
Cours 2 : chaînes, ensembles et dictionnaires

Chaînes de caractères

Une chaîne est une suite finie de caractères (ou string) entourée par des apostrophes ou des
guillements. Elle n'est pas mutable (on ne peut pas changer la valeur d'un caractère).

On doit utiliser un caractère d'échappement pour utiliser certains symboles, on concatène avec + et
len() donne la longueur

La chaîne est un objet itérable, i.e. dont on peu parcourir les valeurs, p.e. dans un for.

On peut en extraire une tranche slice, c'est un mécanisme très puissant en python

replace() permet de remplacer un caractère ou une sous-chaîne, count() compte le nombre de
caractères.

s='Ceci	est	une	chaîne'
s

In [2]:

'Ceci est une chaîne'Out [2]:

s[3]In [3]:

'i'Out [3]:

s[3]='a'In [4]:

TypeError Traceback (most recent call last)
<ipython-input-4-1d84d5b091e8> in <module>()
----> 1 s[3]='a'

TypeError: 'str' object does not support item assignment

t=',	et	l\'été	est	fini'
s+t
len(s+t)

In [3]:

38Out [3]:

for	c	in	s:
				print(c,	end='')

In [22]:

Ceci est une chaîne

t[7:10]+t[-5:]In [23]:

'été fini'Out [23]:

Beaucoup de méthodes sont associées, p.e. lower() et upper() pour changer la casse

On peut convertir les caractères numériques en nombre avec la fonction ord() dont la fonction
réciproque est chr()

C'est utile pour ramener (et recoder) {a,...,z} dans {0,..25} !

Fonctions ou méthodes utiles pour la suite:

retirer les caractères accentués (comme î) ou entrelacés (comme œ) en changeant le codage des
caractères par la méthode replace()

récupérer les lettres d'une chaîne sans les occurrences multiples (avec changement de type)

t.replace('été','automne')[5:15]+'commence'In [24]:

"l'automne commence"Out [24]:

s.count('e')In [40]:

4Out [40]:

s.lower()+t[0:7]+t[7:10].upper()+t[10:]In [12]:

"ceci est une chaîne, et l'ÉTÉ est fini"Out [12]:

print(ord('A'))
print(chr(65+25))

In [39]:

65
Z

u=s.lower().replace('	','').replace('\'','').replace('î','i')
for	c	in	u:			
				print(ord(c)-ord('a'),end=',')

In [57]:

2,4,2,8,4,18,19,20,13,4,2,7,0,8,13,4,

import	unicodedata
def	remove_accents(input_str):
				input_str	=	input_str.replace('œ',	'oe').replace('æ',	'ae')
				nfd_form	=	unicodedata.normalize('NFD',	input_str).encode('ASCII','ignore').decode
				return(nfd_form)

In [42]:

remove_accents('c\'était	un	œuf')In [43]:

"c'etait un oeuf"Out [43]:

"".join(list(set('aabccccccd')))In [46]:

'cdba'Out [46]:

list('aabccccccd')In [47]:

Et si ça ne suffit pas, regardez les méthodes de chaînes ou votre cours de L1 (cours 3?)

Ensembles

On peut utiliser set de Python ou la classe FiniteSetde SymPy

Création d'un ensemble

Avec la structure setde base de Python3

on peut aussi changer le type d'un élément liste en un ensemble

En utilisant FiniteSetde Sympy, de façon analogue

Ci-dessus on a utilisé f(*liste) qui permet d'appeler f avec comme arguments les éléments de
liste; p.e. f(*(1,2,3)) est synonyme de f(1,2,3)

Deux notations pour l'ensemble vide:

en python

avec FiniteSet, on utilise EmptySet

['a', 'a', 'b', 'c', 'c', 'c', 'c', 'c', 'c', 'd']Out [47]:

s={1,2,3}
s

In [7]:

{1, 2, 3}Out [7]:

liste=[4,5,6]
set(liste)

In [63]:

{4, 5, 6}Out [63]:

from	sympy	import	FiniteSet
s1=FiniteSet(1,2,3)
s1

In [8]:

{1, 2, 3}Out [8]:

FiniteSet(*liste)In [64]:

{4, 5, 6}Out [64]:

e=set()
e

In [66]:

set()Out [66]:

https://docs.python.org/fr/3/library/stdtypes.html#string-methods

Cardinalité et appartenance

La fonction len() compte le nombre d'éléments

Et l'appartenance se teste par l'instruction in

Opérations sur les ensembles

Les méthodes union et intersection fonctionnent dans les deux cas

La différence entre deux ensembles fonctionne dans les deux cas

from	sympy	import	EmptySet
e=EmptySet()
e

In [68]:

EmptySet()Out [68]:

len(s)In [69]:

3Out [69]:

len(s1)In [70]:

3Out [70]:

1	in	sIn [71]:

TrueOut [71]:

4	in	s1In [72]:

FalseOut [72]:

print(s)
t={3,4,5}
s.union(t)

In [75]:

{1, 2, 3}

{1, 2, 3, 4, 5}Out [75]:

t1=FiniteSet(3,4,5)
s1.union(t1)

In [76]:

{1, 2, 3, 4, 5}Out [76]:

s.intersection(t)In [77]:

{3}Out [77]:

s1.intersection(t1)In [78]:

{3}Out [78]:

La différence principale entre set et FiniteSet se fait pour le produit cartesien, plus difficile sans
sympy car on a besoin de la librairie itertools

tandis qu'avec FiniteSet:

Et il est bien plus facile de calculer l'ensemble des parties d'un ensemble avec FiniteSet

juste pour info, voici ce qu'il faut faire sans FiniteSet

Construction par compréhension

Un ensemble peut aussi se construir par compréhension (ici les carrés multiples de 3)

s-tIn [86]:

{1, 2}Out [86]:

s1-t1In [87]:

{1, 2}Out [87]:

import	itertools
itertools.product(s,t)	#	qui	retourne	un	itérateur

In [6]:

<itertools.product at 0x10e38a288>Out [6]:

list(itertools.product(s,t))In [83]:

[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5)]Out [83]:

s1*t1In [84]:

{1, 2, 3} x {3, 4, 5}Out [84]:

list(s1*t1)In [85]:

[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5)]Out [85]:

s1.powerset()In [89]:

{EmptySet(), {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}Out [89]:

from	itertools	import	*
def	subsets(iterable):
				xs=list(iterable)
				return	chain.from_iterable(combinations(xs,n)for	n	in	range(len(xs)+1))

In [90]:

list(map(set,subsets(s)))In [92]:

[set(), {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]Out [92]:

La primitive filter(function,iterable) permet de parcourir un objet itérable (str, list,
tuple, range, set, dict) et d'obtenir un itérateur sur les objets retenus. Quitte ensuite à le
parcourir, le transformer en liste, en ensemble, etc. Attention, une fois utilisé, il est épuisé.

Attention FiniteSet(F) retourne une erreur !

Conclusion

La classe FiniteSet apporte des améliorations au type set de base. Une alternative est d'utiliser les
frozenset qui permet de créer des ensembles de listes ou d'ensembles mais la classe FiniteSet de
sympy est plus accessible.

Les dictionnaires

Un dictionnaire est une collection non numérotée de couples clé:valeur où clé est un objet non
mutable et valeur n'importe quelle valeur. Attention toutes les clés doivent être distinctes.

Création d'un dictionnaire

E={x*x	for	x	in	range(10)	if	x%3==0}
E

In [96]:

{0, 9, 36, 81}Out [96]:

F=filter(lambda	x:x%2==0,{3,2,5,4,1,6,9,0})
F

In [103]:

<filter at 0x1074c7978>Out [103]:

list(F)In [98]:

[0, 2, 4, 6]Out [98]:

set(F)In [101]:

{0, 2, 4, 6}Out [101]:

stock={'poires':51,'pommes':243}
stock

In [107]:

{'poires': 51, 'pommes': 243}Out [107]:

len(stock)In [108]:

2Out [108]:

'pommes'	in	stockIn [109]:

TrueOut [109]:

'pêches'	in	stockIn [110]:

Le dictionnaire vide se note {} ou dict()

On peut modifier la valeur associée à une clé ou ajouter un nouveau couple clé:valeur

Accès aux éléments d'un dictionnaire

Il est facile d'accéder à la valeur associée à une clé. C'est le principal intérêt de cette structure. La
recherche est à sens unique. On va de la clé vers la valeur.

