Cryptology = science of secrecy.

How :

encipher a plaintext into a ciphertext to protect its secrecy.
The recipient deciphers the ciphertext to recover the plaintext.

A cryptanalyst shouldn’t complete a successful cryptanalysis.

Attacks [6] :
known ciphertext : access only to the ciphertext

known plaintexts/ciphertexts : known pairs
(plaintext,ciphertext) ; search for the key

chosen plaintext : known cipher, chosen cleartexts ;
search for the key

J. Stern [8] : 3 ages :
craft age : hieroglyph, bible, ..., renaissance, — WW2
technical age : complex cipher machines
paradoxical age : PKC

Evolves through maths’ history, computing and cryptanalysis :
manual
electro-mechanical
by computer

Polybius, Ancient Greece : communication with torches
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TEXT changed in 44,15,53,44. Characteristics
encoding letters by numbers
shorten the alphabet’s size

encode a character x over alphabet A in y finite word over B.
Polybius square : {a,...,z} — {1,...,5}2.

500 BC : scytale of Sparta’s generals

:

Secret key : diameter of the stick



Increasing number of goals :

secrecy : an enemy shouldn’t gain access to information

authentication : provides evidence that the message
comes from its claimed sender

signature : same as auth but for a third party
minimality : encipher only what is needed.

Change each char by a char 3 positions farther
A becomes d, B becomes e...
The plaintext TOUTE LA GAULE becomes wrxwh od jdxoh.

Yesterday :

for strategic purposes . .
(the enemy shouldn’t be able to read messages) Information Theory : perfect cipher
by the church Complexity : most of the ciphers just ensure computational

diplomacy security
Computer science : all make use of algorithms
) ) . Mathematics : number theory, probability, statistics,
Today, with our numerical environment algebra, algebraic geometry,...
confidentiality
integrity
authentication
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Made of [1] :
plaintext alphabet : A
ciphertext alphabet : A¢
keys alphabet : Ax
encipher ; application E : A% x A} — A%,
decipher; application D : A x A5 — A},
E and D are such that VK € Ay, VM € A7, :

D(K,E(K,M)) = M

Monoalphabetical cipher : bijection between letters from Ay
and Ac. If both alphabets are identical : permutation.

Example : Caesar. {a,...,z}={A,...,Z} = {0,...,25} = Zog
Caesar cipher is additive.

Encipher : Vx € Zog, X — X +3 mod 26

Decipher :Vy € Zog, y — ¥ — 3 mod 26

We consider : x — t-x mod 26 for t € N.

Acceptable values of t are s.t. gcd(t,26) =1 < {1 26.

©(26) acceptables values {1,3,5,7,9,11,15,17,19,21,23,25}
Other values don’t ensure the uniqueness of the deciphering
(e.g.2)

a b ¢ d e f g h i i k I m
o 1 2 8 4 5 6 7 8 9 10 11 12
n o p gq r s t u v w Xx Yy z
13 14 15 16 17 18 19 20 21 22 23 24 25
0 2 4 6 8 10 12 14 16 18 20 22 24

To decipher, we require the existence of t~! modulo 26.

We use the extended Euclidean algorithm which provides
Bezout coefficients i.e. x, y € N st. d = gcd(a, b) = ax + by.
From Bezout coefficients, one can deduce t~' modulo 26 :

ged(t,26) =1 Ix,y e N: tx+26y =1 x=t"" mod 26



Extended Euclidean(q, r) with g < r

end

Q+ (1,0);
R+ (0,1);
while r £ 0 do
t+<q modr;
T+~ Q-|q/r|R;
(q,r) « (r,1);
(QR)« (R, T);
end

return (g, Q); q : gcd value and Q provides the coeffs.

g|r |t Q lq/r] R T
11126 11| (1,0) 0 (0,1) (1,0)
26 (11| 4 | (0,1) 2 (1,0) (—-2,1)
1114 |3 (1,0 2 (-2,1) (5,-2)
4 13 |1 |(-2,1) 1 (5,-2) (-7,3)

110 (5 -2) 3 (-7,3) |(26,—11)
110 (-7,3) (26,—11)

pgcd(11,26) = 1 and Bezout’s coefficients are (-7, 3).
The mult. inverse of 11 mod 26 = —7 = 19.

When combining 26 additive ciphers and 12 multiplicative ones,
we get affine ciphers :

given s and t € N, encipher with : x — (x + s) - t mod 26.

The key is the pair (s, t) and the deciphering is done by
applying successively the previous methods.

