
19/11/2018 08(30CF-9

Page 1 sur 8http://localhost:8888/nbconvert/html/Cours/CF-9.ipynb?download=false

Cours 9 : Algèbre de Boole

Les valeurs Booléennes qui représentent le vrai et le faux sont True et False. Les opérations logiques
utilisées: le ET & , OU | et NON, ~

9.1 Représentation d'une fonction Booléenne

Représentons f = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)

In [1]: from sympy import *
init_printing()
x,y,z=symbols('x,y,z')
f=(x&y)|(y&z)|(z&x)
f

Une fois définie, on peut chercher quelles sont les variables de par la méthode free_symbols :f f

In [7]: f.free_symbols

On rappelle que la valuation d'une fonction Booléenne est une distribution des valeurs de vérité aux
variables de cette fonction. Cette valuation satisfait la fonction si, avec la valuation des variables de
, est évaluée à vrai.

On peut chercher une valuation qui satisfait la formule. Il suffit de substituer à une variable le vrai ou le
faux: la première valuation ne satisfait pas la formule mais la seconde oui.

v f
f v

f f

In [5]: f.subs({x:True,y:False,z:False})

In [2]: f.subs({x:True,y:True,z:False})

Out[1]: (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

Out[7]: {x, y, z}

Out[5]: False

Out[2]: True

19/11/2018 08(30CF-9

Page 2 sur 8http://localhost:8888/nbconvert/html/Cours/CF-9.ipynb?download=false

On peut aussi mélanger valuation et variables:

In [45]: f.subs({y:False})

La fonction peut aussi être définie comme une Lambda-expression Sympy :

In [9]: g=Lambda([x,y,z],(x&y)|(y&z)|(z&x))

In [10]: g(True,True,False)

Avec cette définition, les variables de g ne sont plus libres (elles sont liées par Lambda)

In [11]: g.free_symbols

9.2 Construire la table de vérité

La seconde représentation est plus facile si on veut calculer la valeur de vérité de la fonction pour un
triplet donné, voire pour l'ensemble des triplets pour avoir la table de vérité.

In [18]: for i in cartes([False,True],repeat=3):
 a,b,c=i
 print(i,'\t',g(a,b,c))

la fonction cartes de sympy nous permet de calculer directement le produit Cartésien qui nous
engendre l'ensemble des valuaitons possibles des variables de la fonction

Out[45]: x ∧ z

Out[10]: True

Out[11]: {}

(False, False, False) False
(False, False, True) False
(False, True, False) False
(False, True, True) True
(True, False, False) False
(True, False, True) True
(True, True, False) True
(True, True, True) True

19/11/2018 08(30CF-9

Page 3 sur 8http://localhost:8888/nbconvert/html/Cours/CF-9.ipynb?download=false

On peut construire une fonction BooleanTable qui prend en entrée une fonction Booléenne et qui
retourne sa table de vérité:

In [35]: def BooleanTable(chaine_expr):
 expr=sympify(chaine_expr)
 variables=expr.free_symbols
 for valuation in cartes([False,True],repeat=len(variables)):
 valeur=dict(zip(variables,valuation))
 print(tuple(valeur.items()),expr.subs(valeur))

In [37]: BooleanTable('a&b')

In [40]: BooleanTable('~(x|(y>>x))&y')

Quelle était la fonction Booléenne dont on a cherché la table de vérité?

In [41]: exp=sympify('~(x|(y>>x))&y')
exp

source pour BooleanTable (https://stackoverflow.com/questions/12462747/truth-tables-in-python-using-
sympy)

9.3 Vérifier les identités remarquables

Au moyen de la fonction Equivalent(A,B) qui est vraie si et seulement si A et B sont soit tous
deux vrais soit tous deux faux.

Vérifions par exemple la distributivité du par rapport au : ∨ ∧ p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

((b, False), (a, False)) False
((b, False), (a, True)) False
((b, True), (a, False)) False
((b, True), (a, True)) True

((y, False), (x, False)) False
((y, False), (x, True)) False
((y, True), (x, False)) True
((y, True), (x, True)) False

Out[41]: y ∧ ¬(x ∨ (y ⇒ x))

https://stackoverflow.com/questions/12462747/truth-tables-in-python-using-sympy

19/11/2018 08(30CF-9

Page 4 sur 8http://localhost:8888/nbconvert/html/Cours/CF-9.ipynb?download=false

In [56]: p,q,r=symbols('p,q,r')
mg=p|(q&r)
md=(p|q)&(p|r)
Equivalent(mg,md)

Mais Equivalent ne nous répond pas ! L'algorithme ne sait pas résoudre l'équivalence Booléenne
d'expressions distinctes et dans ce cas Equivalent nous renvoie une expression Booléenne. Une
manière de s'en sortir est d'utiliser equals qui va utiliser la méthode satisfiable sur
Equivalent (on va revenir bientôt sur satisfiable)

In [57]: mg.equals(md)

Que se passe-t-il lorsqu'on n'a pas une tautologie? Par exemple, pour , on obtient une
erreur

y ↔ x ∨ (x ∧ y)

In [3]: x,y=symbols('x,y')
mg=y
md=(x|(x&y))
#mg.equals(md)

9.4 Satisfiabilité

Si une formule n'est pas une tautologie, cela signifie qu'il est possible de trouver une (ou plusieurs)
valuations (ou modèles) qui rendent fausse cette fonction. Commençons par chercher s'il existe une
valuation qui rend vraie la fonction par satisfiable :