La clé est non mutable. Donc principalement des chaînes et des nombres mais pas de listes.

Modifier un dictionnaire

Un dictionnaire est mutable par la méthode update() qui permet d'ajouter un dictionnaire à un
dictionnaire existant

On peut retirer un élément du dictionnaire par la méthode pop() qui retourne la valeur val associée à la
clé et qui supprime le couple clé:val associé

Accéder aux clés ou aux valeurs

on peut obtenir la liste de toutes les clés ou de toutes les valeurs par les méthodes keys() et
values() qui retournent des vues views sur les clés ou les valeurs

FalseOut [110]:

stock['poires']In [111]:

51Out [111]:

stock['pommes']=100
stock['bananes']=23
stock

In [113]:

{'poires': 51, 'pommes': 100, 'bananes': 23}Out [113]:

stock['bananes']In [115]:

23Out [115]:

dico={1:'one',2:'two',3:'three'}In [14]:

dico.update({4:'four',5:'five'})
dico

In [15]:

{1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five'}Out [15]:

dico.pop(5)
dico

In [16]:

{1: 'one', 2: 'two', 3: 'three', 4: 'four'}Out [16]:

Les vues sont des itérables qu'on peut parcourir par un for, ou transformer en liste ou en ensemble, les
sommer,...

Avec un for par défaut, on itère sur les clés

Mais on peut décider d'itérer sur les valeurs

Effacer un dictionnaire

Par l'instruction del

dico.keys()In [17]:

dict_keys([1, 2, 3, 4])Out [17]:

dico.values()In [18]:

dict_values(['one', 'two', 'three', 'four'])Out [18]:

list(dico.values())In [19]:

['one', 'two', 'three', 'four']Out [19]:

list(dico.keys())In [20]:

[1, 2, 3, 4]Out [20]:

sum(dico.keys())In [21]:

10Out [21]:

for	k	in	dico:
				print(k)

In [22]:

1
2
3
4

for	k	in	dico.values():
				print(k)

In [23]:

one
two
three
four

del	dicoIn [132]:

dicoIn [133]:

NameError Traceback (most recent call last)
<ipython-input-133-efcd661f264a> in <module>()
----> 1 dico

Une étude de cas

On veut tracer l'histogramme des fréquences des lettres qui apparaissent dans le dictionnaire français
(ici le Littré compressé au format zip)

On nettoie les symboles. Le dictionnaire contient des caractères accentués, spéciaux, etc... Regardons
son alphabet :

On crée un dictionnaire pour compter les occurrences de chaque lettre de l'alphabet réduit à {a,..z}. On
parcourt le Littré nettoyé mot par mot et pour chaque mot, caractère par caractère. On incrémente la

NameError: name 'dico' is not defined

from	sympy	import	*In [24]:

init_printing()In [25]:

def	dictionnaire(fichier):
				import	zipfile
				import	sys
				f=zipfile.ZipFile(fichier,'r')
				l=f.namelist()							#	retourne	la	liste	des	éléments	de	l'archive	par	nom
				if	len(l)	!=	1:
								print('pas	bon')
								sys.exit(1)
				r	=	f.read(l[0]).decode(encoding="UTF-8",	errors="strict").split("\n")
				return	[m	for	m	in	r	if	len(m)	!=	0]

In [26]:

littre=dictionnaire("littre.zip")In [27]:

littre[112]							#	regardons	le	contenu	à	l'index	112In [28]:

'abondance'Out [28]:

alphabet=set()
for	m	in	littre:
				alphabet=alphabet.union(set(m))
print(sorted(alphabet))

In [35]:

['!', "'", '(', ')', '.', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '\xa0', 'à', 'â', 'ç', 'è', 'é', 'ê', 'ë', 'î', 'ï', 'ô', 'ö', 'û', 'ü', 'œ']

import	unicodedata
def	remove_accents(input_str):
				input_str	=	input_str.replace('œ',	'oe').replace('æ',	'ae')
				nkfd_form	=	unicodedata.normalize('NFD',	input_str).encode('ASCII','ignore').decode
				return(nkfd_form)

In [19]:

littre2=[remove_accents(m)	for	m	in	littre	if	len(m)	!=	0]In [33]:

valeur du dictionnaire lettres si on trouve le caractère dans l'alphabet.

