# The cost of simulating a parallel BAN by a sequential one

# CANA (Natural Computation), LIF UMR CNRS 7279, Aix-Marseille University, France



C

 $\mathcal{C}$ 



- And for each  $n \in \mathbb{N}$ , what is the biggest  $\kappa_N$ for all BAN N of size n?

# **CONFUSION GRAPH**

The confusion graph of a parallel BAN N has  $2^n$ nodes: one per possible configuration. And we have an edge between two configurations x and x' if:



For example with this parallel BAN N:

The confusion graph  $G_N$  will be as bellow:

Let us consider the sequential BAN N' which simulates N. If two configurations x and x' are neighbors in the confusion graph, then the additional automata of N' have to take different values. Thus  $\kappa(N) \ge \lceil \log_2(\chi(G_N)) \rceil.$ 

Conversely, if we have a valid coloration of the confusion graph, we can build a BAN N' which simulates N using only  $\lceil log_2(\chi(G_N)) \rceil$  additional automata.



# Aix\*Marseille

D'INFORMATIQUE FONDAMENTALE

• x and x' are identical when we update their first *i* nodes, for some i < n;

• x and x' are different when we update all of their nodes.





**Theorem.**  $\kappa(N) = \lceil log_2(\chi(G_N)) \rceil$ 

We can easily create parallel BAN a N of size nsuch that  $\kappa(N) = n/2$ . For example:

Let us consider the set X of configuration where all automata of second column are false. X is a clique of size  $2^{n/2}$  and the chromatic number of the confusion graph is at least  $2^{n/2}$ . As a result,  $\kappa(N) \ge n/2$ .

graph:

- 1. group configurations with same image
- 2. sort groups by decreasing degree
- 3. color groups using a greedy algorithm

Theorem.  $\kappa_n \leq 2n/3 + 2$ .

## MORE

• We conjecture that we have  $\kappa_n = n/2$ .

• If N is a bijective BAN, then  $\kappa(N) \leq \lceil n/2 \rceil$ .

### **R**EFERENCES & **A**CKNOWLEDGEMENT

On the cost of simulating a parallel Boolean automata network with a block-sequential one https://hal.archives-ouvertes.fr/hal-01479439

Acknowledgements. This work has been partially supported by the project PACA APEX FRI.



## LOWER BOUND FOR $\kappa_n$

de Marseille



Theorem.  $\kappa_n \geq n/2$ .

### UPPER BOUND OF $\kappa_n$

We can prove that:  $\kappa_n \leq 2n/3 + 2$ . In the confusion

We can prove that using this method, we never use more than 2n/3 + 2 colors.