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1 Introduction

To face the frequent lack of quantitative data on the behavior of gene net-
works, Thomas introduced in the 70°s a boolean method allowing to capture
the main qualitative features of the dynamics of such systems [48]. He proved
its usefulness in the context of lambda phage genetic switch [48, 55, 50, 49,
54, 47]. The boolean idealization being frequently too caricatural to give real-
istic dynamical models, later on, he generalized his formalism to multivalued
levels of expression [54, 52, 56]. The Thomas’ method has been used to model
a number of genetic systems, for instance involved in the embryonic develop-
ment of Drosophila melanogaster [40, 38, 39], the flowers morphogenesis in
Arabidopsis thaliana [22], or the immune response [19, 18, 54, 23, 21].

Thomas describes gene networks in terms of graphs. On one hand, the
topology of a network is described by an interaction graph: nodes correspond
to genes, and arcs to their interactions (either positive or negative). On the
other hand, the dynamics of the network is described by a state transition
graph: the set of nodes (which is finite) corresponds to the possible states for
the network, and the edges correspond to transitions of state which can occur
with time. In practice, the dynamics are derived from the interaction graph
thanks to logical parameters describing the strength of the interactions.

In this note, we briefly present the Thomas’ logical method, using mostly
the definitions of [5]. We then focus on the problem of the determination of
the value of the logical parameters. These are indeed most often unknown
and difficult to extract from experimental data. First, we show that some
information about the dynamics of a network can be inferred from its interac-
tion graph, in the absence of information on the value of parameters. Then,
we present a computational approach, based on formal methods, for the de-
termination of parameters which define dynamics coherent with the known or
hypothetical behaviors of the system.

2 Generalized logical method

We are interested by the evolution of a gene network containing n genes.
These are identified to integers from 1 to n.



2.1 Interaction graph and sigmoidal regulations

The topology of the network is described by an interaction graph G : the
nodes correspond to the genes, and each edge a — b is labelled by a sign s;.
A positive (resp. negative) sign means « is an activator (resp. inhibitor) of b.
Figure 1 gives an example of interaction graph.

If a is an activator of b, then an increase of the concentration of the pro-
tein A encoded by gene a induces, generally following a sigmoidal curve, an
increasing of the rate of synthesis of the protein encoded by b [58, 54, 10].
So A has a quasi null effect on gene b if the concentration of A is below a
threshold 6, (corresponding to the inflection point of the sigmoid) and a quasi
saturated effect above it. If a is an inhibitor of b, the sigmoid is decreasing.
The presence of thresholds leads to a natural discretization of concentrations
described in Figure 2. This discretization is at the basis of the logical method.

2.2 States and thresholds

Because of the sigmoidal nature of genetic regulations and the resulting dis-
cretization, we associate to each gene « a finite interval of integers

X, =1{0,...,b}

which corresponds to the possible discrete levels of concentration for the pro-
tein A. In the following, we just say that X, is the set of possible levels for a.
The set of possible states for the network is then X = X; x --- x X,,. The
level of a at state z = (x4, ..., z,) € X is given by the component z, € X,.
In the boolean case, b, = 1 s0 a is either present (x, = 1) or absent (x, = 0).

We also associate to each interaction a — b a logical threshold

O € {1,...,ba}.

At state x, the interaction a — b is effective if and only if z, > 6,,. The set
of effective regulators of « at state « is then

we(z) ={b € Gy : xp > by},
where G, denotes the set of predecessors of « in the interaction graph G.

The interaction graph G together with the bounds b, and the thresholds 6,
forms a regulatory graph G (see Figure 3). Given such a graph, we know the
set of states of the network (thanks to the bounds), and we know, at each state,
which are the effective regulators (thanks to G and the thresholds).



Figure 1: An interaction graph G.
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Figure 2: Sigmoid regulations for the interaction graph of Figure 1 and the
corresponding discretization of concentrations. The alternative case where
0. < B4, leads also to three possible discrete levels of concentration for A.
The singular case where 6,, = 0, leads to only two possible discrete levels
of concentration for A (0 and 1).



2.3 Logical parameters

At state x € X, the evolution of the level x, only depends on the set of effec-
tive regulators w,(z). The effect of w,(z) on the evolution of z, is described
by a logical parameter

ka(wa(x)) € X,.

