceptron learning

law, the Riccati learning law, and the principal-component-analyzer (PCA) law.

 3.1.1.2. Perceptron Learning Law

 The perceptron learning rule is a modified form of Hebb’s learning law. It was proposed by F.

Rosenblatt [3] in the late 1950s. It is the following : dmi / dt = α (yi

c
 – yi) x (3) ;

where yi

c
 is the desired output (i.e., the correct output).

This rule is also known as back-propagation rule, LMS (least mean squares) rule, or as delta rule.

 3.1.1.3. The Widrow-Hoff Learning Law

 This law, which stems from Widrow [4] , was introduced for multilayer feedforward

networks. It can be also written as (3) and where the least mean of square error criterion is applied

and the optimization is performed by Robbins-Monro stochastic approximation.

 3.1.1.4. The Riccati-Type Learning Law

 A major revision [14] made to Hebb's law introduces a scalar-valued plasticity-control

function P that may depend on many factors (activities, diffuse chemical control, etc …) and that

shall have a time-dependent sampling effect on the learning of the signals xj. On the other hand, it

was assumed that the weights µij are affected proportionally to xj. In this way, the first term of the

learning equation is written as P xj , where P is a general functional that describes the effect of

activity in the surroundings of neuron i.

 The second major revision is inclusion of an “active forgetting” term that guarantees that the

µij remains finite. This involves the introduction of a scalar-valued forgetting rate functional Q,

which is some function of synaptic activities of neuron i. Therefore, the equation, which describes

a kind of “active learning and forgetting” and where the plasticity control P affects the total learning

rate, is the following : dµij / dt = P (xj – Q µij) . In this equation, P can be seen as describing

extracellular effects and Q intracellular effects. Moreover, it seems proper to assume that the “active

forgetting” effect at synapse j is proportional to ∑
k
 µik xk , where the sum extends over the whole

cell, including synapse j itself. Then the latter equation can be written as the Ricatti-type equation :

 dµij / dt = P (xj – µij ∑k
 µik xk) ; or in vector form with α = P and β = P Q as

 dmi / dt = α x – β mi mi

T
x (4) .

 3.1.1.5. The PCA-Type Learning Law

 This learning law, which was introduced by E. Oja [19], is analogous to (4), except that its

right-hand side is multiplied by the expression yi = ∑
j
 µij xj = x

T
 mi .

8

The differential equation of this law is the following : dmi / dt = α yi x – β yi
2
 mi or

 dmi / dt = α x
T
 mi x – β (mi

T
x x

T
 mi) mi (5) .

 3.1.2. Perceptron Learning Algor ithm [3] [5] [20]

The perceptron learning algorithm obeys perceptron learning rule (3). It applies to feedforward

neural networks where the neuron model is the one of Figure 1. Training patterns x are presented to

the neural network; the output yi is computed. Then the weights µij are modified according to :

mi(t + 1) = mi(t) + α (yi

c
 – yi) x where mi = (µi1 , … , µin)

 T
.

Hereafter, the single-layer perceptron learning algorithm and the back-propagation perceptron

learning algorithm are described.

1) A single-layer perceptron neural network comprises one or more artificial neuron in parallel.

Like in Figure 1 each neuron has n inputs and one output. The perceptron learning algorithm for a

single-layer perceptron neural network is the following :

 (0) Initialize the weights µj and threshold s to small random numbers; t = 0 ;

 (1) Present an input vector x

 = (x1 , … , xn)

 T
 = x(t) and the desired output y

 c
, (where n is the

 number of input units), and calculate the output y

 = y

 (t) according to

 y = f(∑
j
 µj xj - s), where f is a given transfer function

 (f can be the sigmoid function : f(x) = 1 / (1 + e- x));

 (2) Update the weights µj according to : µj(t + 1) = µj(t) + α (y
c
(t) – y

(t)) xj(t)

 j = 1, … , n ; where 0.0 < α < 1.0) ; t = t + 1 ;

 (3) Repeat steps (1) and (2) until the iteration error is less than a user-specified error threshold

 or a predetermined number of iterations have been completed.

