M1 Info - Optimisation et Recherche Opérationnelle

Cours 6 - Programmation lineaire et en nombres entiers

Flot maximum, coupe minimum et couverture par sommets

Semestre Automne 2020-2021 - Université Claude Bernard Lyon 1

Christophe Crespelle christophe.crespelle@inria.fr

Programmation lineaire

Probleme en forme standard :

• Entrée :

$$\begin{array}{c} & \underline{m} \text{ reels } b_1, b_2, \ldots, b_m \\ & \underline{n} \text{ reels } c_1, c_2, \ldots, c_n \\ & \underline{mn} \text{ reels } a_{ij} \text{ pour } i \in \llbracket 1, m \rrbracket \text{ et } j \in \llbracket 1, n \rrbracket \\ & \bullet \text{ Sortie : } n \text{ nombres reels } x_1, x_2, \ldots, x_n \text{ qui} \\ & \bullet \text{ maximisent } \sum_{j=1}^n c_j x_j \\ & \bullet \text{ sous les contraintes} \\ & \bullet \sum_{j=1}^n a_{ij} x_j \leq 0 \text{ pour } i \in \llbracket 1, m \rrbracket \text{ et} \\ & \bullet x_j \geq 0 \text{ , pour tout } j \in \llbracket 1, n \rrbracket \end{aligned}$$

<u>Difficulte de calcul</u> : **Polynomial**

Mise en forme matricielle

maximiser
$$c_1 \times 1 + c_2 \times 2 + c_3 \times 3 + c_4 \times 4$$
 sous contraintes : $\begin{vmatrix} a_{11}x_1 & + & a_{12}x_2 & + & a_{13}x_3 & + & a_{14}x_4 \\ a_{21}x_1 & + & a_{22}x_2 & + & a_{23}x_3 & + & a_{24}x_4 \\ a_{31}x_1 & + & a_{32}x_2 & + & a_{33}x_3 & + & a_{34}x_4 \end{vmatrix} \leq b_2$ m Integrate, $\forall i \in [1, 4], x_i \geq 0$

Mise en forme matricielle

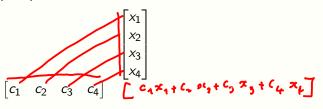
maximiser
$$c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$$
 sous contraintes :
$$\begin{bmatrix} a_{11}x_1 & + & a_{12}x_2 & + & a_{13}x_3 & + & a_{14}x_4 & \leq & b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & a_{23}x_3 & + & a_{24}x_4 & \leq & b_2 \\ a_{31}x_1 & + & a_{32}x_2 & + & a_{33}x_3 & + & a_{34}x_4 & \leq & b_3 \\ \forall i \in [1, 4], x_i \geq 0 \end{bmatrix}$$

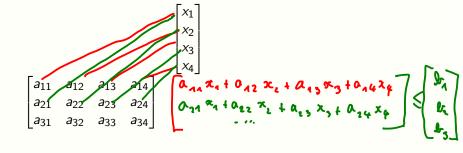
$$\begin{bmatrix} c_1 & c_2 & c_3 & c_4 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

sous contraintes:

ct vi c [1, 4], x_i ≥

Rappel produit matriciel





Programmation lineaire : exemple

Probleme : Un magasin veut faire fabriquer des pantalons et des vestes de sport a une usine textile qui dispose de $750m^2$ de cotton et $1000m^2$ de polyester. La fabrication d'une paire de pantalon recquiert $1m^2$ de cotton et $2m^2$ de polyester et celle d'une veste recquiert $1.5m^2$ de cotton et $1m^2$ de polyester. Sachant que le benefice du magasin sur une paire de pantalon est de 50\$ et de 40\$ pour une veste, quelle est la commande que doit passer le magasin pour maximiser son benefice total?

Programmation lineaire: exemple

Probleme : Un magasin veut faire fabriquer des pantalons et des vestes de sport a une usine textile qui dispose de $750m^2$ de cotton et $1000m^2$ de polyester. La fabrication d'une paire de pantalon recquiert $1m^2$ de cotton et $2m^2$ de polyester et celle d'une veste recquiert $1.5m^2$ de cotton et $1m^2$ de polyester. Sachant que le benefice du magasin sur une paire de pantalon est de 50\$ et de 40\$ pour une veste, quelle est la commande que doit passer le magasin pour maximiser son benefice total?

