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| ntr oduction

Objectives of the ssimulation

Simulation is the experiment on a model. A model represents a simplificaion o a red
phenomenon Only certain relevant parameters are taken into acournt and nunerous others are
untidy. The simulation o a model has snse only if its behavior is close to the red phenomenon,
that is, if it can approach redity. So, by changing the parameter values of the model, the smulation
allowsto infer what would take placein redity under the influence of similar adions.

The smulation hes various objedives. First, when the model is vaidated by the red
experiment, the simulation allows to make numerous and acceerated experiments, with a very
acarate parameter control. Secondy, if the modd is incomplete or insufficient, the simulation
allows to test hypaheses. In that case, it participatesin the settling o the model. Numerous fields
of reseach and indwstry use the smulation, either for the model development, for the product
settling o either for the forecast of complex phenomena. Aeronautics, motorcar, econamy,
chemistry, meteorology, astrophysics, cosmology, nuclea physics or more recantly biology use it
frequently.

Simulation and biology

The in-vitro experiment, constitutes for biology the most wide-spreal type of smulation.
Cells are taken apart from an organism, then are studied ouside, generaly in atest tube. Around
the beginning o the 20" century, Michadis and Menten described the biochemicd phenomenon o
enzymatic readion using dfferential equations. So, mathematicd models becane an aternative to
in-vivo or in-vitro experiments. This is the start of the computational biology. Several biologicd
fields of research use the mathematicd toadl to describe or explain their phenomenon For example,
in 1966the first mathematica model describing an immune phenomenonwas developed [HEG66).
A few yeas later, by 1970, the immune models based on dfferential equations becane more
complex. In 1974 Jerne [JER74] described his model of the idiotypic network. His model is highly
nonlinea and nosimple analyticd solution can be found The use of the numeric computation then
becane anecessty. At the same time, data processng evolves, bath from the point of view of the
cdculation pover and from the languages of development. Several paradigms appea like atificial



life, cdlular automata, readion-diffuson system, objed programming a multi-agents s/stem.
Thus, it beaomes possble to model and to smulate biologicad medhanisms not by using dff erential
equations only.

Today, data processng is a useful tod for biology and for the dive world exploration. We
are wnvinced, and this course triesto show it, that the study d living cdls can be made partialy by
means of computer, that is in-silico (also cdled in machina or in-virtuo). We will seehow we can
conred together different computational systems to buld an artificial cdl. Each system describes a
level of detail for the cdl (Table 1):

- readion-diffusion system allows to model the lower granularity of the cdl, that is ionic
and small moleaules (from Angstrom to nanometer)

- cdlular automata represents the maaomoleaular level (few nanometers). Maao moleaules
are the basic comporents of hyperstructures

- multi agents g/stem will be used to model the hyperstructure level (several nanometers).

- readion-diffusion system could be used again to model some tissie morphogenesis.
Perhaps, it could be use to model intra-cdlular membrane too.

Biological Level Dimension Model
lonic / Small moleaules 10°m Readion - Diffusion System
Maaomoleaules 10°m Cellular Automata
Hyperstructures & membranes 10°t0 10’ m Multiagents System
Membrane & Tissues 10" mto 10°m Reation - Diffusion System

Table 1: different possble levels of granularity for an integrated artificial cdl modeling

Before the description o the different approaches, we will see ashort state-of-the-art in
software todls aiming to smulate intra-cdlular mechanisms. First, we will seethe global objedives
thanks to the Microbial Cell Projed, then we will focus on two advanced software goplicaions:
eledronic cdl and virtual-cdl.

Advanced applications

Principle

An advanced applicaion in cdl smulation dfers oftware tods to model, smulate and
interpret results. It must be used by bologists withou any programming and it offers an intuitive
interface An advanced application must point out its own limitations, the robustnessof the model
parameters, the link between the model and the simulation and the results acarracy. An advanced
applicaionisintegrated when it combines diff erent means of modelingtogether.

We will seetwo applications that are integrated and advanced: e-cdl [ECEOQ1] and v-cdl
[VCEO]]. They are based on a differential equation model (see example of Equation 1). The first
one (e-cdl) includes =ttled metabalic pathways which could be muded with an hypadhetic
biologist pathway model. The seaond ore (v-cdl) uses images (from microscopy) to pu the
simulationinto the « red » image.

I ntegrated Project: Microbial Cell Project

From Notice 01-21; Advanced Modeling and 8mulation d Biological Systems [MCPO01]

“ SUMMARY (January 2001): The Offices of Advanced Scientific Computing Reseach
(ASCR) and Biologicd and Environmental Reseach (OBER) of the Office of Science (SC), U.S.
Department of Energy, hereby annource interest in recaving applications for grants in suppat of



computational modeling and smulation d biologicd systems.