There are 26.12=312 possible affine ciphers. Far from the
261=403291461126605635584000000 possible ones.

To get all possible monoalphabetical ciphers by :
a keyword like, for instance CRYPTANALYSIS;
a key letter like e.

Remove multiple occurrences of the same letter in the keyword
-here CRYPTANLSI- then

abcdefghijklmnopgqrstuvwxyaz
VWXZCRYPTANLSIBEDFGHJKMOQU



Monoalphabetical ciphers aren’t robust against a frequency

Shannon : a small proportion of letters provides more analysis.
information than the remaining 2/3 of the text. We need ciphers for which the statistical distribution of the
letters tend to be a uniform one.
By applying a frequency analysis on the letters then of bigrams, i ) )
yinrt)r?eycighertegt y y g 1.st attempt : use a crypto transformation which associates a
’ set of distinct letters in the ciphertext to the plaintext letters.

We get what is called polyalphabetical ciphers

We have used the method for solving the integer equation

ax =b mod n. There are two cases : In a polyalphabetical cipher, plaintext characters are

, transformed by means of a key K = kg, ..., ki_4 which defines j
ged(a,n)=1:ax=b mod n< x=a 'b mod nwith a~* . e . y 0 /= /
) . . distinct functions fy, ..., fi_¢ s.t.

given by the extended Euclidean algorithm.
ged(a, n) = d # 1 splits into two new cases : Vi,0<j<n fy: Ay Ag, VL, 0< 1<

d 1 b, the equation has no solution; Ci = fi; mod j(m,-)

dlbax=b mod n< da'x =db’ mod dn’. We divide |Ihs

and rhs by d and we solve &@'x = b’ mod n’. We get a set Idea : use j distinct monoalphabetical ciphers.

of solutions : {x =& 'b' + kn' : 0 < k < d}.



abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL

abcdefghijklmnopgrstuvwxyz
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNQOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHI JKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHI JKLMNOPQRSTUVW
YZABCDEFGHI JKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY

polyalphabetique KSYSSGTUUTZXVKMZ

VENUSVENUSVENUSV

... becomes more difficult : we tend to a uniform distribution.

But, if we re-arrange the ciphertext in a matrix with as many
columns as the key length, all the letters in the same column

come from the same monoalphabetical cipher.

Cryptanalysis works as follows :

(1) find the key length

(2) apply the previous methods

2 tests to find the key length

: Kasiski and Friedman.

Goal : smooth the frequency distribution of the letters.
The ciphertext alphabet contains several equivalents for the

same plaintext letter.

We thus define a multiple representation substitution.
Thus, letter e from the plaintext, instead of being always

enciphered by a 4 could be replaced for instance by 37, 38, 39,

These different cryptographic units corresponding to the
same plaintext character are called homophones.

letter frequency | letter frequency
a 0,26,27,28,29,30 n 13,68,69,70,71,72
b 1 o] 14,73,74,75,76
c 2,31,32,33,34 | p 15,77,78
d 3,3536 | q 16
e 437,...,54 r 17,79,80,81,82
f 555 | s 18,83,84,85,86,87
g 6,56 t 19,88,89,90,91,92,93
h 757 | u 20,94,95,96,97
i 8,58,59,60,61,62 | v 21
j 9| w 22
k 10| x 23
I 11,63,64,65,66 | vy 24,98
m 12,67 | z 25




Implements a permutation of the plaintext letters Az = Ay.

Given a passphrase, we define a numerical key :
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We encipher, «le chiffrement est I'opération qui consiste a

transformer un texte clair, ou libellé, en un autre texte

nm

inintelligible appelé texte chiffré ou chiffré» [5].

18 14 1 8 15 12 10 16 3 19 4 11 9 17 5 7 1 6 2
I e c h i f f r e m e n t e s t I [ p
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r é o u c r y p t o g r a m m e

Is the one-time pad a «perfect» cipher ?

A and B share a true random sequence of n bits : the secret
key K.

A enciphers M of nbitsin C =M @ K.

B deciphers Cby M = K ¢ C.

Example

M = 0011, K = 0101

C =0011 90101 =0110
M=KaC.

Non-reusability : for every new message, we need a new key.

... To avoid revealing information on the @ of plaintexts.
Eve can sniff C = {M}x and C' = {M'} and computes :
ColC=MoK)ysMaK)=MaM

Given enough ciphertexts, she’s able to recover a plaintext by a
frequency analysis and with the help of a dictionnary [4].

If we respect the above requirements, Vernam cipher
guarantees the condition of perfect secrecy.

