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Mathematical models in biology: what for ?

Different purposes =⇒ different approaches

◮ Models as intelligent “Data Base” to store biological knowledge

◮ Models as tools for establishing causality chains

◮ Models as design tools for synthetic biology

◮ Models as guidelines for the choice of experiments

For the 3 last purposes, models can deviate from biological
descriptions, while remaining very useful, because they are
dedicated to the question under consideration.

“Kleenex” models. . .



4 Static Graph v.s. Dynamic Behaviour

Difficulty to predict the result of combined regulations

Difficulty to measure the strength of a given regulation

Example of “competitor” circuits

Multistationarity ?
Homeostasy ?

—

+

+

mucus

+ Alginate Muc-B

Many underlying qualitative models: ≈ 700 qualitative behaviours



5 Mathematical Models and Simulation

1. Rigorously encode sensible knowledge, into ODEs for instance

2. ◮ A few parameters are approximatively known
◮ Some parameters are limited to some intervals
◮ Many parameters are a priori unknown

3. Perform lot of simulations, compare results with known
behaviours, and propose some credible values of the unknown
parameters which produce robust acceptable behaviours

4. Perform additional simulations reflecting novel situations

5. If they predict interesting behaviours, propose new biological
experiments

6. Better tune the model parameters and try to go further

. . . not my cup of tea . . .



6 Mathematical Models and Validation

“Brute force” simulations are not the only way to use a computer.
There are computer aided environments which help:

◮ designing simplified models that can be analytically solved

◮ avoiding models that can be “tuned” ad libitum

◮ constraining models according to experimental data

◮ validating models with a reasonable number of experiments

◮ defining only models that could be experimentally refuted

◮ proving refutability w.r.t. experimental capabilities

To establish a methodology “dry” models ↔ “wet” experiments
one needs to assist reasonning capabilities.



7 Formal Logic: syntax/semantics/deduction

gold=Computer

green=Mathematics

correctness

Rulesproof

Semantics
Models

Syntax

Deduction
proved=satisfied

completeness

Formulae

cyan=Computer Science

M |= ϕ

Φ ⊢ ϕ

satisfaction
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9 Multivalued Regulatory Graphs

Derivatives are sigmoids
w.r.t. the source gene
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10 Multivalued Regulatory Graphs

Derivatives are sigmoids
w.r.t. the source gene
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11 Multivalued Regulatory Graphs

Derivatives are sigmoids
w.r.t. the source gene
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12 Multivalued Regulatory Graphs

Derivatives are sigmoids
w.r.t. the source gene
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13 First simplification: piecewise linear

Approximate sigmoids as step functions:
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Presence of an activator = Absence of an inhibitor
dy
dt

= k0 + k1.1x1>τ1 + k2.1x2>τ2 + k3.1x3<τ3 + k4.1x4<τ4 − γ.y

Solutions of the form Ce−γt + Σ1ki

γ
whose limt→∞ is Σ1ki

γ

As many such equations as genes in the interaction graph

In each hypercube, all the trajectories have a unique attractive
point, which can be outside de hypercube
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Discrete Gene Networks (Thomas & Snoussi)
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ẋ ẏ
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x y

+

1

No help : Kx

x helps : Kx,x Ky ,x

Absent y helps : Kx,y

Both : Kx,xy

+

0

In each state,
a variable v tries to
go toward the interval
numbered Kv ,ω :

the one containing Σ1ki

γ

(x,y) Focal Point

(0,0) (Kx,y ,Ky )
(0,1) (Kx ,Ky )
(1,0) (Kx,xy ,Ky)
(1,1) (Kx,x ,Ky)
(2,0) (Kx,xy ,Ky ,x)
(2,1) (Kx,x ,Ky ,x)

Presence of an activator = Absence of an inhibitor = A resource



15 State Graphs

(x,y) Focal Point

(0,0) (Kx,y ,Ky )=(2,1)
(0,1) (Kx ,Ky )=(0,1)
(1,0) (Kx,xy ,Ky )=(2,1)
(1,1) (Kx,x ,Ky )=(2,1)
(2,0) (Kx,xy ,Ky ,x )=(2,1)
(2,1) (Kx,x ,Ky ,x)=(2,1)

y
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16 State Graphs

(x,y) Focal Point
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(1,0) (Kx,xy ,Ky )=(2,1)
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17 State Graphs