The goa of this program is to enable the use of terascde wmputers to explore fundamental
biologicd processes and predict the behavior of abroad range of protein interadions and moleaular
pathways in prokaryotic microbes of importance to DOE. This goal will be adieved throughthe
credion o scientific smulation codes that are high performance, scdable to hundeds of nodes and
thousands of processors, and able to evolve over time and ke ported to future generations of high
performance computers. The reseach efforts being sought under this Program Notice will take
advantage of extensive information inferred from the complete DNA sequence, such as the genetics
and the biochemicd processes avail able for a well-charaderized prokaryotic microbe; for example,
Escherichia oli (E. coli). This notice encourages applicaions from the disciplines of applied
mathematics and computer science in partnership with microbiology, molealar biology,
biochemistry and structural and computational biology to combine information avail able on a well
charaderized prokaryotic microbe with advanced mathematics and computer scienceto enable this
new understanding. This annourcement is being issued in parallel with Program Notice 01-20, the
Microbia Cell Projed. Together, they represent a planned first step in an ambitious effort to
understand the functions of the proteins in a prokaryotic microbia cdl, to understand their
interadions as they form pathways that carry out DOE-relevant adivities, and to eventualy build
predictive models for microbia adivities that addressDOE misson reedls.

Different godsof the projed:

Goal 1: Identify and Charaderize the Moleaular Machines of Life -- the Multi protein Complexes
that Exeaute Cell ular Functions and Govern Cell Form

Goal 2: Charaderize Gene Regulatory Networks

Goa 3: Charaderize the Functional Repertoire of Complex Microbial Communities in Their
Natural Environments at the Moleaular Level

Goa 4. Develop the Computational Methods and Capabilities to Advance Understanding o
complex Biologicd Systems and Predict Their Behavior:

Category Research Goal
Sequencing Informatics - Automated microbial genome
assembly

Laboratory Information Management
Systems (LIMS)

Sequence Annotation « Consistent gene finding, especially for
translation start

Identification of operon and regulon
regions

Promoter and ribosome binding-site
recognition

Repressor and activator-site prediction

Structural Annotation - High-throughput automated protein-
fold recognition

Comparative protein modeling from
structure homologs

Modeling geometry of complexes from
component proteins




Category

Research Goal

Functional Annotation

Computational support for protein
identification, post-translational
modification, and expression
Protein-function inference from
sequence homology, fold type, protein
interactions, and expression

Methods for large-scale comparison of
genome sequences

Mass spectrometry LIMS and analysis
algorithms

Image analysis of protein interactions
and dynamics

New Databases

Environmental microbial populations
Protein complexes and interactions
Protein expression and post-
translational modification

Data Integration

Tools interoperation and database
integration

Tools for multigene, multigenome
comparisons

Automated linkage of
gene/protein/function catalog to
phylogenetic, structural, and metabolic
relationships

Microbial Ecology Support

Statistical methods for analyzing
environmental sampling

Sequence- and expression-data
analysis from heterogeneous samples
Pathway inference from known
pathways to new organisms and
communities

Modeling and Simulations

Molecular simulations of protein
function and macromolecular
interactions

Development of computational tools
for modeling biochemical pathways
and cell processes

Implementation of computational tools
Structural modeling of protein variants
Computational tools for modeling
complex microbial communities

Visualization

Methods for hierarchical display of
biological data:

(System level > Pathway >
Multiprotein machines > Proteins >
MRNA > Gene)

Displays of interspecies comparisons
Visualization by functional pathways
(e.g., DNA repair, protein synthesis,
cell-cycle control)

Tednology Nedals

The Human Genome Projed taught that evolutionary improvement in existing techndogies




(e.g., DNA sequencing) can have arevolutionary impad on science The systems approach taken
by the Genomesto Life program dictates that existing techndogies (some of which are described in
Appendix A) must evolve to a high-throughpu capability. In addition, revolutionary techndogies
need to be developed, incorporating new modes of robatics and automation as well as advanced
information and computing techndogies. The followingisalist of some key high-throughpu
techndogies.

DNA, RNA, Protein, Protein Madine, and Functional Analyses and Imaging

- High-throughpu identification d the componrents of protein complexes; mass pedrometry, new
chip-based analyses, and cgpture assys

- Parallel, comparative, high-throughpu identification d DNA fragments amongmicrobia
communities and for community charaderizaion

- Whale-cdl imaging; novel imaging techndogies, including magnetic resonance opticd, confocd,
- soft X-ray, and eledron microscopy; and rew approaches for in vivo mapping d spatial proximity
- New techndogies for mapping contad surfaces between proteinsinvolved in complexes or
moleaular madines (e.g., FRET and reutron scdtering)

- Functional assays, development of novel techndogies and approaches for defining the functions
of genes from uncultured microorganisms

Sampli ng and Sample Production

- Approadhes for recovering RNA and high-moleaular-weight DNA from environmental samples
andfor isolating single cdl s of uncultured microorganisms

- Advances in separation techniques, including new techniques to capture targeted proteins, and
high-affinity ligands for all gene products

- Improved approaches for studying proteinsthat are hard to crystalli ze (e.g., membrane proteins)

Informatics, Modeling, and Simulation

- Algorithms for genome assembly and anndation and for bioinformatics to measure protein
expresson and interadions

