
1/1

Calcul Symbolique

L2 SF, parcours informatique & double cursus MI

Bruno MARTIN,
Université Nice Sophia Antipolis

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

2/1

Section 1

Organisation

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

3/1

Organisation du cours

9 séances ; cf. http://deptinfo.unice.fr/~bmartin/CS.html
MCC :

Rédaction des corrigés des TP (1/3) par (10) groupes

Partiel le 10/10 (1/3)

Examen en décembre (1/3)

Di↵érentes thématiques :

Graphisme

Ensembles et châınes de caractères

Mesure de complexité

Arithmétique et cryptographie

Algèbre et codes correcteurs

Calcul Booléen

Récursion et programmation dynamique

Analyse et applications

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

4/1

Section 2

Généralités

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

5/1

Calcul symbolique (ou formel)

A l’intersection des mathématiques et de l’informatique.
Étudie et propose des algorithmes qui travaillent de manière
symbolique sur des expressions mathématiques qui ont une
représentation finie et exacte : Computer Algebra System (ou
CAS) en anglais.
Di↵ère du calcul scientifique (ou numérique) qui travaille sur des
nombres qui ont une représentation numérique approchée (en
virgule flottante).

Exemple (de calcul symbolique)

calculer la dérivée, la primitive d’une fonction, simplifier une
expression algébrique, faire tous les calculs algébriques habituels
(matriciel,...)

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

6/1

Bref historique

1950 algorithmes de calcul de dérivée d’une fonction

1970 premiers systèmes de calcul formel : Reduce,
Macsyma écrits en LISP

1980 systèmes modernes (avec GUI) : Maple, Mathematica
écrits en C

2000 calcul formel dans le libre : sage
(http ://www.sagemath.org) utilise Python (et divers
autres langages) ou SymPy un module de Python

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

7/1

Objets du calcul formel

les nombres
les entiers (en précision arbitraire)
100 !
les rationnels par un couple p/q de deux entiers
les entiers modulo p (un élément de l’ensemble {0,...,p � 1})

les polynômes

les matrices

et bien d’autres objets de base manipulés par les algorithmes

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

8/1

Que fait un système de calcul formel

Résolution d’équations, factorisation, simplification d’expressions
contenant des variables ; les réécrire.
Calcul symbolique dans des structures algébriques (groupes,
anneaux, corps,...).
Plus généralement, travailler sur des expression de façon
symbolique (plutôt que numérique).

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

9/1

SymPy comme système de calcul symbolique

Deux logiciels libres récents o↵rent les fonctionnalités du calcul
symbolique :

SageMath rassemble un certain nombre de systèmes de calcul
symbolique au sein d’une interface standardisée avec un gros
noyau

SymPy est un module Python. Son intérêt est d’être léger et
de fonctionner sur tout système capable d’exécuter Python. Il
utilise NumPy pour le calcul numérique et Matplotlib pour le
graphisme. On privilégiera l’utilisation des feuilles de calcul
fournies par Jupyter.

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

10/1

Section 3

Prise en main

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

11/1

Structure de SymPy

Composé de :

interface web graphique : interagit avec l’utilisateur ; gère le
fichier de travail (feuille de calcul ou notebook Jupyter),
permet de saisir les instructions et a�cher les résultats, y
compris l’a�chage de graphiques.

noyau (kernel) : interprète les instructions écrites en SymPy ou
en Python, e↵ectue les calculs et retourne le résultat

Pour lancer la session (et un navigateur), saisir la commande :

jupyter notebook

soit dans un terminal (sous linux, *BSD, MacOS) soit dans une
dans une invite de commande sous Windows.
Ou lancer iPython : C:\ProgramData\Anaconda3\Scripts\ipython3

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

12/1

Structure d’un notebook

Fichier SymPy
Ou notebook, d’extension .ipynb est strucuré en cellules (cells)
d’une ou plusieurs lignes.
Chaque cellule peut contenir des instructions, des résultats, du
texte ou du texte mis en forme.
Une cellule est évaluée par SHIFT+ENTREE

Listing 1 – Importer SymPy

1 impor t sympy as sy
2 sy . i n i t p r i n t i n g () # fo rmat t e l a s o r t i e s e l o n

l ’ i n t e r f a c e
3 x = sy . symbol s (’ x ’)
4 r = s q r t (x)
5 r

p
x

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

13/1

Utiliser l’aide

Le menu Help propose des tutoriels et de l’aide. Il permet
d’accéder aux pages web des di↵érents modules (NumPy, SciPy,

SymPy,...