This parameter corresponds to the level toward which z, evolves:
1. If 2, < ko(wa(x)) then z, is increasing.
2. If x4 > ky(w,(x)) then x, is decreasing.
3. If 2, = ky(w,(x)) then z, is stable.

A parameterization of G is then a map & which associates to each gene a and
to each set of predecessors R C G|, an integer k,(R) € X,. Figure 4 gives an
example of parameterization.

Activatory and inhibitory effects are encoded by constraints on parameters:

1. If bis an activator of a, we must have:

VR C Go,  ka(R) < ko(RU{D});

2. If bis an inhibitor of ¢ we must have:

VRC Ga,  ku(R) > ka(RU{B}).

These constraints mean that the effectiveness of an activator of a cannot de-
crease the level toward which z, evolves, and that the effectiveness of an in-
hibitor of a cannot increase the level toward which z, evolves. A parameteri-
zation satisfying these natural constraints is said coherent (see Figure 5).

2.4 Asynchronous state graph

Given a coherent parameterization £ of G, the dynamics of the network is
finally explicitly described under the form of a directed graph on X called
asynchronous state graph and denoted I'(G, k): the set of nodes is the set of
states X, and there is a transition (an edge) x — y if there exists a gene a
such that x, # k,(w.(z)) and such that:

y=(z1,...,xa+1,...,2,) ifz, <ki(w,(z)),
y=(x1,..., 0, — 1,...,2,) ifx, > ki(w.(x)).
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Figure 3. A regulatory graph G derived from the interaction graph G of Fig-
ure 1 (the bounds are b, = 2 and b, = 1; the thresholds are 6,, = 1, 0, = 2
and 0,, = 1). The table gives the set of effectlve regulators of « and b accord-
ing to the state © = (z,, x;) of the network.

{a}  {a}
{a,b}  {a}

NN == OO
_— o= OO
~
Q
—

Parameterization &

ka(0) =2

ka({a}) =2 k(D) = 1
ka({0}) =0 ky({a}) =0
ka({a,b}) =0

Ta T ka(wa(z)) kp(wp(z))
0+ O+ | kq(0) =2 k() =1
0 1 |[ka({b}) =0|k®) =1
1+ 0+ | ky({a}) = ky(0) =
1= 1 | k({a,b}) =0 | k(D) =
2 0 |ka{a}) =2|k({a}) =
2— 1- | ka({a,0}) =0 | kp({a}) =

Figure 4. A parameterization £ for the regulatory graph G of Figure 3. In
the table, a sign + (resp. —) is associated to expression levels which are
increasing (resp. decreasing). The absence of sign denotes the stability.

j— ka({b}) < ka(0) < ka({a})
+C@v@ ka({b}) < ka({a,b}) < ko({a})

= ko({a}) < ks (0)

Figure 5. Constraints on the parameters induced by the sign of the interac-
tions. The parameterization of Figure 4 satisfies these constraints.



This description of the dynamics is based on the fact that evolution of each
expression level needs a delay since it involves complex biological phenom-
ena which are not instantaneous. These delays are most often unknown, but
they are a priori mutually distinct. In these conditions, if z, # k,(w.(x)), the
delay that =, needs to evolve may be the smallest, and this case is taken into
account through the presence of a transition from z to

(X1, xa+1,.00m,) OF (xq,...,2q —1,...,2,)

according to whether =, < k,(w,(z)) or z, > k,(wa(x)). Since delays are
supposed distinct, at each step, there is only one gene whose expression level
evolves. This is why the state graph is said asynchronous. (The fact that
expression levels evolve per unit is inspired from continuous descriptions.)
Figure 6 gives an example of asynchronous state graph.

2.5 Stable states and attractors

The states = without successor in I'(G, k) are of particular interest: they cor-
respond to the stable states of the network. In Figure 6, there are two stable
states, and all the paths lead to one of them. This describes a simple epigenetic
switch. The genes a and b inhibit each other. If a “wins” the system reaches
the stable state 20, and if b “wins” the system reaches the stable state 01. If
these stable stables correspond to different cellular behaviors, the dynamics
mays describe a simple differentiation process.

There are other interesting regions of stability in T'(G, k) called trap domain
and attractors. A trap domains is a subset of states 7" C X such that, for all
transitions x — vy, if x € T theny € T. A trap domain is thus a set of states
that we cannot leave. An attractor is a smallest trap domain with respect to
the inclusion relation (see Figures 7 and 8).

