Organisation du cours

9 séances; cf. http://deptinfo.unice.fr/~bmartin/CS.html
MCC :

: o Rédaction des corrigés des TP (1/3) par (10) groupes
C_a|CU| Syf“b‘)“que o Partiel le 10/10 (1/3)
L2 SF, parcours informatique & double cursus Ml o Examen en décembre (1/3)

Différentes thématiques :
Bruno MARTIN, ® Graphisme
Université Nice Sophia Antipolis @ Ensembles et chalnes de caracteres
@ Mesure de complexité
@ Arithmétique et cryptographie
@ Algebre et codes correcteurs
o Calcul Booléen
@ Récursion et programmation dynamique

@ Analyse et applications

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique
Section 1 Section 2

Organisation Généralités

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

Calcul symbolique (ou formel) Objets du calcul formel

A l'intersection des mathématiques et de I'informatique.

Etudie et propose des algorithmes qui travaillent de maniere

symbolique sur des expressions mathématiques qui ont une @ les nombres
représentation finie et exacte : Computer Algebra System (ou
CAS) en anglais.

Differe du calcul scientifique (ou numérique) qui travaille sur des
nombres qui ont une représentation numérique approchée (en
virgule flottante). @ les polynémes

les entiers (en précision arbitraire)

100!

les rationnels par un couple p/q de deux entiers

les entiers modulo p (un élément de I'ensemble {0,...,p — 1})

@ les matrices

Exemple (de calcul symbolique)

L. ... X . . . ° i ' | i & i
calculer la dérivée, la primitive d’une fonction, simplifier une et bien d'autres objets de base manipulés par les algorithmes

expression algébrique, faire tous les calculs algébriques habituels
(matriciel,...)

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

Bref historique Que fait un systeme de calcul formel

1950 algorithmes de calcul de dérivée d’une fonction

1970 premiers systemes de calcul formel : Reduce, Résolution d'équations, factorisation, simplification d'expressions
Macsyma écrits en LISP contenant des variables; les réécrire.

Calcul symbolique dans des structures algébriques (groupes,

anneaux, corps,...).

Plus généralement, travailler sur des expression de facon

symbolique (plut6ét que numérique).

1980 systemes modernes (avec GUI) : Maple, Mathematica
écrits en C

2000 calcul formel dans le libre : sage
(http ://www.sagemath.org) utilise Python (et divers
autres langages) ou SymPy un module de Python

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

SymPy comme systeme de calcul symbolique Structure de SymPy

Composé de :

@ interface web graphique : interagit avec |'utilisateur ; gére le
fichier de travail (feuille de calcul ou notebook Jupyter),
permet de saisir les instructions et afficher les résultats, y
compris |'affichage de graphiques.

Deux logiciels libres récents offrent les fonctionnalités du calcul
symbolique :

@ SageMath rassemble un certain nombre de systemes de calcul
symbolique au sein d'une interface standardisée avec un gros

noyau @ noyau (kernel) : interprete les instructions écrites en SymPy ou

R i , en Python, effectue les calculs et retourne le résultat
@ SymPy est un module Python. Son intérét est d'étre léger et Y

de fonctionner sur tout systéme capable d'exécuter Python. Il
utilise NumPy pour le calcul numérique et Matplotlib pour le
graphisme. On privilégiera I'utilisation des feuilles de calcul
fournies par Jupyter.

Pour lancer la session (et un navigateur), saisir la commande :
jupyter notebook

soit dans un terminal (sous linux, *BSD, Mac0S) soit dans une
dans une invite de commande sous Windows.
Ou lancer iPython : C:\ProgramData\Anaconda3\Scripts\ipython3

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

Structure d'un notebook

Fichier SymPy
Ou notebook, d'extension .ipynb est strucuré en cellules (cells)
d'une ou plusieurs lignes.

Section 3 Chaque cellule peut contenir des instructions, des résultats, du
texte ou du texte mis en forme.