Modelisation : x le nombre de pantalons commandes et y celui de vestes. On veut :

- maximiser 50x + 40y
- sous les contraintes :

Programmation lineaire : exemple

Probleme : Un magasin veut faire fabriquer des pantalons et des vestes de sport a une usine textile qui dispose de $750m^2$ de cotton et $1000m^2$ de polyester. La fabrication d'une paire de pantalon recquiert $1m^2$ de cotton et $2m^2$ de polyester et celle d'une veste recquiert $1.5m^2$ de cotton et $1m^2$ de polyester. Sachant que le benefice du magasin sur une paire de pantalon est de 50\$ et de 40\$ pour une veste, quelle est la commande que doit passer le magasin pour maximiser son benefice total?

Modelisation : x le nombre de pantalons commandes et y celui de vestes. On veut :

- maximiser 50x + 40y
- sous les contraintes :
 - ► $x + 1.5y \le 750$

Programmation lineaire : exemple

Probleme : Un magasin veut faire fabriquer des pantalons et des vestes de sport a une usine textile qui dispose de $750m^2$ de cotton et $1000m^2$ de polyester. La fabrication d'une paire de pantalon recquiert $1m^2$ de cotton et $2m^2$ de polyester et celle d'une veste recquiert $1.5m^2$ de cotton et $1m^2$ de polyester. Sachant que le benefice du magasin sur une paire de pantalon est de 50\$ et de 40\$ pour une veste, quelle est la commande que doit passer le magasin pour maximiser son benefice total?

Modelisation : x le nombre de pantalons commandes et y celui de vestes. On veut :

- maximiser 50x + 40y
- sous les contraintes :
 - ► $x + 1.5y \le 750$
 - ► $2x + y \le 1000$

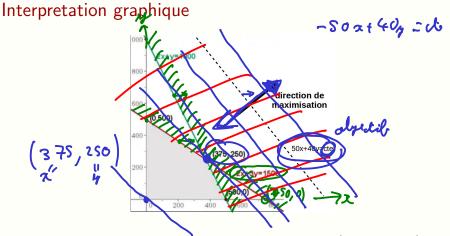
Programmation lineaire: exemple

Probleme : Un magasin veut faire fabriquer des pantalons et des vestes de sport a une usine textile qui dispose de $750m^2$ de cotton et $1000m^2$ de polyester. La fabrication d'une paire de pantalon recquiert $1m^2$ de cotton et $2m^2$ de polyester et celle d'une veste recquiert $1.5m^2$ de cotton et $1m^2$ de polyester. Sachant que le benefice du magasin sur une paire de pantalon est de 50\$ et de 40\$ pour une veste, quelle est la commande que doit passer le magasin pour maximiser son benefice total?

Modelisation : x le nombre de pantalons commandes et y celui de vestes. On veut:

- maximiser 50x + 40y
- sous les contraintes
 - x + 1.5y < 750
 - \triangleright 2x + y < 1000
 - \triangleright $x \ge 0$ et $y \ge 0$

- 50x+401 = te
- 2+1.5 m = 750
- 2x+4=1000



- chaque contrainte correspond a un demi-plan (demi-espace) delimite par une droite (hyperplan)
- la region des solutions faisables est un polyedre
- une solution maximum (lorsqu'elle existe) est atteinte sur un des sommets du polyedre

Resolution de programmes lineaires

- il existe des algos polynomiaux
- le plus utilise en pratique est probablement simplex (qui n'est pas polynomial)
- simplex retourne soit :
 - "infaisable" lorsqu'il n'y a pas de solution realisable
 - (non borne" lorsqu'il n'y a bas de aximum (maximum= $+\infty$)
 - une solution optimale sinon

Formes non standard

- la fonction objectif peut etre une minimisation plutot qu'une maximisation
 - ightharpoonup on multiplie par -1 : min ightarrow max
- il peut y avoir des contraintes de negativite sur les variables
 - $\rightarrow x_i \rightarrow -x_i$
- il peut y avoir des variables sans contraintes de positivite
 - \triangleright $x_i \rightarrow x_i^+ x_i^-$ avec $x_i^+ \ge 0$ et $x_i^- \ge 0$
- il peut y avoir des contraintes d'inegalites qui soient \geq a la place de \leq
 - ▶ on multiplie par $-1: \ge \rightarrow \le$
- il peut y avoir des contraintes d'egalites plutot que d'inegalite
 - \triangleright = \rightarrow < et >, ou bien
 - on elimine une variable

morimis 4x +24+33 minimin m3 2 4 23

$$-4x' -3y' +3y' \leq S$$
- - $=$

Primal:

maximiser $\sum_{j=1}^{n} c_j x_j$ sous contraintes :