The notion of attractor extends the notion of stable state since x is a stable
state if and only if {x} is an attractor. Other easy observations follow (the
second show why, in a weak sense, attractors perform an attraction):

1. There is always at least one attractor (since X is itself a trap domain).

2. From each state, there is at least one path which leads to an attractor.

3. Attractors are strongly connected components (if = and y belong to the
same attractor, then there is a path from x to y and a path from y to x).

4. Attractors are mutually disjointed.
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Figure 6: Asynchronous state graph I'(G, k) associated to the regulatory graph
G and the coherent parameterization & (which is the one of Figure 4).



In Figure 7, the asynchronous state graph contains two attractors, and this
situation may also described an epigenetic switch. Note that one of the at-
tractor is not a stable state. Such an attractor is said cyclic since it necessarily
contains cycles (according to the third point). When the system is in a cyclic
attractor, it never reaches a stable state and describes sustained oscillations
by following, ad infinitum, the cycles of the attractors. Such oscillations are
observed in homeostatis phenomena [53].

Summing up, the main properties of the dynamics often concern the attrac-
tors, their number, their relative positions, their nature (stable state, cyclic),
and their reachability from a set of potential initial states.

3 “Theoretical” and “computational” tools

3.1 Positive and negative circuits

In practice, the logical parameters (and the logical thresholds) are most often
unknown. An interesting question is then: which dynamical properties of a
gene network can be inferred from its interaction graph, in the absence of in-
formation on the value of parameters? This question can be partially solved
by studying positive and negative circuits of the interaction graph G.

A circuit in G is positive if it contains an even number of inhibitions, and
negative otherwise. The sign of a circuit is thus the product of the sign of
its edges. For instance, the interaction graph of Figure 1 has two positive cir-
cuits, and the one of figure 7 has one positive circuit and two negative circuits.

René Thomas highlighted the predominant dynamical role of positive and
negative circuits by stating the following two conjectures [51]:

1. A necessary condition for the presence of several stable states is the
presence of a positive circuit in G.

2. A necessary condition for the presence of sustained oscillations is the
presence of a negative circuit in G.

These conjectures are transversal to the considered framework in the sense
that they have been proved in differential frameworks [24, 14, 43, 8, 45, 46,
17], in boolean frameworks [25, 2, 29] and discrete frameworks [46, 28, 30,
34, 31]. The obvious interest of these two rules is that they relate the rather
simple information contained in the interaction graph G of a network to its
much more complex dynamical behaviors.
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Figure 9: An asynchronous state graph with 3 stable states.



With our notations, the Thomas’ conjectures take the following form:

Theorem [34, 31]: For all interaction graph G, for all regulatory graph G
built from G, and for all coherent parameterization k of G:

1. If G has no positive circuit, then I'(G, k) has at most one attractor.
2. If G has no negative circuit, then I'(G, k) has no cyclic attractor.

In fact, if G has no positive circuit, then I'(G, k) contains a unique attractor,
since I'(G, k) always contains an attractor (see the first point in the previous
section). We also deduce from this theorem that if G has no circuit, then
['(G, k) has a unique attractor which is a stable state (conditions for the pres-
ence of a unique stable state are studied in [36, 37, 41, 32]).

The previous theorem is obviously satisfied by the given examples. In Fig-
ure 8, the interaction graph has no positive circuit, and there is indeed a unique
attractor. In Figure 6, the interaction graph has no negative circuit, and there
is no cyclic attractor. The interaction graph of Figure 7 contains positive and
negative circuits. It is thus a priori possible to have several attractors and
cyclic attractors.

It is also possible to extract from the interaction graph G information about
the total number of attractors [1, 2, 33]. For instance, in the boolean case (all
the bounds are equal to 1), if G has p positive circuits, it is known that I'(G, k)
has at most 27 attractors. This bound can be significantly improved by taken
into account connections between positive circuits. Roughly speaking, a high
level of connection between the positive circuits leads to a small number of
attractors. More precisely:

Theorem [33]: If S is a set of genes such that all the positive circuits of G
have a node in S, then T'(G, k) has at most

]l

a€sS

attractors.

So, for example, if all the positive circuits of G share a common node a, then
I'(G, k) has at most | X,,| = b, + 1 attractors.