Une cellule est évaluée par SHIFT+ENTREE
Prise en main
€ € a Listing 1 — Importer SymPy

1 import sympy as sy

2 sy.init_printing() # formatte la sortie selon
I "interface

x = sy.symbols('x")

r sqrt(x)

r

(& N

V/x
Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

Utiliser I'aide Résultats exacts ou approchés

Avec SymPy on travaille avec des valeurs exactes :

>>> 3%x100
5156377520732011331036461129765621272702107522001
>>> sqrt(2)

SymPy, ... V2

On peut demander de |'aide sur une fonction spécifique par

Le menu Help propose des tutoriels et de I'aide. |l permet
d’accéder aux pages web des différents modules (NumPy, SciPy,

On peut obtenir une valeur approchée avec .n() ou .evalf ()

?factorial
actoria >>>sqrt (2) .n()
1.4142135623731
Quelques constantes
pi, e (tapé E), i (tapé 1), I'infini (o0)
Bruno MARTIN, Université Nice Sophia Antipolis | Calcul Symbolique
Calculer Définir des variables
>>> 1+1 >> x =5
2 >>> x*k%2

. . . . 25
Faire des calculs simples, les puissances, les fractions, le modulo :

la valeur de la variable (Python) x est modifiable

>>> 2%%10
1024 x =6
>>> sy.Rational(4,6)
2/3 et on peut |'utiliser dans des expressions
>>> 23 % 12
11 >>> pikxk*2
. 36 pi
Evaluer une valeur numérique >>> del x # efface la variable x
>>> sy.Rational(4,6).n(10) >>> x # pour vérifier que x est vide
0.6666666667 Trmm T e
>>> sy.Rational(4,6).evalf (10)==2/3 NameError
True NameError: name ’x’ is not defined

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

>>> def £(x):
Teturn x#*2 Les fonctions, variables et méme les flottants SymPy sont différents

>>> £(3) de ceux de Python.
2» £ (ormen) Les symboles utilisés pour définir une variable symbolique doivent
X A 7 7
étre déclarés.

NameError: name ’x’ is not defined >>> x,y =sy.symbols(’x y’)
>>> x = sy.symbols(’x’) # on stocke le symbole x dans la variable x Conséquence : pour évaluer une expression symbolique de SymPy, il
>>> £(2+5%x) faut la traduire en expression Python
(2+5.%) %52 >>> D=(x+y) * (x) *)
>>> del f # efface le contenu de f L. X¥y)*SY - exp X Sy.CO/S y . , e a
>>> def factorial(n): D hérite du membre droit de la déclaration et n'a pas besoin d'étre

if n == O: déclaré comme symbole et devient une fonction de x et y.

return 1 Les symboles ne sont pas mutables.
else:

return n * factorial(n-1)

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

Une expression mathématique comme g(x) = 1 — x? est

représentée par un objet Lambda défini par Les expressions SymPy sont représentées par un arbre

>>> D=(x+y)*sy.exp(x)*sy.cos(y)
>>> x= sy.symbols(’x’)
>>> g= sy.Lambda([x],1-x**2) @
>>> g

Lambda(_x, -_x**2 + 1) @ ° @

>>> g(2)

-3
O OOO

C'est plus une représentation interne. La maniére classique de

définir la fonction passe par la définition de expr quon peut aussi obtenir par :

>>> sy.srepr(D)
"Mul (Add (Symbol(’x’) ,Symbol(’y’)) ,exp(Symbol(’x’)),
cos (Symbol(’y’)))"

>>> x= sy.symbols(’x’)
>>> expr = 1-x%%2

Et de manipuler ensuite cette expression

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

Convertir une expression Python en SymPy et Simplification

réciproquement

Par la commande simplify () qui fournit une expression plus

courte ou plus simple a comprendre.
simplify () utilise différentes heuristiques de simplification

Par la commande sympify qui traduit une expression Python vers
une expression SymPy

>>> D_s = sy.sympify(’ (x+y)*exp(x)*cos(y)’) >>> sy.simplify((x**2-1)/(x+1))
>>> D_s x-1
(x+y) *exp (x) *cos (y) >>> sy.simplify(1/(x-1) - 1/(x+1))

2/ (xxx2 - 1)
>>> sy.simplify ((x**3 + x**2 - x - 1)/(x**2 + 2xx + 1))

D_s se comporte comme D défini avant.)
% -

On traduit une expression Sympy en Python par lambdify simplify () applique les heuristiques besselsimp, combsimp,

>>> x=sy.symbols(’x’) exptrigsimp, hypersimp, nsimplify, powsim, radsimp,

>>> a=12%x**3
>>> f=sy.lambdify(x,a)

ratsimpmodprime, signsimp, simplify, simplify_logic,
trigsimp. On peut appeler directement une heuristique pour avoir
le résultat plus vite (cf http:

>>> £(3)
304 //docs.sympy.org/latest/tutorial/simplification.html)