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i$$
, pour $i \in \llbracket 1, m
rbracket$
 $x_j \geq 0$, pour $j \in \llbracket 1, n
rbracket$

Primal:

Primal:

maximiser $\sum_{i=1}^{n} c_j x_j$ sous contraintes :

$$\sum_{i=1}^{n} a_{ij} x_j \le b_i, \text{ pour } i \in [1, m]$$

 $x_j \ge 0$, pour $j \in [1, n]$

Dual: f'(4)

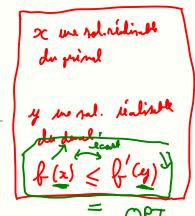
minimiser $\sum_{i=1}^{m} b_i y_i$ sous contraintes :

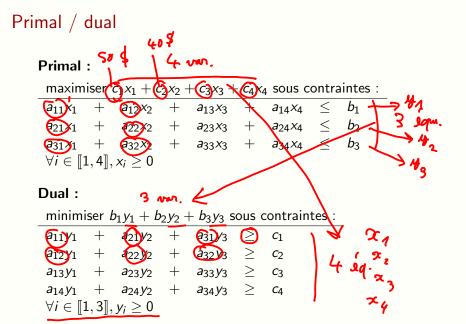
$$\sum_{i=1}^m a_{ij}y_i \ge c_j, \text{ pour } j \in \llbracket 1, n \rrbracket$$

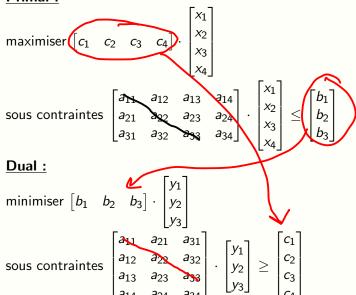
 $y_i \ge 0$, pour $i \in [1, m]$

Théorème (Dualite forte)

Si le primal admet une solution optimale, alors le dual aussi et les valeurs objectifs optimales des deux problemes sont egales.







Retour sur l'algorithme du simplexe

- il existe des algos polynomiaux
- le plus utilise en pratique est probablement simplex (qui n'est pas polynomial)
- simplex retourne soit :
 - "infaisable" lorsqu'il n'y a pas de solution realisable
 - ightharpoonup "non borne" lorsqu'il n'y a pas de maximum (maximum= $+\infty$)
 - une solution optimale, sinon
- il existe une solution optimale pour le primal ssi il existe une solution optimale pour le dual et
- les valeurs objectifs de ces solutions optimales sont les memes pour le primal et le dual.

Retour sur l'algorithme du simplexe

- il existe des algos polynomiaux
- le plus utilise en pratique est probablement simplex (qui n'est pas polynomial)
- simplex retourne soit :
 - "infaisable" lorsqu'il n'y a pas de solution realisable
 - ightharpoonup "non borne" lorsqu'il n'y a pas de maximum (maximum= $+\infty$)
 - une solution optimale, sinon
- il existe une solution optimale pour le primal ssi il existe une solution optimale pour le dual et
- les valeurs objectifs de ces solutions optimales sont les memes pour le primal et le dual.
- De plus, dans ce cas, simplex fournit aussi une solution optimale pour le dual.

Un exemple plus avance : flot maximum

Q: que soil by variables???)

$$f(u,v) \in A \text{ lt } f(u,v) = N \text{ lt } f(u,v) = N \text{ are soil to observe the source of the soil of the soil$$