2) Multi-layer Perceptron Learning Algorithm, or Back-Propagation Learning Algorithm :

 The algorithm for multi-layer perceptron learning is based on the back-propagation rule (3)

and on a gradient descent in error space. The error is defined as E = ∑
p
E

p
 (6)

where E
p
= (∑

i
 (yi

c
 – yi)

2
) / 2 (7) where yi is the actual output and

yi

c
 is the desired output and where the sum is over the output units of the network.

A change of weights can be made according to the gradient of the error : ∆µ = - α ∇E (8)

where α is a constant scaling and ∇ is the gradient operator. The weight change for the connection

from unit j to unit i, of this error gradient can be written as : ∆µij = - α ∇ij E = - ∂E / ∂µij (9)

9

But ∂E / ∂µij = (∂E / ∂yj) (∂yj / ∂z) (∂z / ∂µij) (10) with z = ∑
k

µkj yk . Hence

∂z / ∂µij = ∂ ∑
k
µkj yk / ∂µij = ∑

k
∂ (µkj yk) / ∂µij = ∑

k
 ((∂µkj / ∂µij) yk + µkj (∂yk / ∂µij)) (11) .

Examining the first partial derivative, notice that ∂µkj / ∂µij is zero unless k = i . And examining

the second partial derivative ∂yk / ∂µij for observing that if µkj is not zero then there exists a

connection from unit k to unit j, which implies that ∂yk / ∂µij must be zero, otherwise the

network would not be feedforward. Therefore, we get from (11) : ∂z / ∂µij = yi (12)

We now consider the middle partial derivative of (10) : ∂yj / ∂z . Since yj = f(z) then

 f(z) = 1 / (1 + e- z) would imply that ∂yj / ∂z = ∂ (1 + e- z)
 -1

 / ∂z = (1 + e- z)
 -2

 e- z

 = (1 – yj) yj . In this way : ∂yj / ∂z = (1 – yj) yj (13)

Now, return to the first derivative of (10) : ∂E / ∂yj And recall that E = ∑
p
E

p
 and

 E
p
 =

(∑

i
 (yi

c
 – yi)

2
) / 2 where the sum is over the output units of the network.

Two cases can be distinguished : j is an output unit ; j is not an output unit.

- If j is an output unit then the derivative ∂E / ∂yj can be computed as :

 ∂E / ∂yj = ∂ (∑
i
 (yi

c
 – yi)

2
) / 2 / ∂yj = ∑

i
 (yi

c
 – yi) ∂(yi

c
 – yi) / ∂yj = - (yj

c
 – yj) (14)

- If j is not an output unit then we need to rely on the chain rule, applied over the units k connected

to unit j :

 ∂E / ∂yj = ∑
k
 (∂E / ∂yk) (∂yk / ∂z) µkj (15)

where : ∂yk / ∂z is given by (13) and ∂E / ∂yk is computed recursively.

We are now in position to describe the back-propagation learning algorithm :

 (0) Initialize the weights µij and threshold s to small random values; t = 0 ;

Present an input vector x = (x1 , … , xn)
 T
 and a target output y

c

where n is the number of input units and m the number of output units y
c
;

(x and y
c
 represent the patterns to be associated) ;

 (1) Calculate the actual output : Each layer calculates y

k
 = f(∑

j
 µij xj – s) ;

 (where f is defined by : f(z) = 1 / (1 + e- z))

 This is then passes this to the next layer as an input. The final layer outputs value y
v
 .

 (2) Adapts weights : Starting from the output y

v
 and working backwards, do

10

µij(t + 1) = µij(t) + α y
v
E

j
; where E

j

 is an error term corresponding to the input

xj of node j ;

 such that : for output units : E
j
 = σ y

v
 (1 - y

v
) (y

c
 - y

v
)

 for hidden units : E
j

 = σ y

v
 (1 - y

v
)

k
∑

1

 q
 E

k
 µkj where the sum is

 over all the q nodes in the layer above node j .