On peut demander de l’aide sur une fonction spécifique par

?factorial

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

14/1

Calculer

>>> 1+1
2

Faire des calculs simples, les puissances, les fractions, le modulo :

>>> 2**10
1024
>>> sy.Rational(4,6)
2/3
>>> 23 % 12
11

Evaluer une valeur numérique

>>> sy.Rational(4,6).n(10)
0.6666666667
>>> sy.Rational(4,6).evalf(10)==2/3
True

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

15/1

Résultats exacts ou approchés

Avec SymPy on travaille avec des valeurs exactes :

>>> 3**100

515377520732011331036461129765621272702107522001

>>> sqrt(2)p
2

On peut obtenir une valeur approchée avec .n() ou .evalf()

>>>sqrt(2).n()

1.4142135623731

Quelques constantes
pi, e (tapé E), i (tapé I), l’infini (oo)

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

16/1

Définir des variables

>>> x = 5

>>> x**2

25

la valeur de la variable (Python) x est modifiable

x = 6

et on peut l’utiliser dans des expressions

>>> pi*x**2

36 pi

>>> del x # efface la variable x

>>> x # pour vérifier que x est vide

NameError ...

NameError: name ’x’ is not defined

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

17/1

Définir des fonctions (à la Python)

>>> def f(x):
return x**2

>>> f(3)
9
>>> f(2+5*x)
--
NameError: name ’x’ is not defined
>>> x = sy.symbols(’x’) # on stocke le symbole x dans la variable x
>>> f(2+5*x)
(2+5.x)**2
>>> del f # efface le contenu de f
>>> def factorial(n):

if n == 0:
return 1

else:
return n * factorial(n-1)

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

18/1

Définir des fonctions (à la SymPy)

Une expression mathématique comme g(x) = 1� x2 est
représentée par un objet Lambda défini par

>>> x= sy.symbols(’x’)
>>> g= sy.Lambda([x],1-x**2)
>>> g
Lambda(_x, -_x**2 + 1)
>>> g(2)
-3

C’est plus une représentation interne. La manière classique de
définir la fonction passe par la définition de expr

>>> x= sy.symbols(’x’)
>>> expr = 1-x**2

Et de manipuler ensuite cette expression

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

19/1

Expressions

Les fonctions, variables et même les flottants SymPy sont di↵érents
de ceux de Python.
Les symboles utilisés pour définir une variable symbolique doivent
être déclarés.
>>> x,y =sy.symbols(’x y’)

Conséquence : pour évaluer une expression symbolique de SymPy, il
faut la traduire en expression Python

>>> D=(x+y)*sy.exp(x)*sy.cos(y)

D hérite du membre droit de la déclaration et n’a pas besoin d’être
déclaré comme symbole et devient une fonction de x et y.
Les symboles ne sont pas mutables.

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

20/1

Expressions –2–

Les expressions SymPy sont représentées par un arbre
>>> D=(x+y)*sy.exp(x)*sy.cos(y)

qu’on peut aussi obtenir par :

>>> sy.srepr(D)
"Mul(Add(Symbol(’x’),Symbol(’y’)),exp(Symbol(’x’)),
cos(Symbol(’y’)))"

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

21/1

Convertir une expression Python en SymPy et

réciproquement

Par la commande sympify qui traduit une expression Python vers
une expression SymPy

>>> D_s = sy.sympify(’(x+y)*exp(x)*cos(y)’)

>>> D_s

(x+y)*exp(x)*cos(y)

D s se comporte comme D défini avant.

On traduit une expression Sympy en Python par lambdify

>>> x=sy.symbols(’x’)

>>> a=12*x**3

>>> f=sy.lambdify(x,a)

>>> f(3)

324

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

22/1

Substitution

Opération essentielle du calcul symbolique qui remplace une
variable symbolique d’une expression Sympy par une valeur

>>> x=sy.symbols(’x’)
>>> a=12*x**3
>>> a.subs(x,3)
324

Permet d’évaluer une expression sans a↵ectation. La substitution
est locale à l’expression.

Permet de renommer (ou remplacer) une variable par une autre
expression (ou variable)

>>> a.subs(x,y)
12*y**3
>>> a
12*x**3

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

23/1

Simplification

Par la commande simplify() qui fournit une expression plus
courte ou plus simple à comprendre.
simplify() utilise di↵érentes heuristiques de simplification

>>> sy.simplify((x**2-1)/(x+1))
x-1
>>> sy.simplify(1/(x-1) - 1/(x+1))
2 / (x**2 - 1)
>>> sy.simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
x - 1

simplify() applique les heuristiques besselsimp, combsimp,

exptrigsimp, hypersimp, nsimplify, powsim, radsimp,

ratsimpmodprime, signsimp, simplify, simplify logic,

trigsimp. On peut appeler directement une heuristique pour avoir
le résultat plus vite (cf http:
//docs.sympy.org/latest/tutorial/simplification.html)

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

24/1

Développement

Par la commande expand()

>>> x,y=sy.symbols(’x y’)
>>> sy.expand((x+y)**3))
x**3+3*x**2y+3x*y**2+y**3

Ce qui permet parfois de simplifier une expression

>>> x,y=sy.symbols(’x y’)
>>> (x+y)**2-(x-y)**2
x**3+3*x**2y+3x*y**2+y**3
>>> sy.expand(_)
4*x*y

On a utilisé qui rappelle le dernier résultat évalué.
Comme pour simplify(), expand() utilise des heuristiques.