In [4]: satisfiable(Equivalent(mg,md))

satisfiable nous retourne une valuation qui permet d'évaluer la fonction à vrai. Mais il y a peut-être
d'autres valuations qui rendent vraie la fonction. Cherchons les en demandant à satisfiable de
nous fournir tous les modèles par un itérable:

In [75]: satisfiable(Equivalent(mg,md),all_models=True)

Out[56]: ((p ∨ q) ∧ (p ∨ r)) ≡(p ∨ (q ∧ r))

Out[57]: True

Out[4]: {y: False, x: False}

Out[75]: <generator object _all_models at 0x107601990>

19/11/2018 08(30CF-9

Page 5 sur 8http://localhost:8888/nbconvert/html/Cours/CF-9.ipynb?download=false

In [76]: valuation=satisfiable(Equivalent(mg,md),all_models=True)

In [77]: next(valuation)

In [78]: next(valuation)

In [79]: next(valuation)

On a donc 2 valuations qui rendent vraie la fonction Booléenne, lorsque et ont la même valeur de
vérité (et donc 2 autres qui rendent fausse la fonction, lorsque et ont des valeurs de vérité différentes.

x y
x y

Si on avait voulu chercher les valeurs de vérité qui rendent fausse la formule, on aurait cherché:

In [6]: val=satisfiable(~Equivalent(mg,md),all_models=True)

In [7]: next(val)

In [8]: next(val)

9.5 Mise sous forme normale

Out[77]: {y: False, x: False}

Out[78]: {x: True, y: True}

--

StopIteration Traceback (most recent c
all last)
<ipython-input-79-9b1d9c612f72> in <module>()
----> 1 next(valuation)

StopIteration:

Out[7]: {x: True, y: False}

Out[8]: {y: True, x: False}

19/11/2018 08(30CF-9

Page 6 sur 8http://localhost:8888/nbconvert/html/Cours/CF-9.ipynb?download=false

Toute fonction Booléenne peut être mise sous forme normale

d'une conjonction de disjonctions (FN conjonctive)
d'une disjonction de conjonctions (FN disjonctive)

Définissons une fonction f

In [12]: f=(x|y)&~(z>>x)

Pour trouver la FN conjonctive (resp. disjonctive) de , on fait appel à la fonction to_cnf (resp.
to_dnf)

f

In [13]: to_cnf(f)

In [14]: to_dnf(f)

Pour simplifier la fonction, on utilise simplify :

In [15]: simplify(f)

9.6 Un problème inverse

Comment faire si on connait la table de vérité et qu'on veut en déduire une fonction Booléenne? Si les
algorithmes sont un peu compliqués, ils sont implémentés dans Sympy .

Prenons une table de vérité:
x
0
0
0

y
0
0
1

z
0
1
0

f
∗
∗
1

On définit d'abord les valuations qui rendent vraies la table de vérité (on les appelle des mintermes)

Out[13]: z ∧ ¬x ∧ (x ∨ y)

Out[14]: (x ∧ z ∧ ¬x) ∨ (y ∧ z ∧ ¬x)

Out[15]: y ∧ z ∧ ¬x

19/11/2018 08(30CF-9

Page 7 sur 8http://localhost:8888/nbconvert/html/Cours/CF-9.ipynb?download=false

In [21]: x,y,z=symbols('x,y,z')
minterms=[]
dontcares=[]

In [22]: minterms=[[0,1,0]]

Ensuite, les valuations pour lesquelles les valeurs de vérité ne sont pas précisées (elles sont vraies ou
fausses), on les appelle des dontcares

In [24]: dontcares=[[0,0,0],[0,0,1]]

Toutes les autres valeur sont supposées à faux.

Une fois la table de vérité décrite, on fait appel à la fonction SOPform qui cherche une fonction
Booléenne qui a la même valeur de vérité:

In [28]: SOPform([x,y,z],minterms)

On n'est pas obligé de définir les don't care.

Prenons une table de vérité:
x
0
0
1
1

y
0
1
0
1

?
0
1
0
0

In [31]: min=[[0,1]]
f1=SOPform([x,y],min)
f1

vérifions que cette solution correspond à la table de vérité de la fonction ¬(x ∨ (y → x)) ∧ y

Out[28]: y ∧ ¬x ∧ ¬z

Out[31]: y ∧ ¬x

19/11/2018 08(30CF-9

Page 8 sur 8http://localhost:8888/nbconvert/html/Cours/CF-9.ipynb?download=false

In [33]: f2=~(x|(y>>x))&y
f2

In [34]: f1.equals(f2)

Calculons la table de vérité de f2 avec la fonction BooleanTable que nous avons introduite:

In [36]: BooleanTable('~(x|(y>>x))&y')

Les deux tables de vérité correspondent et nous avons pu retrouver la fonction spécifiée par sa table de
vérité. L'agorithme nous a donné la forme la plus simple, que nous retrouvons aussi avec simplify

In [37]: simplify(~(x|(y>>x))&y)

Out[33]: y ∧ ¬(x ∨ (y ⇒ x))

Out[34]: True

((y, False), (x, False)) False
((y, False), (x, True)) False
((y, True), (x, False)) True
((y, True), (x, True)) False

Out[37]: y ∧ ¬x