(x,y) Focal Point

(0,0) (Kx,y ,Ky )=(2,1)
(0,1) (Kx ,Ky )=(0,1)
(1,0) (Kx,xy ,Ky )=(2,1)
(1,1) (Kx,x ,Ky )=(2,1)
(2,0) (Kx,xy ,Ky ,x )=(2,1)
(2,1) (Kx,x ,Ky ,x)=(2,1)

y

x

0

1 (1,1)(0,1)

(0,0) (1,0) (2,0)

(2,1)

0 1 2

“desynchronization” −→
by units of Manhattan distance
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18 Multistationarity vs. positive cycles

◮ A cycle in the interaction graph is positive if it
contains an even number of inhibitions

◮ Theorem: if the state graph exhibits several
attraction basins then there is at least one positive
cycle in the interaction graph

◮ Was a conjecture from the 70’s to 2004; proved by
Adrien Richard (and by Christophe Soulé for the
continuous case)
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19 Oscillations vs. negative cycles

◮ A cycle in the interaction graph is negative if it
contains a odd number of inhibitions

◮ Thomas conjecture: if the state graph exhibits an
homeostasy (stable oscillations) then there is at
least one negative cycle in the interaction graph

◮ Was a conjecture from the 70’s to ≈2010.
Counter-examples have been found (A. Richard,
J.-P. Comet, P. Ruet)
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Nonetheless it remains a very useful tip in practice when modelling
biological examples!



20 Caracteristic state of a cycle

Helps characterizing the saddle point (resp. center of the
oscillations) of the behaviour “driven” by a positive (resp. negative)
cycle.

x1

x2s1 x3

x4

s2
s3

s4
xi = treshold

si − 1 | si

Whatever the sign of xi → xi+1, for some set of resources ω
one should have Kxi+1,ω < si+1 6 Kxi+1,ωxi

, all along the cycle

but it remains a heuristic, at least for negative cycles. . .



21 Thomas parameters: exponential number

2i parameters
where i is the in-degree of the gene

∏

genes

(o + 1)2
i

possible parameter values

where o is the out degree of each gene

a b c

d

+
+

−
2

1
3

Kd , ∅
Kd , {a}
Kd , {b}
Kd , {c}

Kd , {a, c}
Kd , {a, b}

Kd , {b, c}
Kd , {a, b, c}

Yeast≈7000 genes Human≈25000 genes Rice≈40000 genes



22

Multiplexes: encode cooperation knowledge

“Proteins of a and b form a complex before acting on d . . . ”

a b c

d

+
+

−
2

1
3

a b c

dKd , ∅
Kd , {a}
Kd , {b}
Kd , {c}

Kd , {a, c}
Kd , {a, b}

Kd , {b, c}
Kd , {a, b, c}

3ma2 ∧ b1

Kd , ∅

Kd , {m}

Kd , {c}

Kd , {m, c}

multiplex name = m

multiplex formula ≡ a2 ∧ b1

abbreviation:

vi ≡ (v ≥ i)

−

8 → 4 parameters



23 Any propositional formula + remove sign

“. . . and c inhibits d whatever a or b”

m′m ∧ ¬c3

a b

ma2 ∧ b1

c

ma2 ∧ b1 ∧ ¬c3

dKd , ∅ Kd , {m}

a b c

d

+
+

−
2

1
3

Kd , ∅
Kd , {a}
Kd , {b}
Kd , {c}

Kd , {a, c}
Kd , {a, b}

Kd , {b, c}
Kd , {a, b, c}

dKd , ∅ Kd , {m′}

a b c

8 −→ 2 parameters,

(o + 1)8 → (o + 1)2 parameterizations



24 The main problem

Exhaustively identify the sets of (integer) parameters
that cope with known behaviours from biological experiments

Solution = perform reverse engineering via formal logic

◮ 2003: enumeration + CTL + model checking
(Bernot,Comet,Pérès,Richard)

◮ 2005: path derivatives + model checking (Batt,De Jong)

◮ 2005: PROLOG with constraints (Trilling,Corblin,Fanchon)

◮ 2007: symbolic execution + LTL (Mateus,Le Gall,Comet)

◮ 2011: traces + enumeration + CTL + model checking
(Siebert,Bockmayr)

◮ 2015: genetically modified Hoare logic + constraint solving
(Bernot,Comet,Roux,Khalis,Richard)
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26 Time has a tree structure. . .

y

x

0

1 (1,1)

(1,0) (2,0)

(2,1)

(0,0)

(0,1)

0 1 2

As many possible state graphs
as possible parameter sets. . .
(huge number)

. . . from each initial state:

(2,1)

(2,1)(1,1)

(2,0)

(1,0)

(0,1)

(0,0)



27 CTL = Computation Tree Logic

Atoms = comparaisons : (x=2) (y>0) . . .