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

25/1

Fonctions mathématiques usuelles

sqrt(x), exp(x), log(x), log(x , b), sin(x), abs(x)sqrt(x), exp(x), log(x), log(x , b), sin(x), abs(x)sqrt(x), exp(x), log(x), log(x , b), sin(x), abs(x)

Fonctions propres au calcul formel

del(x)del(x)del(x)

expand((x � y)2)expand((x � y)2)expand((x � y)2)

simplify ((13 + 34 ⇤ I)/(3 + 4 ⇤ I))simplify ((13 + 34 ⇤ I)/(3 + 4 ⇤ I))simplify ((13 + 34 ⇤ I)/(3 + 4 ⇤ I))
solve(Eq(x ⇤ ⇤2� 3 ⇤ x + 2, 0))solve(Eq(x ⇤ ⇤2� 3 ⇤ x + 2, 0))solve(Eq(x ⇤ ⇤2� 3 ⇤ x + 2, 0))

factor(x ⇤ ⇤2� 2 ⇤ x � 3)factor(x ⇤ ⇤2� 2 ⇤ x � 3)factor(x ⇤ ⇤2� 2 ⇤ x � 3)

SymPy permet aussi de dériver (di↵) d’intégrer (integrate), de

calculer une limite (limit), de calculer des D.L. (series)

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

26/1

Faire des graphiques

>>> sy.plot(x**2-3*x+2,(x,-20,30))

-20 -10 10 20

100

200

300

400

>>> sy.plot(sin(x),sin(2*x),sin(3*x),(x,0,2*pi)) ou
>>> p1=sy.plot(sin(x),(x,0,2*pi),show=False,line color=’b’)
>>> p2=sy.plot(sin(2*x),(x,0,2*pi),show=False,line color=’r’)
>>> p3=sy.plot(sin(3*x),(x,0,2*pi),show=False,line color=’g’)
>>> p1.extend(p2) ; p1.extend(p3) ; print(p1)
>>> p1.show()

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

27/1

Listes Python

On utilisera beaucoup les listes : ensembles d’éléments groupés

>>> L=[1,2,"etc"]

>>> L.append(f(2+5*x))

>>> L

[1, 2, ’etc’, (5*x + 2)**2]

On accède à l’élément i par L[i] (on commence à 0)

>>> L[0]
1
>>> M=list(range(10))
>>> L+M
[1, 2, ’etc’, 12*(5*x + 2)**3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> len(M)
10

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

28/1

Compréhension de listes

Les compréhensions de listes permettent de créer des listes par des
one-liners par une syntaxe proche de la description mathématique.

>>> M=list(range(10))
>>> M
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

On peut définir la liste des carrés :

>>> [i**2 for i in M]
[0,1,4,9,16,25,36,49,64,81]

Et filtrer les nombres impairs des carrés en ajoutant une condition

>>> [i**2 for i in M if i%2==1]
[1,9,25,49,81]

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

29/1

Appliquer une fonction sur une liste

Au moyen de la fonction map de Python

>>> Q=[i**2 for i in range(1,6)]
[1,4,9,16,25]
>>> list(map(sqrt,Q))
[1,2,3,4,5]

On peut appliquer une fonction f symbolique sur les éléments

>>> f=sy.Function(’f’)
>>> list(map(f,Q))
[f(1),f(4),f(9),f(16),f(25)]

Ou une fonction définie

>>> def f(x):
return x+1

>>> list(map(f,Q))
[2,5,10,17,26]

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

30/1

Tests et conditions

Tester si 2 + 2 = 4 (relations ==, !=, <,>,<=,>=)

>>> 2+2 == 4
True

Conditions avec if sous trois formes :

if seul

if -- else

if -- elif --else

>>> a,b = 200,33
if b > a:

print("b est supérieur à a")
elif a == b:

print("a et b sont égaux")
else:

print("a est supérieur à b")

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

31/1

Itérer en Python

Deux commandes pour itérer : while et for
while : qui exécute une suite d’instructions tant qu’une

condition est vraie
>>> i = 1

while i < 3:
print(i)
i += 1

1 2

for : qui parcourt tout objet énumérable
>>> for i in [1,2]:

print(i)
1 2

Exemple pour calculer les racines n-ièmes de l’unité

>>> for i in range(1,3): # 3 est exclu; seulement 1 et 2
print(sy.factor(x**k-1))

(x-1) (x-1)*(x+1)

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

32/1

Tutoriel video

https://www.youtube.com/watch?v=cvHyaE_bs8s

Bruno MARTIN, Université Nice Sophia Antipolis Calcul Symbolique

