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Introduction

Objectives of the simulation
Simulation is the experiment on a model. A model represents a simpli fication of a real

phenomenon. Only certain relevant parameters are taken into account and numerous others are
untidy. The simulation of a model has sense only if its behavior is close to the real phenomenon,
that is, if it can approach reality. So, by changing the parameter values of the model, the simulation
allows to infer what would take place in reality under the influence of similar actions.

The simulation has various objectives. First, when the model is validated by the real
experiment, the simulation allows to make numerous and accelerated experiments, with a very
accurate parameter control. Secondly, if the model is incomplete or insuff icient, the simulation
allows to test hypotheses. In that case, it participates in the settling of the model. Numerous fields
of research and industry use the simulation, either for the model development, for the product
settling or either for the forecast of complex phenomena. Aeronautics, motorcar, economy,
chemistry, meteorology, astrophysics, cosmology, nuclear physics or more recently biology use it
frequently.

Simulation and biology
The in-vitro experiment, constitutes for biology the most wide-spread type of simulation.

Cells are taken apart from an organism, then are studied outside, generally in a test tube. Around
the beginning of the 20th century, Michaelis and Menten described the biochemical phenomenon of
enzymatic reaction using differential equations. So, mathematical models became an alternative to
in-vivo or in-vitro experiments. This is the start of the computational biology. Several biological
fields of research use the mathematical tool to describe or explain their phenomenon. For example,
in 1966the first mathematical model describing an immune phenomenonwas developed [HEG66].
A few years later, by 1970 , the immune models based on differential equations became more
complex. In 1974, Jerne [JER74] described his model of the idiotypic network. His model is highly
nonlinear and nosimple analytical solution can be found. The use of the numeric computation then
became anecessity. At the same time, data processing evolves, both from the point of view of the
calculation power and from the languages of development. Several paradigms appear like artificial



li fe, cellular automata, reaction-diffusion system, object programming or multi -agents system.
Thus, it becomes possible to model and to simulate biological mechanisms not by using differential
equations only.

Today, data processing is a useful tool for biology and for the alive world exploration. We
are convinced, and this course tries to show it, that the study of li ving cells can be made partially by
means of computer, that is in-sili co (also called in machina or in-virtuo). We will seehow we can
connect together different computational systems to build an artificial cell . Each system describes a
level of detail for the cell (Table 1):

- reaction-diffusion system allows to model the lower granularity of the cell , that is ionic
and small molecules (from Angstrom to nanometer)

- cellular automata represents the macromolecular level (few nanometers). Macro molecules
are the basic components of hyperstructures

- multiagents system will be used to model the hyperstructure level (several nanometers).
- reaction-diffusion system could be used again to model some tissue morphogenesis.

Perhaps, it could be use to model intra-cellular membrane too.

%LRORJLFDO�/HYHO 'LPHQVLRQ 0RGHO
Ionic / Small molecules 10-10 m Reaction - Diffusion System

Macromolecules 10-9 m Cellular Automata

Hyperstructures & membranes 10-8 to 10-7 m Multiagents System

Membrane & Tissues 10-7 m to 10-5 m Reaction - Diffusion System

Table 1: different possible levels of granularity for an integrated artificial cell modeling

Before the description of the different approaches, we will see ashort state-of-the-art in
software tools aiming to simulate intra-cellular mechanisms. First, we will seethe global objectives
thanks to the Microbial Cell Project, then we will focus on two advanced software applications:
electronic cell and virtual-cell .

Advanced applications

Principle
An advanced application in cell simulation offers software tools to model, simulate and

interpret results. It must be used by biologists without any programming and it offers an intuitive
interface. An advanced application must point out its own limitations, the robustnessof the model
parameters, the link between the model and the simulation and the results accuracy. An advanced
application is integrated when it combines different means of modeling together.

We will see two applications that are integrated and advanced: e-cell [ECE01] and v-cell
[VCE01]. They are based on a differential equation model (see example of Equation 1). The first
one (e-cell ) includes settled metabolic pathways which could be coupled with an hypothetic
biologist pathway model. The second one (v-cell ) uses images (from microscopy) to put the
simulation into the « real » image.