Passage au dual : forme standard du primal

Primal sous forme standard:

maximiser f sous contraintes :

$$f(u,v) \leq c(u,v), \forall (u,v) \in A$$

$$\sum_{v \in N^{+}(s)} f(s,v) - \sum_{v \in N^{-}(s)} f(v,s) - f \leq 0$$

$$- \sum_{v \in N^{+}(s)} f(s,v) + \sum_{v \in N^{-}(s)} f(v,s) + f \leq 0$$

$$\sum_{v \in N^{+}(t)} f(t,v) - \sum_{v \in N^{-}(t)} f(v,t) + f \leq 0$$

$$- \sum_{v \in N^{+}(t)} f(t,v) + \sum_{v \in N^{-}(t)} f(v,t) - f \leq 0$$

$$\sum_{v \in N^{+}(u)} f(u,v) - \sum_{v \in N^{-}(u)} f(v,u) \leq 0, \forall u \in V \setminus \{s,t\}$$

$$- \sum_{v \in N^{+}(u)} f(u,v) + \sum_{v \in N^{-}(u)} f(v,u) \leq 0, \forall u \in V \setminus \{s,t\}$$

$$f(u,v) \geq 0, \forall (u,v) \in A \text{ et } f \geq 0$$

Passage au dual : forme standard du primal

Primal sous forme standard:

-4+++++++++

maximiser f sous contraintes :

$$f(u,v) \leq c(u,v), \forall (u,v) \in A \qquad \rightarrow y_{uv}$$

$$\sum_{v \in N^{+}(s)} f(s,v) - \sum_{v \in N^{-}(s)} f(v,s) - f \leq 0 \qquad \rightarrow y_{s}^{+}$$

$$- \sum_{v \in N^{+}(s)} f(s,v) + \sum_{v \in N^{-}(s)} f(v,s) + f \leq 0 \qquad \rightarrow y_{s}^{-}$$

$$\sum_{v \in N^{+}(t)} f(t,v) - \sum_{v \in N^{-}(t)} f(v,t) + f \leq 0 \qquad \rightarrow y_{t}^{+}$$

$$- \sum_{v \in N^{+}(t)} f(t,v) + \sum_{v \in N^{-}(t)} f(v,t) - f \leq 0 \qquad \rightarrow y_{t}^{-}$$

$$\sum_{v \in N^{+}(u)} f(u,v) - \sum_{v \in N^{-}(u)} f(v,u) \leq 0, \forall u \in V \setminus \{s,t\} \qquad \rightarrow y_{u}^{+}$$

$$- \sum_{v \in N^{+}(u)} f(u,v) + \sum_{v \in N^{-}(u)} f(v,u) \leq 0, \forall u \in V \setminus \{s,t\} \qquad \rightarrow y_{u}^{-}$$

$$f(u,v) \geq 0, \forall (u,v) \in A \text{ et } f \geq 0$$

Le dual

Dual:

minimiser $\sum_{(u,v)\in A} c(u,v)y_{uv}$ sous contraintes : $\underbrace{-y_s^+ + y_s + y_t^+ - y_t^-}_{y_{uv} + y_u^+ - y_u^-} \underbrace{0}_{v_v^+ + y_v} \forall (u,v) \in A$ $\underbrace{-y_u^+ + y_u^+ - y_u^-}_{y_u^+ + y_v^-} \Rightarrow 0 \text{ et } y_u^- \geq 0, \forall (u,v) \in A$

Le dual

Dual:

minimiser
$$\sum_{(u,v)\in A} c(u,v)y_{uv}$$
 sous contraintes :
$$\frac{-y_s^+ + y_s^- + y_t^+ - y_t^- \ge 1}{y_{uv} + y_u^+ - y_u^- - y_v^+ + y_v^- \ge 0, \forall (u,v) \in A}$$
$$y_{uv}^+ \ge 0, \forall (u,v) \in A$$
$$y_u^+ \ge 0 \text{ et } y_u^- \ge 0, \forall (u,v) \in A$$

En posant $y_u^+ - y_u^- = y_u, \forall u \in$, on obtient :

minimiser
$$\sum_{(u,v)\in A} c(u,v)y_{uv}$$
 sous contraintes :

$$y_t - y_s \ge 1$$
 $y_{uv} + y_u - y_v \ge 0, \forall (u, v) \in A$
 $y_{uv} \ge 0, \forall (u, v) \in A$
 $\uparrow \circ \uparrow \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Dual:

minimiser
$$obj = \sum_{(u,v)\in A} c(u,v)y_{uv}$$
 sous contraintes :

$$y_t - y_s \ge 1$$

$$y_{uv} \ge y_v - y_u, \forall (u, v) \in A$$

$$y_{uv} \ge 0, \forall (u, v) \in A$$

Dual:

minimiser
$$obj = \sum_{(u,v)\in A} c(u,v)y_{uv}$$
 sous contraintes :

$$y_t - y_s \ge 1$$

$$y_{uv} \ge y_v - y_u, \forall (u, v) \in A$$

$$y_{uv} \ge 0, \forall (u, v) \in A$$

Démonstration.