- Standardized formats, databases, and visuali zation methods for complex biologicd data sets,
including expresson profiles and protein-protein interadion ceta

- Moleaular modeling methods for long-timescde, low-energy maaomoleaular interadions and for
prediction d chemicd readion pathsin enzyme adive sites

- Methods for automated coll edion and integration d biologicd datafor cdl-level metabalic
network analysis or pathway modeling; improved methods for smulation, analysis, and

visuali zaion d complex biologicd pathways, and methods for prediction d emergent functional
cgpabiliti es of microbia communities. ”

Advanced Application: Electronic Cell

This applicaion is able to process differential equations that model a molealar
transformation (A + E -> A' + E), a complex formation (A + B -> AB), adissciation (AB -> A +
B) and an enzymatic readion (A + B+ E->C+ D + E) (Figure 1).
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Figure 1. (1) concentrationsin ore compartment - (2) interactions(3) balancereaction - (4)
speal of nonenzymatic reactions (5) speed of Michaelis-Menten reaction

Moreover, e-cdl alows the groupng o moleaules in compartments. Also, the moleaules

can be transported from one wmpartment to ancther (Figure 2).
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Figure 2: (1) moleaule transportation into the same compartment
(2) moleaule transportation ketween two compartments
nucleotide biosynthesis,

There ae six metabdic pathways included into the system
phosphdipid biosynthesis, amino add biosynthesis, energy metabolism and gene expresson
System. Like this, the biologist can couped its own metabadlic pathway models to the whole system

(Figure 3).

@

Figure 3. pre-exdli ngmetabdlcpathwaysm e-cdl.

The moleaules, readions and compartments are describe in a text file cdled “rule file”. The
e-cdl system analyzes this file (the source ®mde looks like C or C++) and alows a dynamic

simulation d the moleaule concentrations (Figure 4).



Information flow in the E—Cell System
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Figure 4: Information flow in the E-Cell System.

The interfacepermits the wntrol and the observation d the system (Figure 5).
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Figure 5: 1) Smulator control, 2) switches for gene exresson (on/ off)
3) curves of moleaule ancentrations - 4) one moleaule information,
5) activity of the moleaular reactions.

Advanced Application: Virtual Cell

Introduction

RCAM has creaed a remote user modeling and smulation environment utili zing Java's
Remote Method Invocaion (RMI). Users can creae biologicd models of various types and run
simulations on a remote server. A transparent general purpose solver is used to trandate the initial
biologicd description into a set of concise mathematicd problems. The generated results are stored
on the remote server and can be reviewed in the software and/or exported in a variety of popuar



formats.
The Virtual Cell software is decomposed into threemain comporents:

1. Modeling Framework

2. Mathematics Framework

3. WWW Interface
Biologicd Oriented Interface
Integrated Math Editor

1. The modeling framework represents the physiologicd models of the virtual cdl and
allowsfor persistence and dhtabase suppat.

2. The mathematics framework transparently solves an important class of mathematicd
problems encountered in the célular modeling.

3. The WWW accesble graphicd user interface provides access to the tedindogy
mentioned above. The user interfacehas been developed using Java 2 Applets.

The biologicdly oriented user interface dows experimentalists to creade models, define
cdlular geometry, spedfy simulations, and analyze smulation results. There is a Math Editor
comporent which has been integrated within the biologicd interface The design d the biologicd
to mathematicd mapping al ows for separate use of biologicd and math comporents, and includes
automatic mathematica simplificaion using pseudo-steady approximations and mass conservation
relationships. This alows for dired spedficaion o mathematicd problems, performing
simulations and analysis on those systems. Equations may still be generated automaticdly from the
biologicd interface The stand alone mathematics user interface is aso a tod for modeling
readion-diffusion systems.

Virtual Cell Modeling Scheme

BioModel -____
{structure, Specles, Mechaniam) |~ ===-_ —-.'E_’fhf.‘.'.r
(s —p T -
(@ *» & ~# MathModel
Application(s) Math Description

: M apping
. q—2RRng Geometry Mapping

v v
Math Description(s) Simulation(s)

[Math overriden )

L J i
Simulationis) T
(Math averrides) Resulis

Fesults

Different steps neaded to devdop asimulation

1. The BioModel contains all the necessary information reeded to define the biologicd
model, i.e. spedes, compartments, readions, fluxes:
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2. The Geometry Editor is the main workspace for creding geometries. Crede new
Geometries from uploaded experimental images or from analyticdly defined Geometries. Use the
Geometry Viewer/Editor for viewing you Geometries and for defining you analytic Geometries.
The Geometry Database displays the Geometries and any associated files, i.e. BioModels, math
models. You may open and delete only Geometries from within the Geometry Database panel
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3. The Application establi shes the relationship between the BioModel and Geometry:
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4. Credion d the mathematicd code acording to the Virtual Cell Math Description Language,
VCMDL, in the Math Workspace VCMDL is a dedarative mathematics language, which has been
developed to concisely describe the dass of mathematicd systems that are encourtered in the
Virtual Cell projed. Thislanguage defines parameters, independent variables, differential/agebraic
systems defined over a complex geometry including dscontinuows lutions and membrane
boundries and the description d the task to perform on such a system:

Geometry
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SubDomains
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Cytosol
. ExtraCellular .