Integrated Project: Microbial Cell Project

From Notice 01-21; Advanced Modeling and Simulation of Biological Systems [MCP01]
 

“ SUMMARY (January 2001): The Off ices of Advanced Scientific Computing Research
(ASCR) and Biological and Environmental Research (OBER) of the Off ice of Science (SC), U.S.
Department of Energy, hereby announce interest in receiving applications for grants in support of



computational modeling and simulation of biological systems.
The goal of this program is to enable the use of terascale computers to explore fundamental
biological processes and predict the behavior of a broad range of protein interactions and molecular
pathways in prokaryotic microbes of importance to DOE. This goal will be achieved throughthe
creation of scientific simulation codes that are high performance, scalable to hundreds of nodes and
thousands of processors, and able to evolve over time and be ported to future generations of high
performance computers. The research efforts being sought under this Program Notice will t ake
advantage of extensive information inferred from the complete DNA sequence, such as the genetics
and the biochemical processes available for a well -characterized prokaryotic microbe; for example,
Escherichia coli (E. coli ). This notice encourages applications from the disciplines of applied
mathematics and computer science in partnership with microbiology, molecular biology,
biochemistry and structural and computational biology to combine information available on a well
characterized prokaryotic microbe with advanced mathematics and computer science to enable this
new understanding. This announcement is being issued in parallel with Program Notice 01-20, the
Microbial Cell Project. Together, they represent a planned first step in an ambitious effort to
understand the functions of the proteins in a prokaryotic microbial cell , to understand their
interactions as they form pathways that carry out DOE-relevant activities, and to eventually build
predictive models for microbial activities that address DOE mission needs.

Different goals of the project:
Goal 1: Identify and Characterize the Molecular Machines of Life -- the Multiprotein Complexes
that Execute Cellular Functions and Govern Cell Form 
Goal 2: Characterize Gene Regulatory Networks 
Goal 3: Characterize the Functional Repertoire of Complex Microbial Communities in Their
Natural Environments at the Molecular Level 
Goal 4: Develop the Computational Methods and Capabiliti es to Advance Understanding of
complex Biological Systems and Predict Their Behavior:
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Technology Needs

The Human Genome Project taught that evolutionary improvement in existing technologies



(e.g., DNA sequencing) can have a revolutionary impact on science. The systems approach taken
by the Genomes to Life program dictates that existing technologies (some of which are described in
Appendix A) must evolve to a high-throughput capabilit y. In addition, revolutionary technologies
need to be developed, incorporating new modes of robotics and automation as well as advanced
information and computing technologies. The following is a li st of some key high-throughput
technologies. 

DNA, RNA, Protein, Protein Machine, and Functional Analyses and Imaging 

· High-throughput identification of the components of protein complexes; mass spectrometry, new
chip-based analyses, and capture assays
· Parallel, comparative, high-throughput identification of DNA fragments among microbial
communities and for community characterization 
· Whole-cell imaging; novel imaging technologies, including magnetic resonance optical, confocal,
· soft X-ray, and electron microscopy; and new approaches for in vivo mapping of spatial proximity
· New technologies for mapping contact surfaces between proteins involved in complexes or
molecular machines (e.g., FRET and neutron scattering) 
· Functional assays; development of novel technologies and approaches for defining the functions
of genes from uncultured microorganisms 

Sampling and Sample Production 

· Approaches for recovering RNA and high-molecular-weight DNA from environmental samples
and for isolating single cells of uncultured microorganisms 
· Advances in separation techniques, including new techniques to capture targeted proteins, and
high-aff inity ligands for all gene products 
· Improved approaches for studying proteins that are hard to crystalli ze (e.g., membrane proteins) 

Informatics, Modeling, and Simulation 

· Algorithms for genome assembly and annotation and for bioinformatics to measure protein
expression and interactions 
· Standardized formats, databases, and visualization methods for complex biological data sets,
including expression profiles and protein-protein interaction data 
· Molecular modeling methods for long-timescale, low-energy macromolecular interactions and for
prediction of chemical reaction paths in enzyme active sites 
· Methods for automated collection and integration of biological data for cell -level metabolic
network analysis or pathway modeling; improved methods for simulation, analysis, and
visualization of complex biological pathways; and methods for prediction of emergent functional
capabiliti es of microbial communities. ”

Advanced Application: Electronic Cell

This application is able to process differential equations that model a molecular
transformation (A + E -> A' + E), a complex formation (A + B -> AB), a dissociation (AB -> A +
B) and an enzymatic reaction (A + B + E -> C + D + E) (Figure 1).