• *obj* est minimum pour $y_{uv} = \max\{y_v - y_u, 0\}$

Dual:

minimiser
$$obj = \sum_{(u,v)\in A} c(u,v)y_{uv}$$
 sous contraintes :

$$y_t - y_s \ge 1$$

$$y_{uv} \ge y_v - y_u, \forall (u, v) \in A$$

$$y_{uv} \ge 0, \forall (u, v) \in A$$

- *obj* est minimum pour $y_{uv} = \max\{y_v y_u, 0\}$
- *obj* est invariant par translation : on peut prendre $y_s = 0$

Dual:

minimiser
$$obj = \sum_{(u,v)\in A} c(u,v) y_{uv}$$
 sous contraintes :

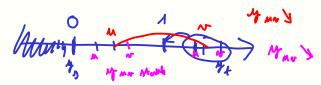
$$y_t - y_s \ge 1$$
 $y_{uv} \ge y_v - y_u, \forall (u, v) \in A$
 $y_{uv} \ge 0, \forall (u, v) \in A$

- *obj* est minimum pour $y_{uv} = \max\{y_v y_u, 0\}$
- *obj* est invariant par translation : on peut prendre $y_s = 0$
- *obj* diminue si pour tous les $y_u < 0$ on prend $y_u = 0$

Dual:

minimiser
$$obj = \sum_{(u,v) \in A} c(u,v) y_{uv}$$
 sous contraintes :
$$y_t - y_s' \ge 1 \qquad \text{if } y_{uv} \ge y_v - y_u, \forall (u,v) \in A \\ y_{uv} \ge 0, \forall (u,v) \in A \qquad \text{if } y_{uv} \le 0, \forall (u,v) \in A$$

- *obj* est minimum pour $y_{uv} = \max\{y_v y_u, 0\}$
- *obj* est invariant par translation : on peut prendre $y_s = 0$
- *obj* diminue si pour tous les $y_u < 0$ on prend $y_u = 0$
- *obj* diminue si pour tous les $y_v > 1$ on prend $y_v = 1$



Dual:

minimiser
$$obj = \sum_{(u,v)\in A} c(u,v)y_{uv}$$
 sous contraintes :

$$y_t - y_s \ge 1$$

$$y_{uv} \ge y_v - y_u, \forall (u, v) \in A$$

$$y_{uv} \ge 0, \forall (u, v) \in A$$

- *obj* est minimum pour $y_{uv} = \max\{y_v y_u, 0\}$
- *obj* est invariant par translation : on peut prendre $y_s = 0$
- *obj* diminue si pour tous les $y_u < 0$ on prend $y_u = 0$
- *obj* diminue si pour tous les $y_v > 1$ on prend $y_v = 1$ $(\Rightarrow y_t = 1)$

Dual:

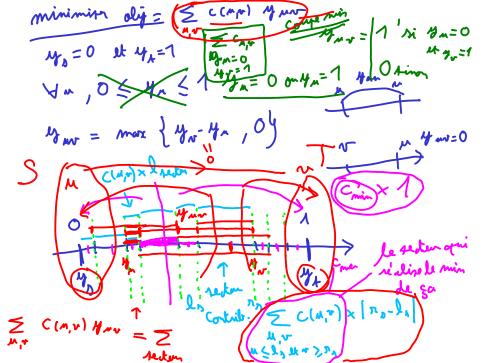
minimiser
$$obj = \sum_{(u,v)\in A} c(u,v)y_{uv}$$
 sous contraintes :

```
y_t - y_s \ge 1

y_{uv} \ge y_v - y_u, \forall (u, v) \in A

y_{uv} \ge 0, \forall (u, v) \in A
```