Size (microns) (17.0,621)

Origin (microns) (0.0,0.0)

MathDescription { -~

Constant J0 0.014;

Constant  Kc 0.5;

Constant Vmax - dooo.o;

Constant kP 0.25;

Constant Ca Rest 0.1: =
4 3

sEneel

Currently six integration methods are avail able to solve differentia equations:
- Forward Euler (first order)

- Runge-Kutta (second ader)

- Runge-Kutta (fourth arder)

- Adams-Moulton (fifth order)

- Runge-Kutta-Fehlberg (fifth order)

- LSODA (Variable order, Variable Time Step)

5. Run Simulations for Compartmental and Spatial models:
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The main problem of these gplicaions is that they represent a cdl li ke a “soupe” where spatia
structuration and medianicd asped are negleded. We think that these aspeds are essntia to
understand the whole cdl fonctioning. That why, the next chapters will i ntroduce mwmputational
approadhes that could be used to get a more redistic representation of a cdl: readion-diffusion
systems, cdlular automata and multiagents g/stems.

Reaction-diffusion (from Ref)

Principles

In his article of 1952" The chemicd bases of the morphogenesis *, Turing propcses a
mathematica theory of the interadion between cdls via chemicd substances [TUR52]. He shows
that its gystem can express s$able states and propasesit as a passhle medanism of devel opment of
cdlular configuration (multi-cdlular organisms) in forming. A readion-diffusion system shows
how two or more chemicd spedes diffusing on a n-dimensional space ad reading with ore
ancther can form many stable, cyclic or chaotic patterns. These patterns are formerly used to
describe signals in multi-cdlular organisms to control their growth. This model is the source of
developments as those of Meinhardt [MEI82] onto the forming o biologic patterns, of Linen
[LIN88] onthe chimiotadism, Bard [BAR81] onthe generation o zebra fur, Murray [MURS81] on
the forming d pattern in the wings of butterflies or De Boer [DEB89] onthe cdlular divison.



The basic form of a diffusion-readion system involves two chemicd spedes that diffuse in
one or more dimensions and reac together acording to the foll owing equations:

da 2
—=Fab)+D V- a
ar a

9% _ Glab + D, Vb
ot

where a and b represent the concentration o two chemicd spedes. The first equation
indicates that the variation o the a concentration duing the time depends on a function F of the
locd concentrations of a and b plus the diffusion d a from places neaby. The @mnstant D, indicates
how fast aisdiffusing (D.is bounded by Oand 1). The Lapladan [J? determines how a is diffusing
acording to the neaby concentration o a. For example, if neaby places have lower
concentrations, % will be negative and a will diffuse avay from itslocaion.

To smulate this system, we have to digitize the different terms of the equations. The
diffusion term becomes D. (a1 + a , -2a) and the readion term depends on chemicd equations.

Let usgowith aone-dimensional example from Turing:

Aa; = s(16- aby) + Da (a1 + & -2a)
Ab, = S( ab -bi- [3) + Dy (bi+1 + by -Zb)
Here, the system is described using dscrete equations. a is the concentration o a at the

positioni. g is the “cdl” number i among cdls putted linealy. The neighbous of a are a.; and
ai+1. The different parameters have the foll owing values :

i [J[0, 50( to get 500cdls

D. = 22 for moleaule a diffusion

D, = 2 for moleaule b diffusion

s= 2'%to control the balance between reaction and dffusion

B = 12°%for irregularitiesin chemical concentration dongthe cdls.

The figure 6 shows the evolution d the system up to 35000iterations. We natice the
formation o distinct pess and valleys aroundstep 10 000 If we increase the value of s the pegks
and valleys become larger. For different values of 5 , pe&ks and valleys are not at the same place
but arerougHy similar.

S [=1=) (%) . L=1(=](x) S LI(=]x)
Reacticn-Diffusion Simul 1Limi - UBO Reaction-Diffusior Simulat 1 Limi - UBO Reaction-Diffusion Simulat 1 Limi - UBO

molecyle a molecyza [ molecye a
time=0 time = 1500 time=15000

Start / Stop

uuuuuuuuu
time=15000

t=0 t=1000 t = 35000
Figure 6: evolution d the system at 0, 1000and 35000terations. In X there ae the indexes of the
different cdls (from 0 to 360) and iny there is the concentration of ead cdl : g at thetop and b at
the bottom. We can seethe formation of pic and valleys.



A 2 or 3 dmensiona readion-diffusion system is more dtradive for a cdlular modeling.
For example, it could be viewed as a multi-cdlular tissie morphogenesis or as a membrane formation
system. For example, using the Brusslator system (Figure 7), we can obtain tubular patterns. They
could be used to describe the forming of a tubular network in acdl (seethe F. Kepes & Al coursein
this book).
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Figure 7: tubular patterns obtained thanks the Brusselator system [DEC99].