 

Figure 1: (1) concentrations in one compartment - (2) interactions(3) balance reaction - (4)
speed of non enzymatic reactions (5) speed of Michaelis-Menten reaction

Moreover, e-cell allows the grouping of molecules in compartments. Also, the molecules
can be transported from one compartment to another (Figure 2).

  Figure 2: (1) molecule transportation into the same compartment
(2) molecule transportation between two compartments

There are six metabolic pathways included into the system : nucleotide biosynthesis,
phospholipid biosynthesis, amino acid biosynthesis, energy metabolism and gene expression
System. Like this, the biologist can coupled its own metabolic pathway models to the whole system
(Figure 3).

Figure 3: pre-existing metabolic pathways in e-cell .

The molecules, reactions and compartments are describe in a text file called “rule file”. The
e-cell system analyzes this file (the source code looks like C or C++) and allows a dynamic
simulation of the molecule concentrations (Figure 4).



Figure 4: Information flow in the E-Cell System.

The interface permits the control and the observation of the system (Figure 5).

Figure 5: 1) Simulator control, 2) switches for gene expression (on / off)
3) curves of molecule concentrations - 4) one molecule information,

5) activity of the molecular reactions.

Advanced Application: Virtual Cell

Introduction

RCAM has created a remote user modeling and simulation environment utili zing Java's
Remote Method Invocation (RMI). Users can create biological models of various types and run
simulations on a remote server. A transparent general purpose solver is used to translate the initial
biological description into a set of concise mathematical problems. The generated results are stored
on the remote server and can be reviewed in the software and/or exported in a variety of popular

(1)
(2)

(3)

(4)

(5)



formats.
The Virtual Cell software is decomposed into three main components:

1. Modeling Framework
2. Mathematics Framework
3. WWW Interface-

Biological Oriented Interface
Integrated Math Editor

1. The modeling framework represents the physiological models of the virtual cell and
allows for persistence and database support.

2. The mathematics framework transparently solves an important class of mathematical
problems encountered in the cellular modeling. 

3. The WWW accessible graphical user interface provides access to the technology
mentioned above. The user interface has been developed using Java 2 Applets.

The biologically oriented user interface allows experimentalists to create models, define
cellular geometry, specify simulations, and analyze simulation results. There is a Math Editor
component which has been integrated within the biological interface. The design of the biological
to mathematical mapping allows for separate use of biological and math components, and includes
automatic mathematical simpli fication using pseudo-steady approximations and massconservation
relationships. This allows for direct specification of mathematical problems, performing
simulations and analysis on those systems. Equations may still be generated automatically from the
biological interface. The stand alone mathematics user interface is also a tool for modeling
reaction-diffusion systems.

Different steps needed to develop a simulation

1. The BioModel contains all the necessary information needed to define the biological
model, i.e. species, compartments, reactions, fluxes:



2. The Geometry Editor is the main workspace for creating geometries. Create new
Geometries from uploaded experimental images or from analytically defined Geometries. Use the
Geometry Viewer/Editor for viewing your Geometries and for defining your analytic Geometries.
The Geometry Database displays the Geometries and any associated files, i.e. BioModels, math
models. You may open and delete only Geometries from within the Geometry Database panel:

From a photo  to a segmented image 

3. The Application establishes the relationship between the BioModel and Geometry:



4. Creation of the mathematical code according to the Virtual Cell Math Description Language,
VCMDL, in the Math Workspace. VCMDL is a declarative mathematics language, which has been
developed to concisely describe the class of mathematical systems that are encountered in the
Virtual Cell project. This language defines parameters, independent variables, differential/algebraic
systems defined over a complex geometry including discontinuous solutions and membrane
boundaries and the description of the task to perform on such a system:

Currently six integration methods are available to solve differential equations:
- Forward Euler (first order) 
- Runge-Kutta (second order) 
- Runge-Kutta (fourth order) 
- Adams-Moulton (fifth order) 
- Runge-Kutta-Fehlberg (fifth order) 
- LSODA (Variable order, Variable Time Step)

5. Run Simulations for Compartmental and Spatial models:



6. View Results for Spatial and Compartmental simulations:

 

The main problem of these applications is that they represent a cell li ke a “soupe” where spatial
structuration and mechanical aspect are neglected. We think that these aspects are essential to
understand the whole cell fonctioning. That why, the next chapters will i ntroduce computational
approaches that could be used to get a more realistic representation of a cell: reaction-diffusion
systems, cellular automata and multiagents systems.

