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* Thanks to Daron Acemoglu and Asu Ozdaglar for pedagogical material used for these slides.
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Network models

Model = random generation of synthetic networks

® To simulate :
» phenomena
> algorithms
> protocols
® |n order to :
> design
> test
> predict
» better understand

® Example :

Would Internet protocols still work if Internet was 10 times
larger ?

> generate a synthetic network and simulate
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Network models

Model = random generation of synthetic networks
... having the properties of real-world networks!!!

Four classic properties of real-world complex networks :

Low global density

Short distances

Heterogeneous degrees

High local density

Goal : generate synthetic networks having these four properties
(in a generic way)
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Erdos-Rényi (ER) random graphs

There are two models :

® Gpm : choose uniformly at random (u.a.r.) m edges among
the n vertices
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Erdos-Rényi (ER) random graphs

There are two models :

® Gpm : choose uniformly at random (u.a.r.) m edges among
the n vertices

® G, : for each couple of the n vertices, put an edge with
probability p

= "essentialy” equivalent when p = n(i’fl)

Should we use G, m or G, p7?

® For generating networks ? G, m

® For mathematical analysis of the model ? G, ,,
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Gp,m : implementation and complexity

® Algo : Pick m times two vertices uniformly at random
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Gp,m : implementation and complexity

® Algo : Pick m times two vertices uniformly at random

> How to deal with self-loops?

» How to deal with multiple edges?

5/35



Properties of G, ,

Four properties to check :

® | ow global density

» p parameter of the model, controls m : E(m) = w
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Properties of G, ,

Four properties to check :

® Low global density
» p parameter of the model, controls m : E(m) = w

» law of large numbers : m is very concentrated around its mean
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Four properties to check :

® |ow global density

® Short distances
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Properties of G, ,

Four properties to check :

® |ow global density
® Short distances
Expansion property
> def. (graph theory) : a graph G is a c-vertex-expander iff
VS C Vst S| < XA we have |N(S)| > c-|S|

» expansion of G, 7 ~ %

> until 4, exponential growth of |B(u,d)| ~ (1 + ¢)?
® Heterogeneous degrees

> fix the average degree A=p(n—-1)
> B =R = (P e
— % k(]- )n 1—k

k
= n"lkkl(l ) (1_,,51)_,(
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Properties of G, ,

Four properties to check :

® |ow global density
® Short distances
Expansion property
> def. (graph theory) : a graph G is a c-vertex-expander iff
VS C Vst S| < XA we have |N(S)| > c-|S|

> expansion of G, , 7 ~ 7

> until 4, exponential growth of |B(u,d)| ~ (1 + ¢)?
® Heterogeneous degrees X

> fix the average degree A=p(n—-1)

RE =K = (e p)

— % k(]- )n 1—k

k
- (n— nl" KT (1 n— 1)'7—1( nkl)_k

» then when n — 400, P(d°

: Poisson law
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Properties of G, ,

Four properties to check :

Low global density

Short distances
Expansion property
> def. (graph theory) : a graph G is a c-vertex-expander iff

VS C Vst S| < XA we have |N(S)| > c-|S|
» expansion of G, 7 ~ %

> until 4, exponential growth of |B(u,d)| ~ (1 + ¢)?

Heterogeneous degrees X

High local density
> probability of an edge in the neighbourhood of a vertex?
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Properties of G, ,

Four properties to check :

Low global density

Short distances
Expansion property
> def. (graph theory) : a graph G is a c-vertex-expander iff

VS C Vst S| < XA we have |N(S)| > c-|S|
» expansion of G, 7 ~ %

> until 4, exponential growth of |B(u,d)| ~ (1 + ¢)?

Heterogeneous degrees X

High local density X

> probability of an edge in the neighbourhood of a vertex?
> same as everywhere : p (couples of vertices are independant)

9/35



Phase transitions in G, ,

N.B. : p (eventually) depends on n

® Threshold function t(n) for property A :
> P(A) - 0 if 5 — 0

> P(A) - 1if 28 — +o0

> makes sense for monotonic properties (for inclusion of edge
set)

® such a threshold function exists = phase transition

® Seminal work of Erdds and Rényi in 1959
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Phase transitions in G, ,
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Phase transitions in G, ,

n =50, p=0.03
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Phase transitions in G, ,

n =50, p=0.05
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Phase transitions in G, ,

n=>50, p=20.10
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Threshold for connectivity

® \We show a threshold with function t(n) = "’%

® Denote p(n) = )\k’% (mean degree ~ \log n)

® We show a (much) stronger statement for threshold function
logn .
n

1. P(connectivity) — 0 if A < 1
2. P(connectivity) - 1if A > 1
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Proof of (1)

® to prove (1), it is enough to show that the probability of
existence of at least one isolated node goes to 1
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Proof of (1)

to prove (1), it is enough to show that the probability of
existence of at least one isolated node goes to 1

Let /; be the Bernouilli random variable defined as

> [, =1 if vertex i is isolated
» [, = 0 otherwise

probability that a vertex is isolated :

q= IF’(/,' — 1) — (1 _ p)nfl ~ e Aogn — =

Let X = >"7 ; I; be the number of isolated vertices
We have E[X] = n.n"* — +oc for A < 1

enough to conclude that P(X =0) — 07

= NO, we need a concentration property.
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Proof of (1)