On transforme les valeurs du dictionnaire des occurrences en pourcentage d'apparition de la lettre de
l'alphabet

On affiche enfin l'histogramme des fréquences des lettres en français (pour le dictionnaire Littré).

def	occurrences(dico):
				lettres	=	{chr(i):0	for	i	in	range(ord('a'),	ord('z')	+	1)}
				for	w	in	dico:
								for	c	in	w:
												if	c	in	lettres:
																lettres[c]	=	lettres[c]	+	1
				return	lettres

In [66]:

occur=occurrences(littre2)In [67]:

occur['a']	#	le	nombre	d'occurrences	de	la	lettre	aIn [68]:

51230Out [68]:

sum(occur.values())	#	compte	le	nombre	total	de	lettres	comptéesIn [69]:

641234Out [69]:

somme=0
for	i	in	occur.values():
				somme+=i
print(somme)

In [70]:

641234

def	normalise(lettres):
				somme	=	sum(lettres.values())
				return	{c:round(lettres[c]	*	100	/	somme,	1)	for	c	in	lettres}
occur=normalise(occur)

In [74]:

print(occur,end='')In [75]:

{'a': 8.0, 'b': 1.7, 'c': 4.2, 'd': 2.3, 'e': 16.2, 'f': 1.2, 'g': 2.1, 'h': 2.0, 'i': 9.0, 'j': 0.2, 'k': 0.1, 'l': 5.1, 'm': 3.4, 'n': 6.7, 'o': 6.6, 'p': 3.0, 'q': 0.8, 'r': 9.0, 's': 4.7, 't': 6.8, 'u': 4.6, 'v': 1.0, 'w': 0.0, 'x': 0.4, 'y': 0.8, 'z': 0.1}

import	matplotlib.pyplot	as	pltIn [50]:

plt.bar(list(occur.keys()),occur.values(),color='b')In [76]:

<BarContainer object of 26 artists>Out [76]:
<Figure size 432x288 with 1 Axes>

Répondons à la question : "quelles sont les lettres les plus fréquences en français?". On trace
l'histogramme par ordre décroissant des fréquences.

On a utilisé la fonction sorted() appliquée sur les valeurs du dictionnaire des occurrences (par lamba
t:t[1]). Si on avait voulu trier sur les clés, on aurait utilisé (par lamba t:t[0]). Mais la sortie de la
fonction est une liste et plus un dictionnaire ! On transforme la liste en dictionnaire par dict().

Pourquoi cet histogramme est-il différent des fréquences des lettres en français, p.e. celui-ci ?

sum(occur.values())In [77]:

100.0Out [77]:

occtri=sorted(occur.items(),key=lambda	t:t[1],reverse=True)
print(occtri)

In [78]:

[('e', 16.2), ('i', 9.0), ('r', 9.0), ('a', 8.0), ('t', 6.8), ('n', 6.7), ('o', 6.6), ('l', 5.1), ('s', 4.7), ('u', 4.6), ('c', 4.2), ('m', 3.4), ('p', 3.0), ('d', 2.3), ('g', 2.1), ('h', 2.0), ('b', 1.7), ('f', 1.2), ('v', 1.0), ('q', 0.8), ('y', 0.8), ('x', 0.4), ('j', 0.2), ('k', 0.1), ('z', 0.1), ('w', 0.0)]

occtrid=dict(occtri)
print(occtrid)

In [79]:

{'e': 16.2, 'i': 9.0, 'r': 9.0, 'a': 8.0, 't': 6.8, 'n': 6.7, 'o': 6.6, 'l': 5.1, 's': 4.7, 'u': 4.6, 'c': 4.2, 'm': 3.4, 'p': 3.0, 'd': 2.3, 'g': 2.1, 'h': 2.0, 'b': 1.7, 'f': 1.2, 'v': 1.0, 'q': 0.8, 'y': 0.8, 'x': 0.4, 'j': 0.2, 'k': 0.1, 'z': 0.1, 'w': 0.0}

plt.bar(list(occtrid.keys()),occtrid.values(),color='r')In [80]:

<BarContainer object of 26 artists>Out [80]:
<Figure size 432x288 with 1 Axes>

In []:

http://www.nymphomath.ch/crypto/stat/francais.html