Reaction-diffusion (from Ref)

Principles

In his article of 1952 " The chemical bases of the morphogenesis ", Turing proposes a
mathematical theory of the interaction between cells via chemical substances [TUR52]. He shows
that its system can express stable states and proposes it as a possible mechanism of development of
cellular configuration (multi -cellular organisms) in forming. A reaction-diffusion system shows
how two or more chemical species diffusing on a n-dimensional space and reacting with one
another can form many stable, cyclic or chaotic patterns. These patterns are formerly used to
describe signals in multi -cellular organisms to control their growth. This model is the source of
developments as those of Meinhardt [MEI82] onto the forming of biologic patterns, of Linen
[LIN88] on the chimiotactism, Bard [BAR81] on the generation of zebra fur, Murray [MUR81] on
the forming of pattern in the wings of butterflies or De Boer [DEB89] on the cellular division.



The basic form of a diffusion-reaction system involves two chemical species that diffuse in
one or more dimensions and react together according to the following equations:

where a and b represent the concentration of two chemical species. The first equation
indicates that the variation of the a concentration during the time depends on a function F of the
local concentrations of a and b plus the diffusion of a from places nearby. The constant Da indicates
how fast a is diffusing (Da is bounded by 0and 1). The Laplacian ∇2 determines how a is diffusing
according to the nearby concentration of a. For example, if nearby places have lower
concentrations, ∇2 will be negative and a will diffuse away from its location.

To simulate this system, we have to digitize the different terms of the equations. The
diffusion term becomes Da (ai+1 + a

i-1
 -2ai) and the reaction term depends on chemical equations.

Let us go with a one-dimensional example from Turing:

∆ai = s (16 - aibi) + Da (ai+1 + a
i-1

 -2ai)

∆bi = s ( aibi - bi - βi) + Db (bi+1
 + bi-1 -2bi)

Here, the system is described using discrete equations. ai is the concentration of a at the
position i. ai is the “cell ” number i among cells putted linearly. The neighbours of ai are ai-1 and
ai+1. The different parameters have the following values :

i ∈ [0, 500[  to get 500 cells
Da = 2-2 for molecule a diffusion
Db = 2-4 for molecule b diffusion
s = 2-10 to control the balance between reaction and diffusion
βi = 12± 0.25 for irregularities in chemical concentration along the cells.

The figure 6 shows the evolution of the system up to 35000 iterations. We notice the
formation of distinct peaks and valleys aroundstep 10 000. If we increase the value of s the peaks
and valleys become larger. For different values of βi , peaks and valleys are not at the same place,

but are roughly similar.

  
t = 0                                      t = 1000                                   t = 35000

Figure 6: evolution of the system at 0, 1000 and 35000 iterations. In x there are the indexes of the
different cells (from 0 to 360) and in y there is the concentration of each cell : ai at the top and bi at

the bottom. We can see the formation of pic and valleys.



A 2 or 3 dimensional reaction-diffusion system is more attractive for a cellular modeling.
For example, it could be viewed as a multi-cellular tissue morphogenesis or as a membrane formation
system. For example, using the Brusselator system (Figure 7), we can obtain tubular patterns. They
could be used to describe the forming of a tubular network in a cell (seethe F. Kepes & Al course in
this book).

Figure 7: tubular patterns obtained thanks the Brusselator system [DEC99].

An other example of the reaction-diffusion systems is the “chemical flower” [BOI01] (Figure
8).

Figure 8: four stages of evolution of a chemical flower made using the Brusselator. We notice
a Turing-like patterns formation.

Inside areal cell , there are many concurrent and interacting processes. Thus, a multi -models
approach seems to be adapted for cellular simulation in absenceof unified theory. For instance, we
can imagine that the reaction-diffusion matrix could be an environment for entities like agents
representing hyperstructures. Moreover, these agents could represents nucleation centers or
skeletons for the reaction-diffusion process.

So, before the descriprion of hyperstrucure, let us deal with an interesting related field of
research: cellular automata. For our artificial cell , the cellular automata approach is used to model
discrete molecules. These molecules are the basic shape of an hyperstructure. Into the next section,
we will i ntroduce the cellular automata concept which is used for the basis of hyperstructure
forming.

Cellular Automata

Principles

From the theoretical point of view, Cellular Automata (CA) were introduced in the late
1940́s by John vonNeumann [VNE66]. Before going further, let us clarify the functioning of a
cellular machine on a simple but very rich example.