An other example of the readion-diffusion systems is the “chemicd flower” [BOI01] (Figure
8).

Figure 8: four stages of evolution of a chemicd flower made using the Brusselator. We notice
a Turing-like patterns formation.

Inside ared cdl, there ae many concurrent and interading processes. Thus, a multi-models
approach seansto be adapted for cdlular smulation in absence of unified theory. For instance we
can imagine that the readion-diffusion matrix could be an environment for entities like agents
representing hyperstructures. Moreover, these agents could represents nucledion centers or
skeletons for the readion-diffusion process

So, before the descriprion of hyperstrucure, let us ded with an interesting related field of
reseach: cdlular automata. For our artificial cdl, the cdlular automata goproadc is used to model
discrete moleaules. These moleaules are the basic shape of an hyperstructure. Into the next sedion,
we will i ntroduce the cdlular automata concept which is used for the basis of hyperstructure
forming.

Cdlular Automata

Principles

From the theoreticd point of view, Cellular Automata (CA) were introduwced in the late
1940s by John vonNeumann [VNE66]. Before going further, let us clarify the functioning o a
cdlular machine onasimple but very rich example.



A cdlular machine is represented by a n dimensional matrix which contains integer values.
Ead value (at the (i,j) position for in 2D) depends on the values of its dired neighbas (at the (i £
1, £ 1) pasitions). According to these dependancies (rules) and the matrix at time t, the matrix at
time t+1 is generated.

The most popuar 2D cdlular automata is the John Conway's game of life [GAR70]. Here
are the basic rules of this cdlular automata:

For a space(amatrix element) that is“popuated” (valueisl) :
Ead cdl with ore or no reighbasdies, asif by loneliness
Ead cdl with four or more neighbasdies, asif by overpopuation.
Ead cdl with two or threeneighbas survives.
For a spacethat is 'empty’ or “unpopuated” (valueisO) :
Ead cdl with threeneighbas becomes popuated.

These operations are repeaed as often as necessary to observe the evolutions of the matrix
configuration and its patterns. This cdlular automata is very rich in interesting petterns. We show
four of the smplest ones (Figure 9). Every pattern seems to have its own “life” and generaly are
cdled baet, oscill ator or glider.
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Figure 9: Examples of patternsin the game of life

More theoreticdly, “cellular automata ae discrete dynamicd systems and are often
described as a counerpart to partial differential equations, which have the aility to describe
continuows dynamica systems. The meaning o discrete is that, spacetime and properties of the
automaton can have only a finite number of states. The basic ideais to describe a @mplex system
by smulating interadion o cdls following easy rules. Thus, maaomoleaules and their interadions
between ore ancther are locdly defined to allow the anergence of hyperstructures. In ather words:

We do nd describe a complex system with globd equations, but let the complexty emerge
frominteraction between smple individud rules.

Pradicdly, the esentia properties of a CA are:



- aregular n-dimensional lattice, where eab cdl of thislattice has a spedfic state,

- adynamicd behavior, described by neighbahoodrules. These rules describe the state of a
cdl for the next time step [SCH99.

Celular automata can be mathematicdly formalized (Equation 2). Therefore, some
properties could be founda priori like symnetry, revasible rules, isng model, nonergodcity or
period douling [VIC84].

() L={(i,j)|ijON,0<i<n 0<j<m} 2 N; ={(k)) OL | [ki|<land |I-j| 1}
Q) zj (t+1) ={ 1, if (zi1;(t) + Zj2 (1) + 2; (1) ) = Celse O}

Equation 2: L isam.n matrix, N isthe neighbahood dfinitionand zisthe rule of cdl evolution.

Wolfram divides the célular automatainto 4 classes [WOL84):

Class1 - limit paints ( Evolvesto hanogeneous gate)

Class2 - limit cycle ( Evolvesto simple separated periodic structures)

Class3 - chaotic - "strange" attrador ( Yields chaotic goeriodic patterns)

Class4 - more complex behavior ( Yields complex pattern of locdized structures)

Many applications using cdlular automata have been developed. An interesting choice for
thiscourseisa celular automata modeling an artificial immune system.

« A Computer Model of Célular Interactions in the Immune System» F. Celada and
P. Seiden [CEL 92b].

F Celada and P. Seiden have developed since 1992a smulator (ImmSm) alowing to study
the humoral answer. The purpose of this cdlular machine is to reproduce immune phenomena
occurring within the lymphatic gangions. It consists of a set of compartments arranged in a
bidimensionrgl grid. Each compartment can have various "values' acmrding to what it represents
(Figure 10). It can be the representation d a moleaule or a cdl. The modeled cdls are B-cdls,
memory B-cdls, plasmocytes, T-cdls and antigen presenting cdls. The modeled moleaules are the
moleaules of antigens and antibodes. Each cdl has a recetor which is represented by a string o
binary charaders alowing a variety of the moleaular diversity. Each of the antities is initially
placel at randam on the grid. Then, the interadions between neaby entities are estimated (the
interadions are probabili stic and depend onthe equivalence of bath involved receptors. Then, the
interadions become possble only for the entities being onthe same compartment (it is abou a
modificaion d the rules of the cdlular machines: here a @ompartment changes of state acording to
the entities which it contains). Finaly, the entities can move from a compartment into ancather. This
sequenceis repeded as often as necessary.