In Figure 7, there is one positive circuit in G. Since b is a node of this
circuit, I'(G, k) has at most | X;,| = 2 attractors. This bound is reached for
the asynchronous state graph given in the figure. In Figure 6, all the positive
circuits share the gene a, thus I'(G, k) has at most | X,| = 3 attractors. In the
given asynchronous state graph there is only two attractors, but it there is a
coherent parameterization £ which leads to 3 attractors, as shown in Figure 9.



3.2 Temporal logic and model checking

The previous theorems only gives necessary conditions for the presence of
several attractors and/or cyclic attractors. Given a regulatory graph G, they
do not give solution to find coherent parameterizations % such that I'(G, k)
presents these dynamical properties. In order to find such parameterizations,
Thomas and coworkers introduced the circuit functionality constraints [44,
57, 56, 27, 26]. When these constraints are applied on the logical parameters
associated with variables of some positive (resp. negative) circuits, the result-
ing dynamics often contain several attractors (resp. cyclic attractors). These
constraints have been used to model several genetic systems [47, 40, 22, 38].

In this section, we present a complementary (and less technical) approach
to constrain the logical parameters according to observed (or hypothetical)
dynamical properties. It is a computational approach proposed in [5] which
is based on formal methods. First, the observed properties ¢ are translated
into a temporal formula thanks to the use of a temporal logic. Next, given a
regulatory graph G for the network, the coherent parameterizations & of G are
enumerated. Each resulting asynchronous state graph I'(G, k) is then stud-
ied by model checking to check if the temporal formula is satisfied (i.e if the
observed properties & are present). If there is not any parameterization se-
lected by this verification process, it means that the regulatory graph G and
the observations & are inconsistent (and have to be revisited). Otherwise, the
selected parameterizations define consistent dynamics which can be useful to
elaborate predictions and new experiments.

The obvious limitation of this modeling method is that the number of pa-
rameterizations to enumerate is often too huge to consider networks with more
than ten or so genes, even if some functionality constraints are applied (how-
ever, the dynamics of a lot of important networks with less than ten genes
remains globally unknown). The obvious interest is that temporal logic and
model checking allows us to handle automatically rather complex dynamical
properties, and that the method is exhaustive: all the parameterizations of G
consistent with ® are given as output.

The previous modeling method has been implemented in the tool sm-
BIONET [5] with the Computational Tree Logic (CTL) as temporal logic [12]
(the verification step is performed by the model checker Nusmv [7]). This
logic is well suited for the formulation of properties present in undetermin-
istic state graphs, such as the asynchronous state graphs considered here (a
state graph is undeterministic if some states have several successors). The
following gives an idea on the properties that can be expressed with this logic.



The syntax of CTL is inductively defined by:

1. For all genes a and positive integers /,
a=1, a<l, a>1l, a<l, a>l,
are atomic cTL formulas,

2. If ¢ and ¢ are two cTL formulas then

9, ¢NY, VY, b=,
EX(¢), EF(¢), EG(9), E(pU¥),
AX(9),  AR(9),  AG(9),  A(PUY),

are cTL formulas.

The semantic is given by the satisfactory relation |= between the states «
of a given asynchronous state graphs I'(G, k) and the cTL formulas ¢. If
x = ¢ we say that x satisfies ¢ or that ¢ is true at state z. The semantic of
atomic formulas is obvious: for instance, z = (a = ) if and only if z, =
l. The semantic of the logical connectives — (negation), A (conjunction), V
(disjunction), and = (implication) is also obvious: for instance, z = ¢ A ¢ if
and only if z = ¢ and = |= v. The other connectives, made with two letters,
lead to formulas which are satisfied by a state 2 according to the set of infinite
paths of I'(G, k) starting from z :

1. z = EX(¢) if and only if there exists a successor of z satisfying ¢.
x = AX(¢) if and only if all the successors of x satisfy ¢.

2. © = EF(¢) if and only if there exists an infinite path starting from x
which contains a state satisfying ¢.

x = AF(¢) if and only if all the infinite paths starting from x contain a
state satisfying ¢.

3. =z = EG(¢) if and only if there exists an infinite path starting from x
which only contains states satisfying ¢.

x | AG(¢) if and only if all the infinite paths starting from z only
contain states satisfying ¢.