Logical connectives: (ϕ1 ∧ ϕ2) (ϕ1 =⇒ ϕ2) · · ·

Temporal modalities: made of 2 characters
first character second character

A = for All path choices X = neXt state
F = for some Future state

E = there Exist a choice G = for all future states (Globally)
U = Until

AX(y = 1) : the concentration level of y belongs to the interval 1 in all
states directly following the considered initial state.

EG(x = 0) : there exists at least one path from the considered initial

state where x always belongs to its lower interval.



28 Temporal Connectives of CTL

neXt state:
EXϕ : ϕ can be satisfied in a next state
AXϕ : ϕ is always satisfied in the next states

eventually in the Future:
EFϕ : ϕ can be satisfied in the future
AFϕ : ϕ will be satisfied at some state in the future

Globally:
EGϕ : ϕ can be an invariant in the future
AGϕ : ϕ is necessarilly an invariant in the future

Until:
E [ψUϕ] : there exist a path where ψ is satisfied until a state

where ϕ is satisfied
A[ψUϕ] : ψ is always satisfied until some state where ϕ is

satisfied



29 Semantics of Temporal Connectives

(after : ϕ , after : ψ )

t+1

ϕ

AXϕ

ϕ
ϕ

ϕ
ϕ
ϕ

ϕt+1

ϕ

EXϕ

t t
t ϕ

t

t+k

EFϕ

...
......
...
...
......
...

AGϕ

...

EGϕ

...

AFϕ

ϕ

ϕ

ϕ

ϕ
ϕ

E [ψUϕ] A[ψUϕ]

...

...

...

...



30 CTL to encode Biological Properties

Common properties:
“functionality” of a sub-graph

Special role of “feedback loops”
—

y
+

+ x
1 2

1

– positive: multistationnarity (even number of — )
– negative: homeostasy (odd number of — )

y

x

y

x

(0,1) (2,1)(1,1)

(2,0)(0,0) (1,0) (0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)

Characteristic properties:

{

(x = 2) =⇒ AG (¬(x = 0))
(x = 0) =⇒ AG (¬(x = 2))

They express “the positive feedback loop is functional”
(satisfaction of these formulas relies on the parameters K...)



31 Model Checking

◮ Efficiently computes all the states of a state graph which
satisfy a given formula: { η | M |=η ϕ }.

◮ Efficiently select the models which globally satisfy a given
formula.

Intensively used:

◮ to find the set of all possible discrete parameter values

◮ to check models under construction w.r.t. known behaviours
(one often gets an empty set of parameter values!)

◮ and to prove the consistency of a biological hypothesis



32 Model Checking for CTL

Computes all the states of a discrete state graph that satisfy a
given formula: { η | M |=η ϕ }.

Idea 1: work on the state graph instead of the path trees.

Idea 2: check first the atoms of ϕ and then check the connectives
of ϕ with a bottom-up computation strategy.

Idea 3: (computational optimization) group some cases together
using BDDs (Binary Decision Diagrams).

Example : (x = 0) =⇒ AG (¬(x = 2))

Obsession: travel the state graph as less as possible



33 (x = 0) =⇒ AG (¬(x = 2))

x=0 x=2
z
¬(x = 2)

z

x

y

x

y

and AG (¬(x = 2)) ?

. . . one should travel all the paths from any green box and check
if successive boxes are green: too many boxes to visit.

Trick: AG (¬(x = 2)) is equivalent to ¬EF (x = 2)
start from the red boxes and follow the transitions backward.
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35 Simplifications driven by the hypothesis

Biologists spend money and time for experiments because they
have a hypothesis ϕ in mind that they want to test. . .

. . . Successive simplified views of the studied biological object and
of the hypothesis:

Model
M1

satisfies
ϕ1

⇐⇒

Model
M2

satisfies
ϕ2

⇐⇒

Model
M3

satisfies
ϕ3

⇐⇒ . . .