The simulator of Celada and Seiden was used in 1997to ched a theory on the paradox
abou the rhumatoide fador [STE9Q7]. The smulation confirms the theory acwrding to which the
rhumatoide fador is auto-regulated withou adding a pathologic entity in the immune system.
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Figure 10: Smulation d humoral answer at two dfferent times. At the left, we observethe
beginning d a immune resporse and & the right we seea clond exparnsion d B-cdls. B-cdls are
in blue, Tinred, macrophagsin green and atigensin gray [ CEL92d

This example shows that cdlular automata are relevant to model and simulate cdlular and
moleaular phenomenon. In this book, there is a description o a cdlular automata for hyperstructure
modeling byVic Norris& Al.

However, many biologicd medanisms are not easly modeled using this approac. For
example, to allow hyperstructure to move, a multiagent approach seens to be more relevant. The
am of such systems is to gather different basic cdls of a cdlular automata into a single and
interading entity named “agent”. Thus, a single entity compound with several moleaular units could
be used to describe the moving of an hyperstructure and their interadions. So, it alows the
emergence of new complex structures.

Multiagents Systems

Principles

In nature, numerous coll edive systems are ale to carry out difficult tasks into dynamic and
varied environments withou any piloting na external control like central coordination [BON94].
We natice it with ant colonies, swarms of wasps or the immune system. The reseache in the field
of Multiagents Systems has two major objedives. The first one cncerns the theoreticd and
experimental analysis of the mecdhanisms of auto-organizaion which take place when several
autonamous entities interad. The second focuses onthe redizaion o distributed systems able to
cary ou complex tasks by cooperation and interadion [FER95].

This approach favours the locd description, where the dedsions are nat taken by a global
observer/controller which has the synthesis of the system, but by ead of the system comporents.
These comporents, cdled agents (Figure 11), have only a partial vison o their environment in
which they evolve. Each agent has a ¢ycle of exeaution duing which it begins by perceving its
locd environment by means of sensors. Then, ac@rding to the information resulting from the
environment and acarding to its internal state, it takes one or several dedsions. A dedsion can
modify the internal state of the agent, its behavior or its morphdogy. A dedsion changes the
environment as well becaise an agent is able to ad locdly aroundit. For example the paws of an
ant modify the position d the agent, its mandibles change the environment by taking o by puting



down an oljed and, thanks to its pheromones, the ant changes its environment (and thus, its own
future behavior and its congeners).

ﬁ 2- Dédson
1- Perception
L&' 3- Action

Figure 11: Cyde perception, dedsion, action d an agent

An agent having superior intellecual abiliti esis cdled cogntive aent. A smple and besic
agent is cdled a readive agent. The limit between readive and cogntive aents is not clealy
established. The most used criterionisthe environment representation used by an agent. An agent is
said readive if it does nat have, or has only in a rudmentary way, a representation o its
environment. On the contrary, an agent is said cognitive if it is able to represent its environment
and to make amap in order to plan its adions. The ayents we use for our works are exclusively
readive becaise they do nd have any representation d their environment and are unable to plan
their deasion.

In spite of these limits, the wlledive, that is all the agents, has the paosshility of making
sensible/interesting dedsions up to a cetain limit. For example, ants build their hill on their own
withou any coordinator. Moreover, the immune system is able to defend an organism against
numerous pathogenic fadors withou the help of a superior system. To sum up, these systems give
evidence of a goodadaptability, stability and robustnessof thisreadive and locd approad.

In spite of all these advantages, the readive multi agent systems are not entirely reliable. For
the immune system, cance's or auto-immune diseases proove it. As for the coagulation system,
haemophlia or thromboses show us their limits. During these dysfunctions, the cdls assume to
make relevant dedsions to asaure the maintening o organisms whereas an ouside observation
shows that they do nd.

From a computer point of view, the multiagent system paradigm comes from the problem of
the olledive intelligence and from the emergence of structures by interadions [PES97]. Thus, the
purpose is to creae computer systems condtituted of simple software dements having the ability to
resolve one or few simple problems. For J. Ferber, the objedive is to give birth to computer
systems able to evolve by interadion, adaptation and self-replicaion based on agents and working
in physicdly distributed universes. With this kind o system, only the alledive can, thanks to the
multiple interadions between agents, lead to a solution. This quditative bre&k between the
individual abiliti es and the olledive patentia is cdled emergence

The study o this emergence is difficult because the conventional logic does not allow to
explain the observed qualitative bredk. Different descriptive and theoreticd works [PES97] were
led bu withou a mathematicd formalizaion o the phenomena. However, the experimenta
charaderizaion o the energenceis possble. Indeed, a qualitative change can be observed to pant
out strong dff erencesin the patential of the wlledive with regardsto the individual one. We natice
such phenomenon even if al the entities have exadly the same ailiti es. One of the smplest
ill ustration corresponds to the simulation d the ant sorting [DEN91]. Thanks to the same basic
behavior, a popuation d artificia ants manages to sort out its brood The brood represents the
larvas of ants which are diff erentiated acarding to their stage of growth.