 (σ is the steepness parameter in the sigmoidal function)

 3.1.3. The Self-Organizing Map (SOM) algorithm [14] [21]

 The SOM algorithm, which stems from Kohonen [14], deals with the competitive learning

and self-organizing networks. It operates as a nonparametric regression which involves fitting a

number of reference vectors to the distribution of vectorial input samples (In regression some

simple mathematical function is fitted to the distribution of sample values). The reference vectors mi

are considered here to approximate the probabili ty distribution of the input signals x and are also

used to define the nodes of a kind of “hypothetical elastic network” . Indeed, the distribution of the

vectors mi should reflect the probabili ty distribution of the input signals x, which is not given

explicitly but only through the sample of vectors x.

 Given an ANN constituted of N neurons, where to every node (neuron) i , i = 1, … , N , is

associated a weight-vector mi = (µi1, … , µin)
T
 ∈ |Rn

. Between the units of the ANN there exists a

set C, possibly empty, C ⊆ {1, … , N}
2
 of neighborhood connections supposed unweighted and

symetric. Besides, from the connection set C, construct a two-dimensional grid G, having N nodes,

so that two nodes i, j are neighbors in G if and only if (i,j) ∈ C. Let x = (x1, … , xn)
T
 ∈ |Rn

 be an

input vector supposed connected to each neuron i, via the weight-vector mi = (µi1, … , µin)
T
.

Vector x is compared with all the mi in some metric, the euclidean metric for instance, in order to

determine a node c ∈ {1, … , N} such that ||x - mc|| = min{||x – mi|| ; i = 1, … , N} ; unit c is

called the winner. In this grid, a decaying topological neighborhood Nc = { i ∈ {1, … , N} ; (c,i) ∈

C} of node c is defined such that c ∈ Nc(t) for every t and Nc(t + 1) is strictly contained in Nc(t);

where t = 0, 1, 2, … is the discrete time coordinate (see Figure 3). During learning at time t, those

nodes of the grid that are in Nc(t) will activate each other to learn something from the same input x.

11

Indeed, the following learning process is proposed in [14] :

 mi(0) is arbitrary; and for t = 0, 1, 2, …

 mi(t + 1) = mi(t) + hci(t) (x(t) - mi(t)) (16)

where hci(t) must → 0 when t → ∞ ; otherwise the sequence (mi(t))t ≥ 0 does not converge.

The form of hci(t) and its average width characterize the “stiffness” of the elastic surface defined by

the points mi of |Rn
.

Frequently, hci(t) is taken equal to 0 if i ∉ Nc(t) and hci(t) = α(t) if i ∈ Nc(t) . α(t) is called a

learning-rate factor and is such that 0 < α(t) < 1. Furthermore, both α(t) and the radius of Nc(t)

are decreasing monotonically in time.

Another choice for hci(t) which widely occurs is the following :

 hci(t) = α(t) exp (- ||rc – r i||
2
 / 2 σ2

(t)) (17)

 where : α(t) is another valued learning rate factor ;

rc and r i belong to |R
2
 and are respectively the location vectors of nodes c and i in the grid ;

σ(t) denotes the width of Nc(t).

The self-organizing feature map algorithm is the following, where Nit is a predetermined number of

iterations to be completed :

 (0) Initialize the ANN to contain N units. Each unit i has n entries and an associated

 reference vector m
i
 = (µ

i1
, … , µ

in
)
T ∈ |Rn

 chosen randomly ;

 Initialize the connection set C to form a rectangular or a squared grid G ; t = 0;

 (1) While (t < Nit) do

 (1.1) Generate at random an input signal x ∈ |Rn
 according to a continuous

 probabili ty density function p(ξ), ξ ∈ |Rn
 ;

12

 (1.2) Determine a unit c ∈ {1, … , N} such that

 ||x - mc|| = min{||x – mi|| ; i = 1, … , N} ;

 and consider the topological neighborhood Nc(t) ;

(1.3) Adapt each unit i ∈ Nc(t) according to (16) and (17) ; t = t + 1;

 End while

 3.2. Evolution

 Evolutionary artificial neural networks (EANNs) denote a special class of ANNs, where

another form of adaptation, called evolution and distinct from learning, takes a prominent part. This

evolutionary approach of adaptation applies evolutionary algorithms to ANNs for evolving weight

training, evolution of architectures, evolution of learning rules, evolution of input features, etc.