A cellular machine is represented by a n dimensional matrix which contains integer values.
Each value (at the (i,j) position for in 2D) depends on the values of its direct neighbors (at the (i ±
1, j ± 1) positions). According to these dependancies (rules) and the matrix at time t, the matrix at
time t+1 is generated.

The most popular 2D cellular automata is the John Conway's game of li fe [GAR70]. Here
are the basic rules of this cellular automata :

For a space (a matrix element) that is “populated” (value is 1) :
       Each cell with one or no neighbors dies, as if by loneliness. 
       Each cell with four or more neighbors dies, as if by overpopulation. 
       Each cell with two or three neighbors survives. 
For a space that is 'empty' or “unpopulated” (value is 0) :
       Each cell with three neighbors becomes populated. 

These operations are repeated as often as necessary to observe the evolutions of the matrix
configuration and its patterns. This cellular automata is very rich in interesting patterns. We show
four of the simplest ones (Figure 9). Every pattern seems to have its own “ li fe” and generally are
called boat, oscill ator or glider.

Figure 9: Examples of patterns in the game of life

More theoretically, “cellular automata are discrete dynamical systems and are often
described as a counterpart to partial differential equations, which have the abilit y to describe
continuous dynamical systems. The meaning of discrete is that, spacetime and properties of the
automaton can have only a finite number of states. The basic ideais to describe a complex system
by simulating interaction of cells following easy rules. Thus, macromolecules and their interactions
between one another are locally defined to allow the emergence of hyperstructures. In other words: 

We do not describe a complex system with global equations, but let the complexity emerge
from interaction between simple individual rules.

Practically, the essential properties of a CA are:

Oscillator

Block

Boat

Glider



- a regular n-dimensional lattice, where each cell of this lattice has a specific state,
- a dynamical behavior, described by neighborhoodrules. These rules describe the state of a

cell for the next time step [SCH99].
Cellular automata can be mathematically formalized (Equation 2). Therefore, some

properties could be founda priori li ke symmetry, reversible rules, ising model, non-ergodicity or
period doubling [VIC84].

(1) L={ (i,j) | i,j ∈N, 0 ≤ i < n, 0 ≤ j < m} (2) Nij = { (k,l) ∈L | |k-i| ≤ 1 and | l - j |  1 } 
(3) zi j  (t+1) = { 1, if (zi-1 j (t) + zi j-1 (t) + zi j  (t) ) = C else 0}

Equation 2: L is a m.n matrix, N is the neighborhood definition and z is the rule of cell evolution.

Wolfram divides the cellular automata into 4 classes [WOL84]:
v Class 1 - limit points ( Evolves to homogeneous state)
v Class 2 - limit cycle ( Evolves to simple separated periodic structures)
v Class 3 - chaotic - "strange" attractor ( Yields chaotic aperiodic patterns)
v Class 4 - more complex behavior ( Yields complex pattern of localized structures)

Many applications using cellular automata have been developed. An interesting choice for
this course is a cellular automata modeling an artificial immune system.

« A Computer Model of Cellular Interactions in the Immune System» F. Celada and
P. Seiden [CEL92b].

F Celada and P. Seiden have developed since1992a simulator (ImmSim) allowing to study
the humoral answer. The purpose of this cellular machine is to reproduce immune phenomena
occurring within the lymphatic ganglions. It consists of a set of compartments arranged in a
bidimensionnel grid. Each compartment can have various "values" according to what it represents
(Figure 10). It can be the representation of a molecule or a cell . The modeled cells are B-cells,
memory B-cells, plasmocytes, T-cells and antigen presenting cells. The modeled molecules are the
molecules of antigens and antibodies. Each cell has a receptor which is represented by a string of
binary characters allowing a variety of the molecular diversity. Each of the entities is initially
placed at random on the grid. Then, the interactions between nearby entities are estimated (the
interactions are probabili stic and depend onthe equivalence of both involved receptors. Then, the
interactions become possible only for the entities being on the same compartment (it i s about a
modification of the rules of the cellular machines: here a compartment changes of state according to
the entities which it contains). Finally, the entities can move from a compartment into another. This
sequence is repeated as often as necessary.

The simulator of Celada and Seiden was used in 1997to check a theory on the paradox
about the rhumatoide factor [STE97]. The simulation confirms the theory according to which the
rhumatoide factor is auto-regulated without adding a pathologic entity in the immune system.



