The cost of simulating a parallel BAN by a sequential one

CANA (Natural Computation), LIF UMR CNRS 7279, Aix-Marseille University, France

BOOLEAN AUTOMATA NETWORKS (BAN)

A BAN is composed of

- A directed graph (called interaction graph)
- And for each node of the graph:
- a Boolean value (True or False)
- an update function which depends on the incoming neighbors of the node

UpDATE SCHEDULE

To study the dynamics (i.e. the way it changes with time) of a BAN, we need to define its update schedule: the order of update of its nodes. All nodes updated together is a parallel update schedule.

Nodes updated one at the time is a sequential update schedule.

Problem

Here is a parallel BAN with no equivalent sequential BAN:

For the sake of contradiction, let us say that there is a sequential BAN with the same behavior. Let us consider the evolution of two configurations (False , True) and (True , True)

After updating a, we have the same configuration (True, True): we have erased its previous value However, after updating b, we should have two different configurations depending on the value of a we just destroyed. That is absurd.

Thus, if we want a sequential BAN N^{\prime} with the same dynamics on a and b than N, we need an additional automaton c updated before a and b to save the value of a before erasing it:

Thus, we are asking two questions:

- If we have a parallel BAN N, what is the number κ_{N} of additional nodes of the smallest sequential BAN which simulates it?
- And for each $n \in \mathbb{N}$, what is the biggest κ_{N} for all BAN N of size n ?

CONFUSION GRAPH

The confusion graph of a parallel BAN N has 2^{n} nodes: one per possible configuration.
And we have an edge between two configurations x and x^{\prime} if:

- x and x^{\prime} are identical when we update their first i nodes, for some $i<n$;
- x and x^{\prime} are different when we update all of their nodes.

For example with this parallel BAN N :

The confusion graph G_{N} will be as bellow:

Let us consider the sequential BAN N^{\prime} which simulates N. If two configurations x and x^{\prime} are neighbors in the confusion graph, then the additional automata of N^{\prime} have to take different values. Thus $\kappa(N) \geq\left\lceil\log _{2}\left(\chi\left(G_{N}\right)\right)\right\rceil$.

Conversely, if we have a valid coloration of the confusion graph, we can build a BAN N^{\prime} which simulates N using only $\left\lceil\log _{2}\left(\chi\left(G_{N}\right)\right)\right\rceil$ additional automata.

Theorem. $\kappa(N)=\left\lceil\log _{2}\left(\chi\left(G_{N}\right)\right)\right\rceil$

Lower Bound for κ_{n}

We can easily create parallel BAN a N of size n such that $\kappa(N)=n / 2$. For example:

Let us consider the set X of configuration where all automata of second column are false.
X is a clique of size $2^{n / 2}$ and the chromatic number of the confusion graph is at least $2^{n / 2}$. As a result, $\kappa(N) \geq n / 2$.

Theorem. $\kappa_{n} \geq n / 2$.

Upper Bound of κ_{n}

We can prove that: $\kappa_{n} \leq 2 n / 3+2$. In the confusion graph:

1. group configurations with same image
2. sort groups by decreasing degree
3. color groups using a greedy algorithm

We can prove that using this method, we never use more than $2 n / 3+2$ colors.

Theorem. $\kappa_{n} \leq 2 n / 3+2$

More

- We conjecture that we have $\kappa_{n}=n / 2$.
- If N is a bijective BAN, then $\kappa(N) \leq\lceil n / 2\rceil$.

References \& Acknowledgement

Ref. On the cost of simulating a parallel Boolean automata network with a block-sequential one https://hal.archives-ouvertes.fr/hal-01479439

Acknowledgements. This work has been partially supported by the project PACA APEX FRI.