 3.2.1. Evolutionary algorithms

 An evolutionary algorithm (EA) refers to a population-based stochastic search algorithm

inspired by natural evolution. Three mechanisms drive natural evolution (reproduction, mutation

and selection) by acting on the chromosomes containing the genetic information of the individual

(the genotype), rather than on the individual itself (the phenotype) : By the reproduction mechanism

new individuals are introduced into a population, these offspring chromosomes inherit from their

both parents a mixture of genetic information (crossover). The mutation process brings small

changes into the inherited chromosomes. And the selection mechanism allows only the fittest

individuals (the best adapted to their environment) to survive and reproduce.

 To solve a problem by means of an EA makes use of a metaphor of natural evolution : All the

possible solutions constitute a population living in an environment that is the problem itself. The

phenotype of each individual (each candidate solution) is encoded in some manner into its genome

(genotype). The adaptabili ty of each individual is measured by means of a fitness function. And the

natural evolutionary mechanisms are modeled by appropriate genetic operators. Starting from an

initial population and by applying genetic operators to introduce progressively “niece genetic

material” into the successive populations, an EA produces step by step better solutions to the

problem.

 The EAs comprise several types : evolution strategies [25, 26], evolutionary programming

[27, 28, 29], and genetic algoritms [30, 31]. All proceed as follows :

13

 (0) t = 0; Generate the initial population G(0) at random;

 (1) While (termination criterion is not satisfied) do

 (1.1) Evaluate each individual of G(t);

 (1.2) From G(t) select parents P(t) based on their fitness in G(t);

 (1.3) Apply genetic operators to P(t) to generate offspring which

 constitute G(t + 1);

 (1.4) t = t + 1;

 End while.

 3.2.2. The Evolution of Connection Weights

 Most learning algorithms, such as backpropagation [5], are based on gradient descent. This

use of gradient descent let these algorithms have drawbacks : They are often incapable of finding a

global minimum of the error function and get trapped in local minima. One way to overcome these

shortcomings is to formulate the training process as the evolution of connection weights in the

environment defined by the architecture and the associated learning rule. Indeed, EAs can be used

in the evolution to find a near-optimal set of connection weights globally. Unlike the case in

gradient-descent-based learning algorithms, the fitness (or error) function of an ANN does not have

to be differentiable or even continuous.

 The evolutionary approach to weight training in EANNs comprises two phases.

The first phase deals with the choice of a representation of connection weights, either the binary

representation or the real-number representation. In a binary representation, each connection weight

is represented by a number of bits with a given length; then the concatenation of all the connection

weights of the network encodes the ANN in the chromosome. In a real number representation, each

connection weight is represented by a real number; in this way each individual (i.e., ANN) in an

evolving population is encoded by a real vector.

The second phase is the evolutionary process simulated by an EA, in which genetic operators such

as crossover and mutation have to be decided in conjunction with the representation scheme. The

evolution stops when the fitness is greater than a predefined value (i.e., the training error is smaller

than a certain value) or the population has converged.

A typical cycle of the evolution of connection weights is the following [32] :

 (1) Decode each individual (genotype) in the current generation into a set of connection

 weights and construct with the weights a corresponding ANN.

 (2) Evaluate each ANN by computing its total mean square error between actual and target

 outputs. The fitness of an individual is determined by the error. The higher the error, the

 lower the fitness. The optimal mapping from the error to the fitness is problem

14

 dependent. A regularization term may be included in the fitness function to

 penalize large weights.

 (3) Select parents for reproduction based on their fitness.

 (4) Apply genetic operators, such as crossover and/or mutation, to parents to

 generate offspring, which form the next generation.

 3.2.3. The Evolution of Architectures

 The architecture of an ANN includes its topological structure (connectivity, and the transfer

function of each node in the ANN). Architecture design is crucial in the successful application of

ANNs because the architecture has significant impact on a network's information processing

capabili ties.