Figure 10: Simulation of humoral answer at two different times. At the left, we observe the
beginning of a immune response and at the right we see a clonal expansion of B-cells. B-cells  are

in blue, T in red, macrophages in green and antigens in gray [ CEL92a]

This example shows that cellular automata are relevant to model and simulate cellular and
molecular phenomenon. In this book, there is a description of a cellular automata for hyperstructure
modeling by Vic Norris & Al.

However, many biological mechanisms are not easily modeled using this approach. For
example, to allow hyperstructure to move, a multiagent approach seems to be more relevant. The
aim of such systems is to gather different basic cells of a cellular automata into a single and
interacting entity named “agent” . Thus, a single entity compound with several molecular units could
be used to describe the moving of an hyperstructure and their interactions. So, it allows the
emergence of new complex structures.

Multiagents Systems

Principles
In nature, numerous collective systems are able to carry out diff icult tasks into dynamic and

varied environments without any piloting nor external control li ke central coordination [BON94].
We notice it with ant colonies, swarms of wasps or the immune system. The researche in the field
of Multiagents Systems has two major objectives. The first one concerns the theoretical and
experimental analysis of the mechanisms of auto-organization which take place when several
autonomous entities interact. The second focuses onthe realization of distributed systems able to
carry out complex tasks by cooperation and interaction [FER95].

This approach favours the local description, where the decisions are not taken by a global
observer/controller which has the synthesis of the system, but by each of the system components.
These components, called agents (Figure 11), have only a partial vision of their environment in
which they evolve. Each agent has a cycle of execution during which it begins by perceiving its
local environment by means of sensors. Then, according to the information resulting from the
environment and according to its internal state, it takes one or several decisions. A decision can
modify the internal state of the agent, its behavior or its morphology. A decision changes the
environment as well because an agent is able to act locally aroundit. For example the paws of an
ant modify the position of the agent, its mandibles change the environment by taking or by putting



down an object and, thanks to its pheromones, the ant changes its environment (and thus, its own
future behavior and its congeners').

2- Décision

3- Action

1- Perception

Figure 11: Cycle perception, decision, action of an agent

An agent having superior intellectual abiliti es is called cognitive agent. A simple and basic
agent is called a reactive agent. The limit between reactive and cognitive agents is not clearly
established. The most used criterion is the environment representation used by an agent. An agent is
said reactive if it does not have, or has only in a rudimentary way, a representation of its
environment. On the contrary, an agent is said cognitive if it i s able to represent its environment
and to make amap in order to plan its actions. The agents we use for our works are exclusively
reactive because they do not have any representation of their environment and are unable to plan
their decision.

In spite of these limits, the collective, that is all the agents, has the possibilit y of making
sensible/interesting decisions up to a certain limit . For example, ants build their hill on their own
without any coordinator. Moreover, the immune system is able to defend an organism against
numerous pathogenic factors without the help of a superior system. To sum up, these systems give
evidence of a good adaptabilit y, stabilit y and robustness of this reactive and local approach.

In spite of all these advantages, the reactive multiagent systems are not entirely reliable. For
the immune system, cancers or auto-immune diseases proove it. As for the coagulation system,
haemophili a or thromboses show us their limits. During these dysfunctions, the cells assume to
make relevant decisions to assure the maintening of organisms whereas an outside observation
shows that they do not.

From a computer point of view, the multiagent system paradigm comes from the problem of
the collective intelli gence and from the emergenceof structures by interactions [PES97]. Thus, the
purpose is to create computer systems constituted of simple software elements having the abilit y to
resolve one or few simple problems. For J. Ferber, the objective is to give birth to computer
systems able to evolve by interaction, adaptation and self-replication based on agents and working
in physically distributed universes. With this kind of system, only the collective can, thanks to the
multiple interactions between agents, lead to a solution. This qualitative break between the
individual abiliti es and the collective potential is called emergence.

The study of this emergence is diff icult because the conventional logic does not allow to
explain the observed qualitative break. Different descriptive and theoretical works [PES97] were
led but without a mathematical formalization of the phenomena. However, the experimental
characterization of the emergenceis possible. Indeed, a qualitative change can be observed to point
out strong differences in the potential of the collective with regards to the individual one. We notice
such phenomenon even if all the entities have exactly the same abiliti es. One of the simplest
ill ustration corresponds to the simulation of the ant sorting [DEN91]. Thanks to the same basic
behavior, a population of artificial ants manages to sort out its brood. The brood represents the
larvas of ants which are differentiated according to their stage of growth.