36 Simplifications via gene removing (Naldi)
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37 Simplifications via level folding

folding

0

0 1 2 x
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y

folding
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0 1
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3 4
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38 Simplifications via subgraphs

Embeddings of Regulatory Networks:

x

y

z

t

u

v

x

y

z

t

u

v

Preserved behaviour ?Studied behaviour

Necessary and sufficient condition on the local dynamics of the
“input frontier”

. . . Also fusion of genes, etc.
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40 Standard Hoare logic: swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

→ triple “{P}program{Q}”
precondition P , postcondition Q



41 Standard Hoare logic: swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}

→ “P =⇒ (weakest precondition)” ?



42 Standard Hoare logic: swap(x,y)

y   := aux

aux := x  ;

x    := y   ;
{(aux = x0) ∧ (x = y0)}

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}

→ backward proof strategy



43 Standard Hoare logic: swap(x,y)

y   := aux

aux := x  ;

x    := y   ;
{(aux = x0) ∧ (y = y0)}

{(aux = x0) ∧ (x = y0)}

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}



44 Standard Hoare logic: swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

{(x = x0) ∧ (y = y0)}

{(aux = x0) ∧ (y = y0)}

{(aux = x0) ∧ (x = y0)}

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}



45 Standard Hoare logic: swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

{P}p1; p2{Q}

{P}p1{Q
′} {Q′}p2{Q}

;

{Q[v ← expr ]} v := expr {Q}
:=

{(x = x0) ∧ (y = y0)}

{(aux = x0) ∧ (y = y0)}

{(aux = x0) ∧ (x = y0)}

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}



46 Standard Hoare logic: swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

{P}a1; a2; a3{Q}

{Q1}a3{Q}{P}a1; a2{Q1}

{Q2}a2{Q1}{Q3}a1{Q2}
:=:=

:=

;

;

{P}p1; p2{Q}

{P}p1{Q
′} {Q′}p2{Q}

;

{Q[v ← expr ]} v := expr {Q}
:=

{(x = x0) ∧ (y = y0)}

{(aux = x0) ∧ (y = y0)}

{(aux = x0) ∧ (x = y0)}

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}



47 Standard Hoare logic: abs(x)

r   := x

r    := −x

{(e ∧ Q1) ∨ (¬e ∧Q2)} if e then p1 else p2 {Q}

{Q2}p2{Q}{Q1}p1{Q}
if

{(x = x0)}










(x < 0) ∧
(−x ≥ 0) ∧
((−x)2 = x2)



 ∨





(x ≥ 0) ∧
(x ≥ 0) ∧
(x2 = x2)











{(r ≥ 0) ∧ (r2 = x2
0 )}

else :

if (x<0) :

Also:

While loop:
{e∧I}p{I} (¬e∧I )=⇒Q

{I}while e with I do p{Q}

Empty program:
P=⇒Q
{P}ε{Q} use sparingly: loses weakest precondition!



48 Assertion language (Pre/Post)

Terms: v gene | n ∈ N | Kv ,{··· } parameter symbols | + | −

atoms: t > t ′ | t < t ′ | t = t ′ | . . .

Connectives: ¬ | ∧ | ∨ | =⇒

Example:

(a 6 3 ∧ d + 1 < Kd,{m,c}) ∨ (Kd,{c} < Kd,{m,c} ∧ c > 3)

From multiplexes to assertions: flatening

. . .m1ϕ1 mnϕn

ϕm

m2ϕ2

m

ϕm ≡ ϕm[mi ← ϕi ] for all i and recursively



49

Assertions that formalize Thomas’framework

ω is the set of ressources of v :
Φω

v ≡ (
∧

m ∈ ω

ϕm ) ∧ (
∧

m ∈ G−1(v)\ω

¬ϕm )

v can increase:
Φ+

v ≡
∧

ω⊂G−1(v)

(Φω
v =⇒ Kv ,ω > v)

v can decrease:
Φ−v ≡

∧

ω⊂G−1(v)

(Φω
v =⇒ Kv ,ω < v)



50 Trace specifications

◮ x+ | x− | x := n | assert(ϕ)