 Like in the evolution of connection weights, two major phases involved in the evolution of

architectures are the genotype representation scheme of architectures and the EA used to evolve

ANN architectures. Encoding an ANN architecture implies deciding how much information about

this architecture should be encoded in the chromosome. At one extreme, all the details, i.e., every

connection and node of an architecture can be specified by the chromosome; this kind of

representation scheme is called direct encoding. At the other extreme, only the most important

parameters of an architecture, such as the number of hidden layers and hidden nodes in each layer

are encoded; more details about the architecture are left to the training process to decide; this kind

of representation scheme is called indirect encoding. The indirect encoding is used in order to

reduce the length of the genotypical representation of architectures.

After a representation scheme has been chosen, the evolution of architectures can progress

according to the cycle shown hereafter; the cycle stops when a satisfactory ANN is found [32].

 (1) Decode each individual in the current generation into an architecture. If the indirect

 encoding scheme is used, further detail of the architecture is specified by some

 developmental rules or a training process.

 (2) Train each ANN with the decoded architecture by a predefined learning rule (some

 parameters of the learning rule could be evolved during training) starting from

 different sets of random initial connection weights and, if any, learning rule

 parameters.

 (3) Compute the fitness of each individual (encoded architecture) according to the above

 training result and other performance criteria such as the complexity of the

 architecture.

 (4) Select parents from the current generation based on their fitness.

 (5) Apply search operators to the parents and generate offspring which form the next

15

 generation.

An example of the direct encoding of a feedback ANN is the following (Figure 4) :

 3.2.4. The Evolution of Learning Rules

 Designing an efficient learning rule is very difficult when there is little prior knowledge about

the ANN's architecture, which is often the case in practice. Besides, what is often expected from an

ANN is its abili ty to adjust its learning rule adaptively according to the task to be performed and

also to its architecture. These two reasons, and certainly several others, let the evolution of learning

rules be introduced into ANNs in order to learn their learning rules.

 But, as the evolution of learning rules has to work on the dynamic behavior of an ANN, then

one key issue is how to encode the dynamic behavior of a learning rule into static chromosomes.

The answer to this requires the two following assumptions :

(i) Weight-updating depends only on local information such as the current connection weight, the

activation of the input node, the activation of the output node, etc;

(ii) The learning rule in an ANN is the same for all i ts connections.

 Thus, a learning rule can be expressed by the function [9’] :

 ∆w(t) = k∑ 1

n
 i1, i2, .. . ,ik

∑ 1
n
 (θ i1, i2, .. . ,ik

 jΠ 1
k
 xij

 (t – 1)) (18)

where t is the time, ∆w(t) is the weight change, x1 , x2 , … , xn are local variables, and the θ’s are

real-valued coefficients witch will be determined by evolution.

In this way, the evolution of learning rules amounts to the evolution of real-valued vectors of θ’s.

 On the other hand, the evolution of learning rules raises three questions [32] :

(i) determination of a subset of terms described in Eq. (18) ;

(ii) representation of their coefficients as chromosomes;

(iii) the EA used to evolve these chromosomes.

 The answers to these issues lead to the following cycle of the evolution of learning rules [32] :

 (1) Decode each individual in the current generation into a learning rule.

 (2) Construct a set of ANNs with randomly generated architectures and initial

16

 connection weights, and train them using the decoded learning rule.

 (3) Compute the fitness of each individual (encoded learning rule) according to the

 average training result.

 (4) Select parents from the current generation according to their fitness.

 (5) Apply genetic operators to the parents and generate offspring which form the next

 generation.

 3.2.5. Conclusion

 Thus, evolution can be used in ANNs at several levels. The evolution of connection weights is

quite competitive with regard to the gradient-based training algorithms. It can be also used to find

quickly an efficient architecture as well as an efficient learning rule according to some architecture

and to the task to be performed.

 Furthermore, as it was noticed in [32], in many practical problems, the possible inputs to an

ANN can be quite large. (There may be some redundancy among different inputs; a large number of

inputs to an ANN increase its size and thus require more training data and longer training times).

Preprocessing is often needed to reduce the number of inputs to an ANN. Given a large set of

potential inputs, finding a subset, which has the fewest number of features but the performance of

the ANN using this subset is no worse than that of the ANN using the whole input set, is not trivial.

However, this problem can be implemented using a binary chromosome whose length is the same as

the total number of input features; each bit in the chromosome corresponds to a feature : "1"

indicates presence of a feature, while "0" indicates absence of the feature. The evaluation of an

individual is carried out by training an ANN with these inputs and using the result to calculate its

fitness value.