PriM=m| C=c)=Pr(M=m)

Intercepting C doesn’t reveal any information to the cryptanalyst



Vernam ciphers provides perfect secrecy.

We have three classes of information :
plaintexts M with proba. distribution Pr(M)/ >, Pr(M) =1
ciphertexts C with proba. distribution Pr(C)/ >, Pr(C)=1
keys with proba. distribution Pr(K) s.t. >, p(K) = 1

Pr(M | C) = proba that M has been sent knowing that C was

received (C is the corresponding ciphertext of M). The perfect
secrecy condition is defined as

Pr(M | C) = Pr(M)

The interception of the ciphertext does not provide any
information to the crypto-analyst.

Perfect secrecy but difficult to achieve

generate truly random sequences

store them and share them with the recipients
example of use : «red phone».

Improvement : combine substitutions and transpositions

A cipher is iterated if the ciphertext is obtained from repeated
applications of a round function to the plaintext
At each round, we combine a round key with the plaintext.

In an iterated cipher with r rounds, the ciphertext is computed
by repeated applications of a round function g to the plaintext :

Ci:g(cif1v}(i) i:17"'7r

Cy the plaintext, K; round key and C, the ciphertext.
Deciphering is achieved by inverting the previous equation. For
a fixed K;, g must be invertible.

Special case, Feistel ciphers.

A Feistel cipher with block size 2n and r rounds is defined by :
g:{0,1}"x {0,1}" x {0,1}" — {0,1}" x {0,1}"

X.Y,Z = (Y,F(Y,Z)® X)

g function of 2n x m bits into 2n bits and & denoting the n bit XOR
Operation mode

Given a plaintext P = (P, Pf) and r round keys Ki, ..., K;, the
ciphertext (C*, CF) is obtained after r rounds.

Let C; = Pt and Cf = PP and we compute for i = 1,....r

(CIL7 CIH) = (CﬁhF(C,’ih/{,) D CiL71)
with C; = (CF, Cf)and CF = Cl and Ct = CF

I

The round keys Ki, ..., K, are obtained by a key scheduling
algorithm on a master key K.



NBS launches a competition in 1973

DES (Data Encryption Standard) proposed by IBM in 1975
adopted in 1977

security evaluation every 4 years

replaced by AES or Rijndael [2]

enciphering example of DES in STINSON'’s book [9]

DES usage

DES was (is ?) widely used (banks, computer security systems
with DES as the main component).

Feistel cipher with special properties.

DES receives as an input :
a message M of 64 bits;
a key K of 56 bits.
and outputs a ciphertext of 64 bits.
DES algorithms first applies to M an initial permutation /P
which provides M’, a perutation of M.
M’ is then cut into two 32 bits words :
Lo the left part of M’
Ry its right part.

DES then applies 16 iterates of function f combining
substitutions and transpositions.
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AES or Rijndael[3]



P clair (16 bits) clé (16 bits)

AK( Add round key € ( w[0,1]

NS | Nibble substitution ’ Expand key ‘ ( ) 4 1 . . d bl f F
m(x) = x* 4+ x + 1 is an irreducible o
elements : nibble byb;babs < byx® + b1 X2 + box + bs
MC ix columns
o s W[Zlﬂ addition : by adding the coefficients : (x3 4+ x +1) + (x® +1)
1 Add round ke; ’
multiplication : product of polynomials mod m(x)
s byte encoding : in a quadratic extension Fyg[z]/2? + 1
w [ o] beware ! z2 + 1 is not invertible in GF(16)
¥ Reminder : to find the multiplicative inverse of an element :
AK round ke ¢ w4,
’ ! Extended Euclidean on polynomials
C chiffré (16 bits) (X+1,m):(X3+X2+X)(X+1)—|—1 -m
1 nibble = 4 bits word (I/O of SAES components) 1 0001 |1 1 0001 1
2 0010 | x x3 +1 1001 9
bobibabs | bgbobiobii _ Soo | Sosi 3 0011 | x+1 Xrx24x 1110 e
bsbsbgby | bi2bi3bisbis Sio| St 4 0100 | x2 X3+ x2 41 1101 d
) 5 0101 | x>+ 1 X3+ x+1 1011 b
key representation : 6 0110 | x2 + x X2+ x4+ 1 0111 7
ke kot k 7 0111 [ X2+ x+1|x2+x 0110 6
NUARSASAARN: ARG 8 1000 | x3 XX x+1]1111 f
wi(0] wl1] 9 1001 | x3+1 X 0010 2
a 1010 | x3 + x x® + x? 1100 ¢