What it is necessary to nae aowe dl, it is that this orting intervenes only if the number of
artificial ants is important enough In other words, a single ant is unable to sort out on its own
whereas sveral ants can. Here, the hegps made by ants allow to charaderize the phenomenon o
emergence The emergence is one of the key of the agent approach. However, the systems where
the anergenceis redly used remain margina. Indead, no rule of evident causality exists between



theindividual behavior and the lledive one.

The multiagent approach seans to be particularly adapted to the modeling and to the
smulation o moleallar and cdlular phenomenon for different reasons. First, the nations of
environment, autonamous entities, spatial distribution, distribution o roles are esentia in biology
and for a multi agent system. Seoond, interadion and cooperation are central both in biology and in
the multi agent concepts. These simil arities make the multiagent approach a natural bridge between
theworld o biology and that of computer simulation.

The next sedion will describe the development of a multiagent system for hyperstrucure
modeling.

Applications

To represent basic hyperstructure phenomena inside a cdl, the model must take into acount the
aggregation and dissociation of moleaular complexes. It must be computationally efficient to

smulate numerous (> 10% interading molealles and extensive enough to include enhanced
phenomenon like dynamic moleaular shapes, simplified moleaular flows or eledromagnetic fields.
We propose such a system with the following properties:
A moleaule is represented by:

a deformable shape located into a 3D grid

a spedfic behavior acmrding to the difference of chemica spedes

The shape of a moleaule represented by an agent (a moleaule-agent) is based on a continuous 3D
shape or adicrete 3D shape. To be efficiently smulated, a shape must be divided in many elementary
cubes (Figure 12-b) that represents an approximation of the original shape (Figure 12-a).

ol

Figure 12: the left shape (a) is the original shape and the right one (b) is an approximation after a
simple rotation.

An agent has receptors into its shape to get information from its locd environment (Figure 13-a).
According to alocd observation and itsinternal state, it takes dedsions (Figure 13-b).

/ ‘ If (receptl ==true){ lelse{ } ‘
# ‘ If (clock%2==0) {formel} else{forme2}
€Y b) (

Figure 13: the shape has receptors to allow an agent to get information from its loca environment
(a). Acoording to thisinformation and its internal state, an agent can take dedsions (binding,
adivating, moving, creaing a deformation...) (b)

The figure 14 shows a binding/separation of two agents to creae hyperstructures and the figure 15
represents amoleaule adivation.



Figure 14: binding an separation of two agents.

L

Figure 15: adivation of a single moleaule.
The original shape can have two types of deformation:

with internal constraints. Original Shape + Constraints -> New Original Shape -> New Cube
based Shape -> Shape possble into the environment ?-> If it is, accetance of the new
Origina Shape, else cacdation.

With external constraints. Cube based Shape +Constraints -> Deformation forces applied to
the Original Shape -> New Original Shape -> New Cube based Shape -> Possble into the
environment ?-> If yes, acceptance of the new Original, else cancdation.

Example of the transformation Original Shape -> Cube based Shape:

[
S B

3D Pixelisation

—

Original shape Cube-based shape

Example of a deformation coming from internal constraints

3D Pixelisation

Deformed New cube—based
original shape shape
Example of a deformation coming from external constraints

(2) Translation of
exi. consirainis

|

(1) Constraint

(3) 3D Pixelisation

Deformed New cube—based
original shape shape

The basic behavior can modify the Original Shape of the moleaule (internal or external deformation),
the position of the moleaule-agent (X, y, z, rx, ry, rz) acording to itslocd environment (a moleaule
agent looks for 6 trandations, 6 rotations and no move).

More acarrately, it cdculates different stabili ties for ead choice and only one of those is applied.
The spedfic behaviour can be any type of agorithms.

The moleaule-agents live into an environment which is a set of 3D-grids. Each 3D-grid contains data
shared by the agent-moleaules and a moleaule-agent can read data around itself to make dedsions.
For example, it can real into the grid the identification of ead moleaule-agent to dedde if they can
bind together. It can aso take into acomunt an eledromagnetic and other type of fields.

An important part isthe visualization of the 3D-matrix containing the hyperstructures. That is why,
we have developed a 3D viewer to explore the in-silico environment (Figure 16). A classcd 3D
plotter is used to draw the smulation results and a basic simulation controller isincluded (play,



pause, stop).

jex. SimCellD.class

simCell ¥0.0.1 (c) UBO - Limi

Applet started

Figure 16: 3D viewer of our hyperstructure smulator.

We have seen threepossble approadhes to model different cdlular levels / systems. The next
chapter explains how a readion-diffusion system can be merged with a multiagent system into a
multi-cdlular smulator.