What it is necessary to note above all , it i s that this sorting intervenes only if the number of
artificial ants is important enough. In other words, a single ant is unable to sort out on its own
whereas several ants can. Here, the heaps made by ants allow to characterize the phenomenon of
emergence. The emergence is one of the key of the agent approach. However, the systems where
the emergence is really used remain marginal. Indeed, no rule of evident causality exists between



the individual behavior and the collective one.
The multiagent approach seems to be particularly adapted to the modeling and to the

simulation of molecular and cellular phenomenon for different reasons. First, the notions of
environment, autonomous entities, spatial distribution, distribution of roles are essential in biology
and for a multiagent system. Second, interaction and cooperation are central both in biology and in
the multiagent concepts. These similarities make the multiagent approach a natural bridge between
the world of biology and that of computer simulation.

The next section will describe the development of a multiagent system for hyperstrucure
modeling.

Applications

To represent basic hyperstructure phenomena inside a cell, the model must take into account the
aggregation and dissociation of molecular complexes. It must be computationally efficient to
simulate numerous (> 104) interacting molecules and extensive enough to include enhanced
phenomenon like dynamic molecular shapes, simplified molecular flows or electromagnetic fields.
We propose such a system with the following properties:
A molecule is represented by:

v a deformable shape located into a 3D grid

v a specific behavior according to the difference of chemical species

The shape of a molecule represented by an agent (a molecule-agent) is based on a continuous 3D
shape or a dicrete 3D shape. To be efficiently simulated, a shape must be divided in many elementary
cubes (Figure 12-b) that represents an approximation of the original shape (Figure 12-a).

 

(a)               (b) 

Figure 12: the left shape (a) is the original shape and the right one (b) is an approximation after a
simple rotation.

An agent has receptors into its shape to get information from its local environment (Figure 13-a).
According to a local observation and its internal state, it takes decisions (Figure 13-b).

 

                (a)                                                   (b)                                           

Figure 13: the shape has receptors to allow an agent to get information from its local environment
(a). According to this information and its internal state, an agent can take decisions (binding,

activating, moving, creating a deformation...) (b)

 

The figure 14 shows a binding/separation of two agents to create hyperstructures and the figure 15
represents a molecule activation.



Figure 14: binding an separation of two agents.

Figure 15: activation of a single molecule.

The original shape can have two types of deformation:

v with internal constraints: Original Shape + Constraints -> New Original Shape -> New Cube
based Shape -> Shape possible into the environment ? -> If it is, acceptance of the new
Original Shape, else cancelation.

v With external constraints: Cube based Shape + Constraints -> Deformation forces applied to
the Original Shape -> New Original Shape -> New Cube based Shape -> Possible into the
environment ? -> If yes, acceptance of the new Original, else cancelation.

Example of the transformation Original Shape -> Cube based Shape:

Example of a deformation coming from internal constraints

Example of a deformation coming from external constraints

The basic behavior can modify the Original Shape of the molecule (internal or external deformation),
the position of the molecule-agent (x, y, z, rx, ry, rz) according to its local environment (a molecule
agent looks for 6 translations, 6 rotations and no move).
More accurately, it calculates different stabili ties for each choice and only one of those is applied.
The specific behaviour can be any type of algorithms.

The molecule-agents live into an environment which is a set of 3D-grids. Each 3D-grid contains data
shared by the agent-molecules and a molecule-agent can read data around itself to make decisions.
For example, it can read into the grid the identification of each molecule-agent to decide if they can
bind together. It can also take into account an electromagnetic and other type of fields.

An important part is the visualization of the 3D-matrix containing the hyperstructures. That is why,
we have developed a 3D viewer to explore the in-sili co environment (Figure 16). A classical 3D
plotter is used to draw the simulation results and a basic simulation controller is included (play,



pause, stop).

Figure 16: 3D viewer of our hyperstructure simulator.

We have seen threepossible approaches to model different cellular levels / systems. The next
chapter explains how a reaction-diffusion system can be merged with a multiagent system into a
multi-cellular simulator.

Example of an integrated application

« A Simulation Testbed for the Study of Multicellular Development: t he Multiple
Mechanisms of Morphogenesis », Kur t Fleisher and Alan Barr [FLE94].