- *obj* est minimum pour $y_{uv} = \max\{y_v y_u, 0\}$
- *obj* est invariant par translation : on peut prendre $y_s = 0$
- *obj* diminue si pour tous les $y_u < 0$ on prend $y_u = 0$
- *obj* diminue si pour tous les $y_{\nu} > 1$ on prend $y_{\nu} = 1$ $(\Rightarrow y_t = 1)$
- considerons les bipartitions (U_c, V_c) definies pour 0 < c < 1 par $U_c = \{u \in V \mid y_u < c\}$ et $V_c = \{v \in V \mid y_c > c\}$: $\exists c$ tel que obj diminue si $\forall u \in U_c$ on prend $y_c = 0$ et $\forall v \in V_c$ on prend $y_c = 1$



Programmation lineaire en nombres entiers

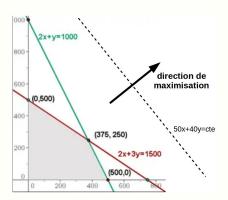
Définition

- un programme lineaire avec coefficients reels, comme precedemment
- mais on cherche les solutions entieres, c.a.d. avec tous les x_i, i ∈ [1, n] entiers (contrainte d'integralite)

Programmation lineaire en nombres entiers

Définition

- un programme lineaire avec coefficients reels, comme precedemment
- mais on cherche les solutions entieres, c.a.d. avec tous les x_i, i ∈ [1, n] entiers (contrainte d'integralite)



Programmation lineaire en nombres entiers

Définition

- un programme lineaire avec coefficients reels, comme precedemment
- mais on cherche les solutions entieres, c.a.d. avec tous les $x_i, i \in [1, n]$ entiers (contrainte d'integralite)

Complexite de calcul : NP-complet (contrairement a la programmation lineaire)

Programmation lineaire en nombres entiers

Définition

- un programme lineaire avec coefficients reels, comme precedemment
- mais on cherche les solutions entieres, c.a.d. avec tous les $x_i, i \in [1, n]$ entiers (contrainte d'integralite)

Complexite de calcul : NP-complet (contrairement a la programmation lineaire)

Resolution exacte: techniques de branching

- Entrée : un graphe G = (V, E)(non oriente, simple et sans boucles)
- **Sortie**: un sous ensemble $S \subseteq V$ de sommets qui couvrent toutes les aretes, c.a.d. tel que $\forall uv \in E, u \in S$ ou $v \in S$ et qui est de cardinalite minimum pour cette propriete.

- Entrée : un graphe G = (V, E)(non oriente, simple et sans boucles)
- **Sortie**: un sous ensemble $S \subseteq V$ de sommets qui couvrent toutes les aretes, c.a.d. tel que $\forall uv \in E, u \in S$ ou $v \in S$ et qui est de cardinalite minimum pour cette propriete.

Remarque

S est un vertex cover ssi $V \setminus S$ est un stable.

S est un minimum vertex cover ssi $V \setminus S$ est un stable maximum.

- Entrée : un graphe G = (V, E)(non oriente, simple et sans boucles)
- **Sortie**: un sous ensemble $S \subseteq V$ de sommets qui couvrent toutes les aretes, c.a.d. tel que $\forall uv \in E, u \in S$ ou $v \in S$ et qui est de cardinalite minimum pour cette propriete.

Remarque

S est un vertex cover ssi $V \setminus S$ est un stable.

S est un minimum vertex cover ssi $V \setminus S$ est un stable maximum.

Conclusion : Stable Maximum et Minimum Vertex Cover sont *en quelque sorte* "equivalents"... sauf que pas completement!

- Entrée : un graphe G = (V, E)(non oriente, simple et sans boucles)
- **Sortie**: un sous ensemble $S \subseteq V$ de sommets qui couvrent toutes les aretes, c.a.d. tel que $\forall uv \in E, u \in S$ ou $v \in S$ et qui est de cardinalite minimum pour cette propriete.

Remarque

S est un vertex cover ssi $V \setminus S$ est un stable.

S est un minimum vertex cover ssi $V \setminus S$ est un stable maximum.

Conclusion : Stable Maximum et Minimum Vertex Cover sont *en quelque sorte* "equivalents"... sauf que pas completement!

Complexite de calcul : Minimum Vertex Cover est NP-complet (car Stable Maximum l'est)

- Entrée : un graphe G = (V, E)(non oriente, simple et sans boucles)
- **Sortie**: un sous ensemble $S \subseteq V$ de sommets qui couvrent toutes les aretes, c.a.d. tel que $\forall uv \in E, u \in S$ ou $v \in S$ et qui est de cardinalite minimum pour cette propriete.