◮ p1; p2; · · · ; pn

◮ if ϕ then p1 else p2

◮ while ϕ with ψ do p

◮ ∀(p1, p2, · · · , pn)

◮ ∃(p1, p2, · · · , pn)

Examples:

◮ b+; c+; b−

c
b t

◮ ∃(b+, b−, c+, c−, ε)

◮ while (b < 2) with (c > 0)
do ∃(b+, b−,∀((c−; a−), c+)) od ;

b−



51 Genetic, a la Hoare, inference rules

Incrementation rule:
{ Φ+

v ∧ Q[v←v+1] } v+ {Q}

Decrementation rule:
{ Φ−

v ∧ Q[v←v−1] } v− {Q}

Assertion rule: { ϕ∧Q } assert(ϕ) {Q}

Universal quantifier rule:
{P1}p1{Q} {P2}p2{Q}
{P1∧P2} ∀(p1,p2) {Q}

Existential quantifier rule:
{P1}p1{Q} {P2}p2{Q}
{P1∨P2} ∃(p1,p2) {Q}
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53 Example: Feedforward “loop”

Uri Alon most frequent gene network patterns

+1

a b

c

+

1

1
−

a

c

b

l

a > 1

a > 1

σ

¬(c > 1)

λ

Behaviour of b after switching a from off to on ?

Simple off→on→off behaviour of b with the help of c :

{(a = 1 ∧ b = 0 ∧ c = 0)} b + ; c + ; b − {b = 0}

possible if and only if: Kb,{σ,λ} = 1 ∧ Kc,{l} = 1 ∧ Kb,{σ} = 0



54 Feedforward example (continued)

off→on→off behaviour of b without the help of c :

{(a = 1 ∧ b = 0 ∧ c = 0)} b + ; b − {b = 0}























b = 0
((c > 1) ∧ (a < 1)) =⇒ ((Kb = 1) ∧ (Kb = 0))
((c > 1) ∧ (a > 1)) =⇒ ((Kb,σ = 1) ∧ (Kb,σ = 0))
((c < 1) ∧ (a < 1)) =⇒ ((Kb,λ = 1) ∧ (Kb,λ = 0))
((c < 1) ∧ (a > 1)) =⇒ ((Kb,σλ = 1) ∧ (Kb,σλ = 0))























not satisfiable!



55 Feedforward example (continued)

Although b+; c+; b− is possible, if c becomes “on” before b, then
b will never be able to get “on”

Proof by refutation:
{

a = 1 ∧ b = 0 ∧ c = 1 ∧
Kb,σλ = 1 ∧ Kc,l = 1 ∧ Kb,σ = 0

}

while b < 1 with I do ∃(b+, b−, c+, c−)
{

b = 1
}

the triple is inconsistent, whatever the loop invariant I !



56 Cell cycle in mammals

◮ A 22 gene model reduced to 5 variables using multiplexes

EPB

En

A

− 1

− 1

− 1 − 1 + 1

+ 1

− 1

multiplex (m)

SK

+ 1 + 1+ 2 + 1

¬(En > 1

︸ ︷︷ ︸

ϕ
l

∨ (EP > 1 ∧ En > 1)
︸ ︷︷ ︸

ϕr

)

SK = Cyclin E/Cdk2, Cyclin H/Cdk7
A = Cyclin A/Cdk1
B = Cyclin B/Cdk1
En = APCG1, CKI (p21, p27), Wee1

EP = APCM , Phosphatases

◮ 48 states, 26 parameters, 339 738 624 possible valuations,
12 trace specifications and a few temporal properties



57 Cell cycle in mammals (continued)

◮ 13 parameters have been entirely identified (50%) and only
8192 valuations remain possible according to the generated
constraints (0.002%)

◮ Additional reachability constraints (e.g. endoreplication and
quiescent phase) have been necessary, on an extended hybrid
extension of the Thomas’ framework, to identify (almost) all
parameters

◮ This initial Hoare logic identification step was crucial: it gave
us the sign of the derivatives in all the (reachable) states
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Correctness, Completeness and Decidability

◮ If there is a proof tree for {P}p{Q} then for each initial state
satisfying P , there are traces in the gene network that realize
the trace specification p, and for all of them, if terminating,
they satisfy Q at the end.

◮ If for each initial state satisfying P there are traces that realize
p in the gene network and if they all satisfy Q at the end, then
there exists a proof tree for {P}p{Q}.