Example of an integrated application

«A Simulation Testbed for the Study of Multicdlular Development: the Multiple
Mechanisms of Morphogenesis », Kurt Fleisher and Alan Barr [FLE94].

This paper presents a simulation framework and computational testbed to study multi-
cdlular pattern formation. The gproach combines sveral developmental mechanisms (chemicd,
mechanicd, genetic and eledricd) known to be important for biologicd pattern formation. The
mechanisms are present in an environment containing dscrete cdls which are ale to move
independently (cdl migration). Experience with the testbed indicaes that the interadions between
the developmental mechanisms are important in determining multicdlular and developmental
patterns.

Eadh smulated cdl has an artificial genome whose expresson is dependent only uponits
internal state and itslocd environment. The changes of ead cdl's date and o the environment are
determined by peceavise continuous differential equations. The aurrent two-dimensional simulation
exhibits a variety of multicdlular behaviors, including cdl migration, cdl differentiation, gradient
following, clustering, lateral inhibition and reurite outgrowth.

The next table summaries the modeling framework:




Modeling Framework
(abstraction)

Testbed

(implementation)

Discrete cdls (allows cdl migration)
- cdl geometry

- cdl substructures

-growth cones

- neurites

- 2D circles
- nore
- modeled as gnall cdls

- path o growth cone and communication link between
cdl and gowth cone

Genetic / Cell lineage

- genetic control of cdl operations

- inherit state from parent cdll

- control over orientation o cdl divisions

- asymmetric cdl division

- Parall el Oes w/condtions
- yes

- yes

- not implemented yet

Extracdlular environments
- chemicd

- mechanicd

- 2D readion-diffusion gid

- mechanicd barriers, viscous drag

Céll-cdl interactions
- mechanicd
- chemicd (membrane, proteins)

- eledricd (gap function, synapse)

- collisions and adhesion ketween cdls
- adhesion and contad recogrition

- hot implemented yet

Cell-environment interactions

- chemicd

- mechanicd

- emit, absorb, sense valuesin gid

- cdl-environment colli sions and adhesion

Table 1: the modeling framework and its implementation.

Detail ed implementation:

Cell: A cdl ismodeled as a geometric shape (currently a drcle, with optional neurites) with
agiven resporse to applied forces, aswell asan array of cdl state variables.

Continuous cdl behaviors: Cells exhibit several continuouws behaviors, determined by the
cdl behavior functions

- attempt to move in some diredion (may be limited by colli sion, adhesion a drag)

- attempt to grow in size

- emit or absorb chemicd from the environment

- change amourt of particular proteins in the membrane (eg. Cell adhesion proteins, which
mediate how much this cdl will adhere to ancther cdl)

Discontinuous cdl behaviors (events): The cdl provides functions which determine the
timing d the following events. An event is a discontinuty in the solution, which stops the solver
and may creae or destroy data structures. The timing o events is determined by cdl behavior
functions:

- split (cdl division)

- die

- emit neurite with growth cone

Cell state variables: An array of variables which loosely represent the anourts of proteins



within the cdl. The values of these variables affed the cdl's movements, the timing o events and
the cdl'sinteradion with the environment.

Environment: All the smulated cdls interad within a single global environment. The
environment contains diffusing, reading chemicds, as well as physicd barriers. Within the
smulation, cdls access information abou their environment locdly through an array of locd
environment variables.

Local environment variables. An array of variables which represent the locd environment
of a cdl. The values avail able to the cdl as afunction o time and they depend onthe extracdl ular
environment. Since eab cdl isin adifferent locaion, in general the loca environment of two cdls
will differ. These variations can then lead to different behavior for the cdls, even thoughtheir
genomes’may beidenticd.

The figure 17 shows an example of the development of a multicdlular system using the
Fleischer's smulator:

Figqure 17: Multicdlular growth (discrete cdlsin bue (light)) andreaction-diffusion moleaulesin

red (dark)) into a D environment (black). Threestates of ewolution d the same ssimulation ae
shown here. [FLE95]

Conclusion

The field of cdl smulators is quickly growing. Many applicaions or projeds are launched
or realy to start. They aim to trede the numerous data (numerous in size and diversity) coming from
the high scde moleaular biology to help biologists on the living cdl understanding. We have seen
threemajor modelers/smulators avail able for biologists to compute cdl medanisms and see some of
their principal drawbadks: they do not include spatial and medanicd phenomenon nor self-organized
moleaular structures (like hyperstructures or membranes). Then, to avoid these drawbads, we
introduce, acwrding to the granularity level of cdl modeling, different approades that could be
used: readion-diffusion systems for ionic/atomic descriptions, cdlular automata for small moleaules
representation and multiagents systems for membrane or hyperstructures modeling. One of the
problem is to merge these different approacdhes into an integrated cdl system. Thus, we have seen
how arecant applicaion couple amultiagents s/stem and a readion-diffusion system.

The next step will be the design o multi-levels models to develop a redistic integrated cdl
software system.
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