Substitution Développement

Opération essentielle du calcul symbolique qui remplace une

variable symbolique d'une expression Sympy par une valeur Par la commande expand ()
>>> x=sy.symbols(’x’) >>> x,y=sy.symbols(’x y’)
>>> a=12*x**3 >>> sy.expand ((x+y)**3))
>>> a.subs(x,3) Kx*kB+Bk kK 2y +3XKYH*2+y**3
324

Ce qui permet parfois de simplifier une expression
Permet d'évaluer une expression sans affectation. La substitution

T . >>> x,y=sy.symbols(’x y’)
est locale a I'expression. y=sy.syr? y

>>> (x+y) ¥*2- (x-y) **2
x**3+3*x**2y+3x*y**2+y**3

Permet de renommer (ou remplacer) une variable par une autre
>>> sy.expand(_)

expression (ou variable)

4xx*y
>>> a.subs(x,y) o i
12%y*x3 On a utilisé _ qui rappelle le dernier résultat évalué.
>>> a Comme pour simplify(), expand() utilise des heuristiques.

12%x**3

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

Fonctions mathématiques usuelles Listes Python

On utilisera beaucoup les listes : ensembles d'éléments groupés

Sql't(X), exp(X), Iog(X), IOg(X, b)’Sin(X)’ abs(x) >>> L=[1,2,"etc"]
Fonctions propres au calcul formel >>> L.append (f (2+5%x))
deI(x) >>> L
J)
expand((x — y)?) [1, 2, ’etc’, (5xx + 2)*x2]
simplify (13 +34x1)/(3+4x1)) On accede a I'élément / par L[i] (on commence a 0)
solve(Eq(x * x2 — 3 x x + 2,0)) >>> L[0]
factor(x * x2 — 2 x x — 3) 1
SymPy permet aussi de dériver (diff) d'intégrer (integrate), de ;zi fi;mt(range(lo))
calculer une limite (limit), de calculer des D.L. (series) [1, 2, ’etc’, 12x(5xx + 2)*%3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> len(M)
10
Faire des graphiques Compréhension de listes

>>> sy.plot (x**2-3*x+2, (x,-20,30)) Les compréhensions de listes permettent de créer des listes par des
\ ’ one-liners par une syntaxe proche de la description mathématique.

\ N /

A\ /

\\ // >>> M=1list(range(10))
I I >>> M
>>> sy.plot(sin(x),sin(2*x),sin(3*x), (x,0,2*pi)) ou [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> pl=sy.plot(sin(x), (x,0,2*pi),show=False,line_color=’b’)
>>> p2=sy.plot(sin(2#*x), (x,0,2*pi) ,show=False,line_color="r’) On peut définir la liste des carrés :
>>> p3=sy.plot(sin(3#*x), (x,0,2*pi) ,show=False,line_color="g’)
>>> pl.extend(p2) ; pl.extend(p3) ; print(pl) >>> [i%*2 for i in M]
>>f pl.show() [0,1,4,9,16,25,36,49,64,81]

XN
/ Et filtrer les nombres impairs des carrés en ajoutant une condition
YAT N L >>> [i**2 for i in M if i%2==1]
sl [1,9,25,49,81]
_//

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

Appliquer une fonction sur une liste Itérer en Python

Au moyen de la fonction map de Python Deux commandes pour itérer : while et for

>>> Q=[i**2 for i in range(1,6)] while : qui exécute une suite d’instructions tant qu'une
[1,4,9,16,25] condition est vraie
>>> list(map(sqrt,Q)) >>> i =1
[1,2,3,4,5] while i < 3:

print (i)
On peut appliquer une fonction £ symbolique sur les éléments L s i+=1
>>> f=sy.Function(’f’) for : qui parcourt tout objet énumérable
>>> list(map(£,Q)) >>> for i in [1,2]:
[£(1),£(4),£(9),£(16),£(25)] print (i)

12

Ou une fonction définie Exemple pour calculer les racines n-iemes de I'unité

>>> def f(x):
return x+1

>>> list(map(£,Q))

[2,5,10,17,26]

>>> for i in range(1,3): # 3 est exclu; seulement 1 et 2
print(sy.factor (x*xk-1))
(x-1) (x-1)*(x+1)

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

Tests et conditions Tutoriel video

Tester si 24 2 = 4 (relations ==, !=, <,>,<=,>=)

>>> 242 ==
True

Conditions avec if sous trois formes :

o if seul
e if —— else https://www.youtube.com/watch?v=cvHyaE_bs8s
@ if -- elif --else

>>> a,b = 200,33
if b > a:
print("b est supérieur a a")
elif a ==
print("a et b sont égaux")
else:
print("a est supérieur a b")

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

