In

Out

In

Out

In

In

Out

In

In

Out

[2]:

[3]:

[3]:

[22]:

[23]:

[23]:

Cours 2 : chaines, ensembles et dictionnaires

Chaines de caracteres

Une chaine est une suite finie de caractéres (ou string) entourée par des apostrophes ou des
guillements. Elle n'est pas mutable (on ne peut pas changer la valeur d'un caractére).

s="Ceci est une chaine’
s

'Ceci est une chaine'

s[3]

i

s[3] 'a’

TypeError Traceback (most recent call last)

<ipython-input-4-1d84d5b091e8> in <module>()
---=> 1 s[3]="a'

TypeError: 'str' object does not support item assignment

On doit utiliser un caractere d'échappement pour utiliser certains symboles, on concaténe avec + et
len () donne la longueur

t=", et 1\'été est fini’
st
len(s+t)

38

La chaine est un objet itérable, i.e. dont on peu parcourir les valeurs, p.e. dans un for.

for ¢ in s:
print(c, end-'")

Ceci est une chaine

On peut en extraire une tranche slice, c'est un mécanisme trés puissant en python

t[7:10]+t[5:]

‘été fini'

replace() permet de remplacer un caractere ou une sous-chaine, count () compte le nombre de
caractéres.

In

Out

In

Out

In

Out

In

In [57]:

In

In

Out

In

Out

In

[24]:

[24]:

[40]:

[40]:

[12]:

[12]:

[39]:

[42]:

[43]:

[43]:

[46]:

[46]:

[47]:

t.replace('été’, ‘automne’)[5:15]+ ' commence’

"1l'automne commence"

s.count('e")

Beaucoup de méthodes sont associées, p.e. lower () et upper () pour changer la casse

s.lower() t[0:7]+t[7:10].upper() t[10:]

"ceci est une chaine, et 1'ETE est fini"

On peut convertir les caracteres numériques en nombre avec la fonction ord () dont la fonction
réciproque est chr ()

print(ord('A"))
print(chr(65+25))

65
Z

C'est utile pour ramener (et recoder) {a,...,z} dans {0,..25} !

u-s.lower().replace(' ',"'").replace('\"'"',"").replace('i","i")

for ¢ in u:
print(ord(c) ord('a'),end-",")

2,4,2,8,4,18,19,20,13,4,2,7,0,8,13,4,

Fonctions ou méthodes utiles pour la suite:

e retirer les caractéres accentués (comme i) ou entrelacés (comme ce) en changeant le codage des
caracteres par la méthode replace ()

import unicodedata

def remove_accents(input_str):
input_str - input_str.replace('e', 'oe').replace('z', 'ae')
nfd_form - unicodedata.normalize('NFD', input_str).encode('ASCII', 'ignore"').deco
return(nfd_form)

remove_accents('c\'était un euf')

"c'etait un oeuf"

o récupérer les lettres d'une chaine sans les occurrences multiples (avec changement de type)

.join(list(set('aabccccced')))
'cdba’

list('aabccccced")

Out [47]:
In [7]:
out [7]:
In [63]:
Out [63]:
In [8]:
out [8]:
In [64]:
Out [64]:
In [66]:
Out [66]:

' [

['a', 'a',

Et si ¢a ne suffit pas, regardez les méthodes de chaines ou votre cours de L1 (cours 37?)

Ensembles

On peut utiliser set de Python ou la classe FiniteSetde SymPy

Création d'un ensemble

Avec la structure setde base de Python3

s-{1,2,3}
S

{1, 2, 3}

on peut aussi changer le type d'un élément liste en un ensemble

liste-[4,5,6]
set(liste)

{4, 5, 6}

En utilisant FiniteSetde Sympy, de fagon analogue

from sympy import FiniteSet
sl-FiniteSet(1,2,3)
sl

{1, 2, 3}

FiniteSet('liste)
{4,

5, 6}

Ci-dessus on a utilisé £ (*1iste) qui permet d'appeler £ avec comme arguments les éléments de
liste;p.e. £(*(1,2,3)) estsynonymede £(1,2,3)

Deux notations pour I'ensemble vide:

e enpython

e-set()
e

set()

e avec FiniteSet, on utilise EmptySet

https://docs.python.org/fr/3/library/stdtypes.html#string-methods

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

[68]:

[68]:

[69]:

[69]:

[70]:

[70]:

[71]:

[717]:

[72]:

[72]:

[75]:

[75]:

[76]:

[76]:

[77]:

[777]:

[78]:

[78]:

from sympy import EmptySet
e EmptySet()
e

EmptySet ()

Cardinalité et appartenance

La fonction 1en () compte le nombre d'éléments

len(s)

len(sl)

Et I'appartenance se teste par l'instruction in
1 in s

True

4 in s1

False

Opérations sur les ensembles

Les méthodes union et intersection fonctionnent dans les deux cas

print(s)
t-{3,4,5}
s.union(t)

{1, 2, 3}

{1, 2, 3, 4, 5}

tl FiniteSet(3,4,5)
sl.union(t1l)