This paper presents a simulation framework and computational testbed to study multi -
cellular pattern formation. The approach combines several developmental mechanisms (chemical,
mechanical, genetic and electrical) known to be important for biological pattern formation. The
mechanisms are present in an environment containing discrete cells which are able to move
independently (cell migration). Experiencewith the testbed indicates that the interactions between
the developmental mechanisms are important in determining multicellular and developmental
patterns.

Each simulated cell has an artificial genome whose expression is dependent only upon its
internal state and its local environment. The changes of each cell 's state and of the environment are
determined by piecewise continuous differential equations. The current two-dimensional simulation
exhibits a variety of multicellular behaviors, including cell migration, cell differentiation, gradient
following, clustering, lateral inhibition and neurite outgrowth.

The next table summaries the modeling framework:



Modeling Framework

(abstraction)

Testbed

(implementation)

Discrete cell s (allows cell migration)

- cell geometry

- cell substructures

-growth cones

- neurites

- 2D circles

- none

- modeled as small cell s

- path of growth cone and communication link between
cell and growth cone

Genetic / Cell li neage

- genetic control of cell operations

- inherit state from parent cell

- control over orientation of cell divisions

- asymmetric cell division

- Parallel Oes w/conditions

- yes

- yes

- not implemented yet

Extracellular environments

- chemical

- mechanical

- 2D reaction-diffusion grid

- mechanical barriers, viscous drag

Cell -cell i nteractions

- mechanical

- chemical (membrane, proteins)

- electrical (gap function, synapse)

- colli sions and adhesion between cell s

- adhesion and contact recognition

- not implemented yet

Cell -environment interactions

- chemical

- mechanical

- emit, absorb, sense values in grid

- cell -environment colli sions and adhesion

Table 1: the modeling framework and its implementation.

Detailed implementation:

Cell : A cell i s modeled as a geometric shape (currently a circle, with optional neurites) with
a given response to applied forces, as well as an array of cell state variables.

Continuous cell behaviors: Cells exhibit several continuous behaviors, determined by the
cell behavior functions

- attempt to move in some direction (may be limited by colli sion, adhesion or drag)
- attempt to grow in size
- emit or absorb chemical from the environment
- change amount of particular proteins in the membrane (eg. Cell adhesion proteins, which

mediate how much this cell will adhere to another cell )

Discontinuous cell behaviors (events): The cell provides functions which determine the
timing of the following events. An event is a discontinuty in the solution, which stops the solver
and may create or destroy data structures. The timing of events is determined by cell behavior
functions:

- split (cell division)
- die
- emit neurite with growth cone

Cell state var iables: An array of variables which loosely represent the amounts of proteins



within the cell . The values of these variables affect the cell 's movements, the timing of events and
the cell 's interaction with the environment.

Environment: All the simulated cells interact within a single global environment. The
environment contains diffusing, reacting chemicals, as well as physical barriers. Within the
simulation, cells access information about their environment locally through an array of local
environment variables.

Local environment var iables: An array of variables which represent the local environment
of a cell . The values available to the cell as a function of time and they depend onthe extracellular
environment. Since each cell i s in a different location, in general the local environment of two cells
will differ. These variations can then lead to different behavior for the cells, even though their
genomes”may be identical.

The figure 17 shows an example of the development of a multicellular system using the
Fleischer's simulator:

  

Figure 17: Multicellular growth (discrete cells in blue (light)) and reaction-diffusion molecules in
red (dark)) into a 2D environment (black). Three states of evolution of the same simulation are

shown here. [FLE95]

Conclusion

The field of cell simulators is quickly growing. Many applications or projects are launched
or ready to start. They aim to treate the numerousdata (numerous in sizeand diversity) coming from
the high scale molecular biology to help biologists on the living cell understanding. We have seen
threemajor modelers/simulatorsavailable for biologists to compute cell mechanisms and seesome of
their principal drawbacks: they do not include spatial and mechanical phenomenon nor self-organized
molecular structures (like hyperstructures or membranes). Then, to avoid these drawbacks, we
introduce, according to the granularity level of cell modeling, different approaches that could be
used: reaction-diffusion systems for ionic/atomic descriptions, cellular automata for small molecules
representation and multiagents systems for membrane or hyperstructures modeling. One of the
problem is to merge these different approaches into an integrated cell system. Thus, we have seen
how a recent application couple a multiagents system and a reaction-diffusion system.
The next step will be the design of multi -levels models to develop a realistic integrated cell
software system.
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