Remarque

S est un vertex cover ssi $V \setminus S$ est un stable. S est un minimum vertex cover ssi $V \setminus S$ est un stable maximum.

Conclusion : Stable Maximum et Minimum Vertex Cover sont *en quelque sorte* "equivalents"... sauf que pas completement!

Complexite de calcul : Minimum Vertex Cover est NP-complet (car Stable Maximum l'est)

Approximabilite : Minimum Vertex Cover : OUI. Stable Maximum : NON!

Weighted: les sommets ont un poids w_i et on veut trouver S un MVC de poids w(S) minimum (avec $w(S) = \sum_{i \in S} w_i$) Pb plus general, donc au moins aussi dur

Weighted : les sommets ont un poids w_i et on veut trouver S un MVC de poids w(S) minimum (avec $w(S) = \sum_{i \in S} w_i$) Pb plus general, donc au moins aussi dur

En nombres entiers:

$$\frac{\text{minimiser } \sum\limits_{i \in V} w_i x_i \text{ sous contraintes}}{x_i + x_j \geq 1, \forall ij \in E}$$
$$x_i \in \{0, 1\}, \forall i \in V$$

Weighted : les sommets ont un poids w_i et on veut trouver S un MVC de poids w(S) minimum (avec $w(S) = \sum_{i \in S} w_i$) Pb plus general, donc au moins aussi dur

En nombres entiers:

minimiser
$$\sum_{i \in V} w_i x_i$$
 sous contraintes $x_i + x_j \ge 1, \forall ij \in E$ $x_i \in \{0, 1\}, \forall i \in V$

Relaxation lineaire:

minimiser
$$\sum_{i \in V} w_i x_i$$
 sous contraintes $x_i + x_j \ge 1, \forall ij \in E$ $0 \le x_i \le 1, \forall i \in V$

Weighted : les sommets ont un poids w_i et on veut trouver S un MVC de poids w(S) minimum (avec $w(S) = \sum_{i \in S} w_i$) Pb plus general, donc au moins aussi dur

En nombres entiers:

minimiser
$$\sum_{i \in V} w_i x_i$$
 sous contraintes $x_i + x_j \ge 1, \forall ij \in E$ $x_i \in \{0,1\}, \forall i \in V$

Relaxation lineaire:

minimiser
$$\sum_{i \in V} w_i x_i$$
 sous contraintes $x_i + x_j \ge 1, \forall ij \in E$ $0 < x_i < 1, \forall i \in V$

Avantage: relaxation lineaire soluble en temps polynomial donne une solution reelle avec un meilleur objectif... mais non admissible.

Weighted : les sommets ont un poids w_i et on veut trouver S un MVC de poids w(S) minimum (avec $w(S) = \sum_{i \in S} w_i$) Pb plus general, donc au moins aussi dur

En nombres entiers:

Relaxation lineaire:

minimiser
$$\sum_{i \in V} w_i x_i$$
 sous contraintes $x_i + x_j \ge 1, \forall ij \in E$ $0 < x_i < 1, \forall i \in V$

Avantage: relaxation lineaire soluble en temps polynomial donne une solution reelle avec un meilleur objectif... mais non admissible.

Algo d'approx : On va utiliser cette solution reelle non admissible pour en faire une solution entiere avec ratio d'approx garanti.

• on resoud la relaxation lineaire en temps polynomial : on obtient une solution reelle minimum $\tilde{S} = (\tilde{x_i})_{1 \leq i \leq n}$

- on resoud la relaxation lineaire en temps polynomial : on obtient une solution reelle minimum $\tilde{S} = (\tilde{x}_i)_{1 \leq i \leq n}$
- on construit une solution entiere $S=(x_i)_{1\leq i\leq n}$ par arrondi : $x_i=1$ ssi $\tilde{x_i}\geq 1/2$

- on resoud la relaxation lineaire en temps polynomial : on obtient une solution reelle minimum $\tilde{S} = (\tilde{x}_i)_{1 \leq i \leq n}$
- on construit une solution entiere $S=(x_i)_{1\leq i\leq n}$ par arrondi : $x_i=1$ ssi $\tilde{x_i}\geq 1/2$
- on montre que S est un vertex cover et que $w(S) \le 2w(S^*)$, ou S^* est une solution minimum en nombre entiers