◮ There is a simple algorithm to compute, for each Q, the
minimal loop invariant I such that {I}while e with I do p{Q}.
(However well chosen slightly non minimal invariants can

considerably simplify the proof tree. . . )



59 Menu
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60 Generation of biological experiments (1)

Set of all the formulas:

ϕ = hypothesis

ϕ



61 Generation of biological experiments (2)

Set of all the formulas:

ϕ = hypothesis
Obs = possible experiments

Obs

ϕ



62 Generation of biological experiments (3)

Set of all the formulas:

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences

Obs

ϕ



63 Generation of biological experiments (4)

Set of all the formulas:

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences
S = sensible experiments

Obs

ϕ

S



64 Generation of biological experiments (5)

Set of all the formulas:

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences
S = sensible experiments

Refutability:
S =⇒ ϕ ? Obs

ϕ

S



65 Generation of biological experiments

Set of all the formulas:

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences
S = sensible experiments

Refutability:
S =⇒ ϕ ?

Best refutations:
Choice of experiments in S ?
. . . optimisations

Obs

ϕ

S
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Example: Mucus Production in P. aeruginosa

Capture:

operon

self−inducer

abstract
behaviour

—

+

AlgU MucB

mucus

+

+

membrane

AlgU

MucB

AlgU

AlgU

MucB. . . . . .



67 How to validate a multistationnarity
M: (unknown thresholds)

—

+

+

mucus

+ Alginate Muc-B

Φ:

{

(Alginate = 2) =⇒ AG (Alginate = 2) (hypothesis)
(Alginate = 0) =⇒ AG (Alginate < 2) (knowledge)

Assume that only mucus can be observed:
Lemma: AG (Alginate = 2)⇐⇒ AFAG (mucus = 1)
(. . . formal proof by computer . . . )

→ To validate: (Alginate = 2) =⇒ AFAG (mucus = 1)



68 (Alginate = 2) =⇒ AFAG (mucus = 1)

A =⇒ B true false

true true false
false true true

Karl Popper:
to validate = to try to refute

thus A=false is useless
experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state Alginate = 2.
If the state is not directly controlable we need to prove lemmas:

(something reachable) =⇒ (Alginate = 2)

General form of a test:

(something reachable) =⇒ (something observable)
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1. Formal logic and dynamic models for biology

2. Discrete models for gene networks according to René Thomas

3. Gene networks and temporal logic

4. Models as mediums for checking biological hypotheses

5. Genetically modified Hoare logic, and examples

6. Extracting interesting experiments from models

7. Complex vs. complicated. . .



70 Circadian clock interaction graph
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71 The target question

Impact of the day length on the persistence of the circadian circle ?

=⇒ framework with time delays:

◮ mainly replace the integer Kx ,ω by real numbers Cx ,ω,n, called
celerities, where n is the current state of x

◮ notice that Cx ,ω,n > 0 if Kx ,ω > n and a few other logical
properties

◮ extension of temporal logic with delays: AF[t1,t2] and so on

Decidability is lost but the identification of parameters remains
“almost” automatic with such constant speeds Cx ,ω,n (constraint
solving on intervals)



72 Fold levels and remove PPAR

PER-CRY
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73 Remove Clock and “tunnel” pathways

PER-CRY
(N)
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Separate inhibitors/activators of Clock-BMAL

CB-R
¬RevErb ∧ Clock-BMAL

PER-PER
PER1 ∨ PER2

PC
PER-PER ∧ CRY-CRY

CRY-CRY
CRY1 ∨ CRY2

inhib
¬RevErbα
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75 Fusion of all inhibitors

Genes
Proteins

(N)

and Light prevents PER-CRY to enter the nucleus:

LightGenes
Proteins

(N)



76 12 hours model
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77 Winter model
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78 Summer model
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79 Jet lag + training
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80 Take Home Messages

Make explicit the hypotheses that motivate the biologist

A far as possible formalize them to get a computer aided approach

Behavioural properties are as much important as models

Mathematical models are not reality: let’s use this freedom !
(several views of a same biological object)

Modelling is significant only with respect to the considered
experimental reachability and observability (for refutability)

Formal proofs can suggest wet experiments

“Kleenex” models help understanding main behaviours

Specialized qualitative approaches can make complex models simple