{1, 2, 3, 4, 5}
s.intersection(t)
{3}
sl.intersection(tl)
{3}

La différence entre deux ensembles fonctionne dans les deux cas

In [86]: s t
out [86]: {1, 2}

In [87]: s1 t1
Out [87]: {1, 2}

La différence principale entre set et FiniteSet se fait pour le produit cartesien, plus difficile sans
sympy car on a besoin de la librairie itertools

In [6]: import itertools
itertools.product(s,t) # qui retourne un itérateur

Out [6]: <itertools.product at 0x10e38a288>
In [83]: 1list(itertools.product(s,t))
Out [83]: [(1, 3), (1, 4), (1, 3), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 35)]
tandis qu'avec FiniteSet:
In [84]: s17t1
out [84]: {1, 2, 3} x {3, 4, 5}
In [85]: 1ist(sl tl)
Out [851: [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5)]
Et il est bien plus facile de calculer I'ensemble des parties d'un ensemble avec FiniteSet
In [89]: s1.powerset()
Out [89]: {EmptySet(), {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
juste pour info, voici ce qu'il faut faire sans FiniteSet
In [90]: from itertools import
def subsets(iterable):

xs-list(iterable)
return chain.from_iterable(combinations(xs,n)for n in range(len(xs):1))

In [92]: 1list(map(set,subsets(s)))

Out [92]: [set(), {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]

Construction par compréhension

Un ensemble peut aussi se construir par compréhension (ici les carrés multiples de 3)

In [96]:

Out

In

Out

In [98]:

Out

In

Out

In

Out

In

Out

In

Out

In

[96]:

[103]:

[103]:

[98]:

[1017:

[1017]:

[1077:

[107]:

[1087:

[108]:

[109]:

[109]:

[1107:

E-{x x for x in range(10) if x”3--0}
E

{0, 9, 36, 81}

La primitive filter (function, iterable) permet de parcourir un objet itérable (str, list,
tuple, range, set, dict) et d'obtenir un itérateur sur les objets retenus. Quitte ensuite a le
parcourir, le transformer en liste, en ensemble, etc. Attention, une fois utilisé, il est épuisé.

F-filter(lambda x:x:2--0,{3,2,5,4,1,6,9,0})
F

<filter at 0x1074c7978>

list(F)

set(F)
{0, 2, 4, 6}

Attention FiniteSet (F) retourne une erreur !

Conclusion

La classe FiniteSet apporte des améliorations au type set de base. Une alternative est d'utiliser les
frozenset qui permet de créer des ensembles de listes ou d'ensembles mais la classe FiniteSet de
sympy est plus accessible.

Les dictionnaires

Un dictionnaire est une collection non numérotée de couples c1é:valeur ol clé est un objet non
mutable et valeur n'importe quelle valeur. Attention toutes les clés doivent étre distinctes.

Création d'un dictionnaire

stock-{'poires':51, 'pommes":243}
stock

{'poires': 51, 'pommes': 243}

len(stock)

'pommes’ in stock

True

"péches’ in stock

Out

In

Out

In

Out

In [115]:

Out

In [14]:

In

Out

In

Out

[1107]:

[1117:

[1117:

[1137:

[113]:

[115]:

[15]:

[15]:

[16]:

[16]:

False
stock['poires’]

51

Le dictionnaire vide se note {} ou dict()

On peut modifier la valeur associée a une clé ou ajouter un nouveau couple clé:valeur
stock['pommes’]-100

stock[‘bananes']-23
stock

{'poires': 51, 'pommes': 100, 'bananes': 23}

Accés aux éléments d'un dictionnaire

Il est facile d'accéder a la valeur associée a une clé. C'est le principal intérét de cette structure. La
recherche est a sens unique. On va de la clé vers la valeur.

stock["bananes']
23
La clé est non mutable. Donc principalement des chaines et des nombres mais pas de listes.

dico-{1:'one',2:"'two",3: "three'}

Modifier un dictionnaire

Un dictionnaire est mutable par la méthode update () qui permet d'ajouter un dictionnaire a un
dictionnaire existant

dico.update({4: ' four',5: five'})
dico

{l: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five'}

On peut retirer un élément du dictionnaire par la méthode pop () qui retourne la valeur val associée a la
clé et qui supprime le couple c1é:val associé

dico.pop(5)
dico

{1: 'one', 2: 'two', 3: 'three', 4: 'four'}

Accéder aux clés ou aux valeurs

on peut obtenir la liste de toutes les clés ou de toutes les valeurs par les méthodes keys () et
values () qui retournent des vues views sur les clés ou les valeurs

In [17]: dico.keys()
Out [17]: dict_keys([1, 2, 3, 4])
In [18]: dico.values()

Out [18]: dict_values(['one', 'two', 'three', 'four'])

Les vues sont des itérables qu'on peut parcourir par un for, ou transformer en liste ou en ensembile, les
sommer,...