References

[1] W.S. McCulloch, W.A. Pitts, Bull. Math. Biophys. 5, 115, (1943).

[2] D. Hebb, Organization of Behaviour, Wiley, N.Y. (1949).

[3] F. Rosenblatt, Principles of Neurodynamics : Perceptrons and the Theory of the Brain

 Mechanisms, Spartan Books, Washington D.C. (1961).

[4] B. Widrow, In Self-Organizing Systems 1962, ed. by M. Yovits, G. Jacobi, G. Goldstein,

 Spartan Books, Washington D.C., 435, (1962).

[5] D.E. Rumelhart, G.E. Hinton, R.J. Willi ams, Learning internal representations by error

 propagation, in Parallel Distributed Processing, D. E. Rumelhart and J.L. McClelland eds,

 Vol. 1, chap. 8, MIT Press, Cambridge, MA, 318-362, (1986).

[6] T. Poggio, F. Girosi, Science 247, 978, (1982).

17

[7] J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554, (1982).

[8] D. Ackley, G. Hinton, T. Sejnowski, Cognitive Science 9, p 147, (1985).

[9] R. Didday, Math. Biosci. 30, 169, (1976).

[10] S. Amari, M.A. Arbib, In Systems Neuroscience, ed. by J. Metzler, Academic N.Y.,

 p 119, (1977)

[11] G. Carpenter, S. Grossberg, Computer 21, 77, (1988).

[12] G. Carpenter, S. Grossberg, Neural Networks 3, 129, (1990).

[13] T. Kohonen, Neural Networks 1, 3, (1988).

[14] T. Kohonen, Self-Organizing Maps, 2nd ed. Springer-Verlag, (1997).

[15] T. Kohonen, Neural Networks 6, 895, (1993).

[16] T. Kohonen, IEEE Trans. C-21, 353, (1972).

[17] K. Nakano, J. Nagumo, in Advance Papers, 2nd Int. Joint Conf. On Artificial Intelli gence

 (The British Computer Society, London, UK 1971) p 101.

[18] J. Anderson, Math. Biosci. 14, 197, (1972).

[19] E. Oja, J. Math. Biol. 15, 267, (1982).

[20] F. Corbett, Web Applets for Interactive Tutorials on Artificial Neural Learning,

 Computer Engineering, University of Manitoba, Canada.

[21] B. Fritzke, Some competitive Learning methods, Self-organizing Feature Map,

 http://www.neuroinformatik.ruhr-uni-bochum.de

[22] S. W. Kuffler, J. C. Nicholls, From Neuron to Brain : A cellular approach to the Function of

 the Nervous System, Sinauer Associates Inc. Publishers, (1976).

[23] P. Baldi, S. Brunak, Bioinformatic, The machine learning approach, MIT Press, (1998).

[24] J. M. Renders, Algorithmes génétiques et réseaux de neurones, Hermes, (1995).

[25] H.-P. Schwefel, Numerical Optimization of Computer Models, J. Wiley & Sons, (1981).

[26] H.-P. Schwefel, Evolution and Optimum Seeking, J. Wiley & Sons, (1995).

[27] L. J. Fogel, A. J. Owens, M. J. Walsh, Artificial Intelli gence Through Simulated Evolution,

 J. Wiley & Sons, (1966).

[28] D. B. Fogel, System Identification Through Simulated Evolution: A Machine Learning

 Approach to Modeling, Ginn Press, (1991).

[29] D. B. Fogel, Evolutionary Computation: Towards a New Philosophy of Machine Intelli gence,

 IEEE Press, (1995).

[30] J. H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press,

 (1975).

[31] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

 Addison-Wesley, (1989).

18

[32] X. Yao, Evolving Artificial Neural Networks, Proceedings of the IEEE, 87 (9), 1423-1447,

 (1999).

[33] X. Yao, Evolutionary artificial neural networks, in Encyclopedia of Computer Science and

 Technology (A. Kent and J. G. Willi ams, eds.), vol. 33, 137-170, NY 10016 : M. Dekker Inc.,

 (1995).