4. x = E(¢y U ¢) if and only if there exists both an infinite path 2z°z'2% . ..
with = 2% and 7 € N such that 2* |= ¢ and 27 |= ¢ forall j < 4.
r = Ay U ¢) if and only if, for all infinite paths 2%z'2? ... with z =
29, there exists i € N such that 2% |= ¢ and 27 |= + for all j < 4.

LAn infi nite path of I'(G, k) is an infi nite sequence of states £x'22, ... such that, for
al k € N, (2%, 281) isan edge of I'(G, k) if 2* has a successor, and 2% = z**+1 otherwise.
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Figure 10: Semantic of temporal connectives (trees regroup the infinite paths
starting from z).

So E and A correspond to existential and universal quantifiers respectively: E
means “for at least one path” and A “for all paths”. The other letters express
properties along the paths: X(¢) means that ¢ is true at the next step, F(¢)
means that ¢ is Finally true; G(¢) means that ¢ is Globally true, and (v U ¢)
means that « is always true until that ¢ becomes true (see Figure 10). If all
the states of an asynchronous state graph I'(G, k) satisfy a given formula, we
said that I'(G, k) satisfies this formula.

For instance, the asynchronous state graph

satisfies the the formula
EF(AG(a=2Ab=0)VAG(a<2Ab>1)) ()
which states that, for all initial state, the system can reach (EF) a state from

which (a = 2Ab = 0)or (a < 2Ab > 1) is always true (AG). So if
this formula is true, then 20 is a stable state and the set of states satisfying



(a < 2Ab > 1) isatrap domain. The previous asynchronous state graph also
satisfies the formula

(a=1Ab=1) = AG(EF(a=1Ab=1)) (1))

which states that, from initial state 11, all the future states (AG) are states from
which 11 can be reached (EF). This formula is true if and only if state 11 be-
longs to an attractor.

Now, consider the regulatory graph G of Figure 7 from which the previous
asynchronous state graph has been obtained:

(e

There are 400 coherent parameterizations & for G which lead to 100 differ-
ent asynchronous state graphs I'(G, k). When the regulatory graph G and the
formula (¢) are given as input of the SMBIONET soft, then 100 parameteri-
zations k are enumerated, one for each asynchronous state graph, and 88 of
them are selected since defining an asynchronous state graph I'(G, k) which
satisfies the formula (¢). If G and the formula (¢)A(w)) are given as input, then
50 parameterizations are selected. Obviously, one of them leads to the asyn-
chronous state graph given above. Such an automatic method has been used
to test hypothesis on the behavior of gene networks in Pseudomonas aerugi-
noza [5, 15]. It has also been used to automatically regain a dynamical model
of a gene network in bacteriophage lambda proposed by Thieffry and Thomas
[47, 35]. For other applications of formal methods to the modeling of gene
networks or other biological systems, one can see [4, 3, 13, 16, 6, 9, 20].

4 Conclusion

Gene networks are often symbolically described by biologists under the form
of interaction graphs. These graphs are then taken as main support to rea-
son about the behavior of the corresponding networks. It is however difficult
to understand intuitively how the dynamical properties of a network emerge
from its interaction graph, especially when several intertwined feedback cir-
cuits are involved.

By focusing on the logic of genetic interactions, the Thomas’ method offers
a simple modeling framework to reason on the dynamics of gene networks.
The precision level of the resulting dynamics, defined on a finite set of states,
is well suited to observations which remain, in a first time, mostly qualitative



and expressed in natural language.

The fact that dynamics are defined on a finite set of states allows the use
of powerful formal methods inherited from computer science. For instance,
temporal logic and model checking techniques can be used to automatically
prove that a given dynamical model has the (formally translated) observed
properties. As we have seen, these methods can be used for the automatic
determination of appropriate logical parameters.

Finally, discrete approach of Thomas can be taken as a first step towards
more accurate descriptions, as those given by piecewise-linear differential
equations systems. Indeed, both approaches are based on the approximation
of sigmoid regulations by step functions. As a result, there exists a discretiza-
tion map which associates to each piecewise linear differential system, an
asynchronous state graph that extracts the main dynamical properties of this
system [42, 44] (see also [11] for a more sophisticated discretization). The
logical parameters then correspond to the discretization of kinetic parameters
and gives precious information about them.
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