In [19]: 1list(dico.values())
Out [19]: ['one', 'two', 'three', 'four']
In [20]: 1list(dico.keys())
out [20]: [1, 2, 3, 4]
In [21]: sum(dico.keys())
out [21]: 10
Avec un for par défaut, on itere sur les clés

In [22]: for k in dico:
print(k)

=W N

Mais on peut décider d'itérer sur les valeurs

In [23]: for k in dico.values():
print(k)

one
two
three
four

Effacer un dictionnaire

Par I'instruction del

In [132]: del dico

In [133]1: (dico

NameError Traceback (most recent call last)
<ipython-input-133-efcd661f264a> in <module>()
----> 1 dico

In [24]:

In [25]:

In [26]:

In [27]:

In [28]:

out [28]:

In [35]:

In [19]:

In [33]:

NameError: name 'dico' is not defined

Une étude de cas

On veut tracer I'histogramme des fréquences des lettres qui apparaissent dans le dictionnaire francais
(ici le Littré compressé au format zip)

from sympy import

init_printing()

def dictionnaire(fichier):
import zipfile
import sys
f-zipfile.zZipFile(fichier,'r")
1-f.namelist() # retourne la liste des éléments de 1'archive par nom
if len(l) 1:
print('pas bon")
sys.exit(1)
r - f.read(1[0@]).decode(encoding "UTF-8", errors-"strict").split("\n")
return [m for m in r if len(m) 0]

littre dictionnaire("littre.zip")

littre[112] # regardons le contenu a 1l'index 112

'abondance’

On nettoie les symboles. Le dictionnaire contient des caracteres accentués, spéciaux, etc... Regardons
son alphabet :

alphabet-set()
for m in littre:
alphabet-alphabet.union(set(m))
print(sorted(alphabet))
['0r, ",)y, t.t, 'a', 'b', ‘'e', 'd', 'e', '£', 'g', 'h', 'i', '§i', 'k',
import unicodedata
def remove_accents(input_str):
input_str - input_str.replace('®', 'oe').replace('z', 'ae')
nkfd_form - unicodedata.normalize('NFD', input_str).encode('ASCII', 'ignore").dec
return(nkfd_form)
littre2 [remove_accents(m) for m in littre if len(m) 0]

On crée un dictionnaire pour compter les occurrences de chague lettre de I'alphabet réduit a {a,..z}. On
parcourt le Littré nettoyé mot par mot et pour chaque mot, caractere par caractere. On incrémente la

valeur du dictionnaire Lettres si on trouve le caractére dans I'alphabet.

In [66]: def occurrences(dico):
lettres - {chr(i):@ for i in range(ord('a'), ord('z"') + 1)}
for w in dico:
for ¢ in w:
if ¢ in lettres:
lettres[c] lettres[c] 1
return lettres

In [67]: occur-occurrences(littre2)

In [68]: occur['a'] # le nombre d'occurrences de la lettre a

Out [68]: 51230
51230

In [69]: sum(occur.values()) # compte le nombre total de lettres comptées

out [69]: 641234
641234

In [70]1: somme @

for i in occur.values():

somme i
print(somme)
641234

On transforme les valeurs du dictionnaire des occurrences en pourcentage d'apparition de la lettre de
I'alphabet

In [74]: def normalise(lettres):
somme - sum(lettres.values())

return {c:round(lettres[c] 100 / somme, 1) for ¢ in lettres}
occur-normalise(occur)

In [75]1: print(occur,end-"")

{'a': 8.0, 'b': 1.7, 'c': 4.2, 'd': 2.3, 'e': 16.2, 'f': 1.2, 'g': 2.1, 'h':

On affiche enfin I'histogramme des fréquences des lettres en francgais (pour le dictionnaire Littré).

In [50]: import matplotlib.pyplot as plt

In [76]: plt.bar(list(occur.keys()),occur.values(),color-'b")

Out [76]: <BarContainer object of 26 artists>
<Figure size 432x288 with 1 Axes>

16

14

12

10

abcdefghijklmnopgrstuvwxyz

In [77]1: sum(occur.values())

out [77]: 100.0
100.0

Répondons a la question : "quelles sont les lettres les plus fréquences en frangais?". On trace
I'histogramme par ordre décroissant des fréquences.

In [78]: occtri-sorted(occur.items(),key lambda t:t[1],reverse True)
print(occtri)

[('e', 16.2), ('i', 9.0), ('r', 9.0), ('a', 8.0), ('t', 6.8), ('n', 6.7), ('0', 6

On a utilisé la fonction sorted () appliquée sur les valeurs du dictionnaire des occurrences (par lamba
t:t[1]). Sion avait voulu trier sur les clés, on aurait utilisé (par Lamba t:t[0]). Mais la sortie de la
fonction est une liste et plus un dictionnaire ! On transforme la liste en dictionnaire par dict ().

In [79]: occtrid-dict(occtri)
print(occtrid)

In [80]: plt.bar(list(occtrid.keys()),occtrid.values(),color-'r")

Out [80]: <BarContainer object of 26 artists>
<Figure size 432x288 with 1 Axes>

16

14

12

10

8

eiratnolsucmpdghbfvgyxjkzw

Pourquoi cet histogramme est-il différent des fréquences des lettres en francais, p.e. celui-ci ?

In []:

http://www.nymphomath.ch/crypto/stat/francais.html