- on resoud la relaxation lineaire en temps polynomial : on obtient une solution reelle minimum $\tilde{S} = (\tilde{x}_i)_{1 \leq i \leq n}$
- on construit une solution entiere $S=(x_i)_{1\leq i\leq n}$ par arrondi : $x_i=1$ ssi $\tilde{x_i}\geq 1/2$
- on montre que S est un vertex cover et que $w(S) \le 2w(S^*)$, ou S^* est une solution minimum en nombre entiers

Lemme

Soit S^* un MVC de poids minimum et soit S la solution obtenue par arrondi a partir de la solution minimum \tilde{S} de la relaxation lineaire. Alors S est un vertex cover et $w(S) \leq 2w(S^*)$.

Lemme

Soit S^* un MVC de poids minimum et soit S la solution obtenue par arrondi a partir de la solution minimum \tilde{S} de la relaxation lineaire. Alors S est un vertex cover et $w(S) \leq 2w(S^*)$.

Lemme

Soit S^* un MVC de poids minimum et soit S la solution obtenue par arrondi a partir de la solution minimum \tilde{S} de la relaxation lineaire. Alors S est un vertex cover et $w(S) \leq 2w(S^*)$.

Démonstration.

• on remarque que $w(\tilde{S}) \leq w(S^*)$ car la relaxation lineaire est moins contrainte

Lemme

Soit S^* un MVC de poids minimum et soit S la solution obtenue par arrondi a partir de la solution minimum \tilde{S} de la relaxation lineaire. Alors S est un vertex cover et $w(S) \leq 2w(S^*)$.

- on remarque que $w(\tilde{S}) \leq w(S^*)$ car la relaxation lineaire est moins contrainte
- on montre que S est bien un vertex cover
 - ▶ soit $ij \in E$, comme $\tilde{x}_i + \tilde{x}_i \ge 1$, alors $\tilde{x}_i \ge 1/2$ ou $\tilde{x}_i \ge 1/2$
 - ▶ on a donc $x_i = 1$ ou $x_j = 1$: S est un vertex cover

Lemme

Soit S^* un MVC de poids minimum et soit S la solution obtenue par arrondi a partir de la solution minimum \tilde{S} de la relaxation lineaire. Alors S est un vertex cover et $w(S) \leq 2w(S^*)$.

- on remarque que $w(\tilde{S}) \leq w(S^*)$ car la relaxation lineaire est moins contrainte
- on montre que *S* est bien un vertex cover
 - ▶ soit $ij \in E$, comme $\tilde{x}_i + \tilde{x}_i \ge 1$, alors $\tilde{x}_i \ge 1/2$ ou $\tilde{x}_i \ge 1/2$
 - ightharpoonup on a donc $x_i = 1$ ou $x_j = 1$: S est un vertex cover
- on montre que $w(S) \leq 2w(\tilde{S})$
 - ightharpoonup comme $x_i = 1$ si $\tilde{x_i} \ge 1/2$ et $x_i = 0$ sinon, alors $x_i \le 2\tilde{x_i}$
 - ightharpoonup d'ou, $w(S) \leq 2w(\tilde{S})$

Lemme

Soit S^* un MVC de poids minimum et soit S la solution obtenue par arrondi a partir de la solution minimum \tilde{S} de la relaxation lineaire. Alors S est un vertex cover et $w(S) \leq 2w(S^*)$.

- on remarque que $w(\tilde{S}) \leq w(S^*)$ car la relaxation lineaire est moins contrainte
- on montre que *S* est bien un vertex cover
 - ▶ soit $ij \in E$, comme $\tilde{x}_i + \tilde{x}_i \ge 1$, alors $\tilde{x}_i \ge 1/2$ ou $\tilde{x}_i \ge 1/2$
 - ightharpoonup on a donc $x_i = 1$ ou $x_i = 1$: S est un vertex cover
- on montre que $w(S) \leq 2w(\tilde{S})$
 - ightharpoonup comme $x_i = 1$ si $\tilde{x_i} \ge 1/2$ et $x_i = 0$ sinon, alors $x_i \le 2\tilde{x_i}$
 - ightharpoonup d'ou, $w(S) \leq 2w(\tilde{S})$
- comme $w(\tilde{S}) \leq w(S^*)$, on obtient $w(S) \leq 2w(S^*)$