Shift row : transposition of the nibble bits :

11100 01 10 11 4401 0100 1010 1011 boby babs > baby boby. 414 414
0019 4 a b c ‘ f f ‘ c
_ 1101 0001 1000 0101
01jd 1 8 5 = 0110 0010 0000 0011 Mix columns : modifies the polynomial representation of
1006 203 4100 1110 1111 0111 N; |- -
11lc e f 7 the state’s rows NI- ; we associate ¢(z) =
i |
' boby  bsbs s N;z +£\Ij € Fie[2]/22 + 1; compute ¢(z).(x?z + 1)
Y nibble : ~~~ ~~ : 00 01=01 00 mod z= + 1.
row column
Example
0001|0001 g 0100|0100 _ 4|4 For 4 > 0100 1111 — ¢(2) = X232 + X3 + X2 + x +1 -
1100 [ 1110 " 1100 [ 1111 — c[f (X3 + X2 + 1)z + (x® + x2) = Nez + N, <> 1101 1100 because
ZZ=1,x*=x+1and x> = x®+ x.
init the S-box with the nibbles arranged in a 1D array row We work directly on the state :
by row
2 S , SA’ o 14 S, S ,
convert each nibble in a polynomial (,:2 X ) - (s?g s?: ) =r (41)- (si’ﬁ 3?1)
invert each nibbble in F1g
associate to the inverse its ploynomial in Example
Fislyl/y* —1=N(y)
compute a(y)N(y) + b(y) mod y* +1 witha=y3+ y + 1 (1)(2) ( X2 X2 )_<X3+X2+1 1 )_(d1)
eth = y3 +1 x2 1 X34 x24x+1 x34x2 ) — x34x2 x34x24x+1 ) \cf

Normally S(0011) = 1011 =S5(3)=b



initialisation : w[0] = kg ... k7 w[1] = Kg...kKis
2<i<5

{ wli] = w[i — 2] ® RCON(i/2) & SubNib(RotNib(w[i — 1]))
wli] = wli — 2] & w[i — 1]

With
RCON([/]=RC[{]0000
RC[i] = x'+2 € Fyg (RC[1]=x® «> 1000)
RotNib(Ng N3 )=N; Ny
SubNib(NyN1)=S(Ny) S(Ny) where S denotes the S-box

Example

with w[0]w[1] = 0101 1001 0111 1010, we have
w[2] = 1101 1100, w[3] = 1010 0101, w[4] = 0110 1100 and
w[5] = 1100 1010

introduced in [7] for academic purposes
simpler than AES and can be used by hand
allows to illustrate cryptanalysis

has all the features of AES

Block ciphers modes of operation

Original image Encrypted using ECB mode Modes other than ECB result in
pseudo-randomness

The image on the right is how the image might appear encrypted with CBC, CTR or any of the other more
secure modes—indistinguishable from random noise. Note that the random appearance of the image on the
right does not ensure that the image has been securely encrypted; many kinds of insecure encryption have
been developed which would produce output just as "random-looking".

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation



The one previously used; given a plaintext, each block x; is

enciphered with the key K, and provides the ciphertext yqy» . ..

— -
_— K

Each ciphertext y; is XORed with next plaintext x;, 1
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Encipher each plaintext block by successive XORing with keys
coming from the application of a secret key cipher :

OFB : sequence of keys comes from the repeated
enciphering started on an initial value IV. We let zy=IV and
we compute the sequence z12 ... by z; = ex(zj_1). The
plaintext is then enciphered by y; = x; @ z;

CFB : We start with yp=IV and the next key is obtained by
enciphering the previous ciphertext z; = ex(yi_1).
Otherwise, everything works like in OFB mode.



Y1

For Message Authentication Code (Modification Detection
Code), or message fingerprint (MAC=MDC+IV# 0).

Possible with CBC and CFB.

We start with IV=0. We build the ciphertext y; ... y, with the key
K in CBC mode. MAC is the last block yj.

Alice sends the message x; ... x, and the MAC yj,.

Upon reception of X1 ... X,, Bob builds y; ... y, by using the
secret key K and verifies that y, is the same than the received
MAC.

Cryptologie contemporaine.

AES proposal : Rijndael.

The Rijndael bloc cipher.

Automated cryptanalysis of xor plaintext strings.
La guerre des codes secrets.

Cryptography.

Cryptography and Network Security.

La science du secret.

B & B b D W O B

Cryptographie, théorie et pratique.