® We have
var(X) doivar(li) + 32 22 cov(li )

nvar(h) + n(n—1)cov(h, h)
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var(X) = > ivar(li) + 32 > i cov(li, 1))
= nvar(h)+ n(n—1)cov(h, h)
® And we also have :
> var(h) =E[lf] - E[h]> = q - ¢°
> cov(h, b) = E[li 5] — E[L]E[h]

2
> Elhh]=Ph=1,hL=1)=(1-p)>" 3= =

® \We then obtain var(X) = nq(1 — q) + n(n — 1)1"@

T

17/35



Proof of (1)

We have
var(X) = > ivar(li) + 32 > i cov(li, 1))
= nvar(h)+ n(n—1)cov(h, h)
And we also have :
> var(h) =E[lf] - E[h]> = q - ¢°
> cov(h, b) = E[li 5] — E[L]E[h]

> Elhh] =P(h =1, =1) = (1 - p)r—% = &
P

We then obtain var(X) = nq(1 — q) + n(n — l)fi—';

® when n — +o00, theng—0and p — 0

17/35
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We have
var(X) = > ivar(li) + 32 > i cov(li, 1))
= nvar(h)+ n(n—1)cov(h, h)
And we also have :
> var(h) =E[lf] - E[h]> = q - ¢°
> cov(h, b) = E[li 5] — E[L]E[h]

> Elhh] =P(h =1, =1) = (1 - p)r—% = &
P

We then obtain var(X) = nq(1 — q) + n(n — l)fi—';

® when n — +o00, theng—0and p — 0
® this gives
var(X) ~ nq+ n’q’p
= nn~ 4 Anlognn~
~ nn = E[X]

2X
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Proof of (1)

® so we have var(X) ~ E[X]

® and because var(X) > (0 — E[X])?P(X = 0)
® we obtain P(X =0) < E[X] —0

e it follows that P(X > 0) — 1 when n — 400

¢ and consequently P(disconnected) — 1 when n — 400
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Proof of (2)

® we now fix A > 1
® let's check that E[X] = nn™* — 0 when n — +o0
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Proof of (2)

we now fix A >1
let's check that E[X] = nn™* — 0 when n — 4o

observe that G is disconnected <= Jk vertices without edges
to the other vertices, for some k < n/2

we have
P({1,...,k} not connected to the rest) = (1 — p)k(n=+)

and so
P(3k vertices not connected to the rest) < (7)(1 — p) (G

and finally P(G is disconnected) < Z"/Z ") (1 — p)kin=h)

using this expression, one can show that
P(G is disconnected) — 0 when n — 400
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Threshold for giant component

® Giant = constant fraction of the vertices

® We show a threshold with function t(n) = %

_ A
Denote p(n) = 2 (mean degree ~ \)
We again show a strong statement for threshold function % :

1. if A <1, Va e R, P(maxsize(CC) > alogn) — 0
2. if A>1, 3b € R%,P(maxsize(CC) > b.n) — 1
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Proof of (1) — preliminaries

® Galton-Watson branching process
> start with a single individual
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Proof of (1) — preliminaries

® Galton-Watson branching process
> start with a single individual

» each individual generates a number of children according to a
non-negative random variable £ with distribution py

Pe=K=p Ell=p  var(¢)#0

® Let Z, be the number of individuals in the k™ generation
we have Zo =1, Z1 =¢, Z, = 3.2, ¢0)

® and consequently
> E[Z] = E[E[Z|Z1]] = E[uZ] = 12
» and by recursion, for k > 1, we obtain
E[Zi] = E[E[Zk|Zk-1]] = E[uZk—1] = pp* ™ = p

21/35



"Proof” of (1)

® Let B(n,2) denote the binomial random variable with n trials
and success probability %

(a) ER graph process (b) branching process approx.
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"Proof” of (1)

® Let B(n,2) denote the binomial random variable with n trials
and success probability %

(a) ER graph process (b) branching process approx.

° ZkG and ZE the number of individuals in generation k for the
graph process and the branching process approximation

* we have Z¢ < ZB, for all k

22/35



"Proof” of (1)

° fix A <1
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"Proof” of (1)

° fix A<1

® Let S; be the number of nodes in the connected component of
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o we have E[S] = X, E[Z€] < Y, EIZF] = &, M = 15

® so if A < 1, the expected size of the components of vertex i is
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"Proof” of (1)

° fix A<1

® Let S; be the number of nodes in the connected component of
vertex i

o we have E[S] = X, E[Z€] < Y, EIZF] = &, M = 15

® so if A < 1, the expected size of the components of vertex i is
constant = no giant component

® one can show (not shown here) that the size of the bigger
component does not exceed logn :

Va > 0,P(maxi<j<n|Si| > alogn) — 0 as n — 400
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Proof of (2)
® fix A>1
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® We want to compute E[S;] and show that it is large
= we can no longer ignore conflicts
® We claim that Z¢ ~ ZZ as long as Ak < cte.\/n
> E[#conflicts at stage k] < np?E[Z?] = ni‘—i]E[Z,f]

k=0 k=1 k=2
> what about edges between nodes of Z; ?
> we assume that as long as conflicts are negligible, Zx is a
Poisson variable, that is var(Zy) = A
> we obtain E[Z2] = var(Zi) + E[Zk]? = AF + X2k ~ N2
— E[#conflicts] becomes Q(1) only when \* ~ \/n
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Proof of (2)

* E[S]=24E[Zf]1> X E[ZF]= X A
k<logy(v/n) k<logy(v/n)
> 1 )\|0g>\ > f
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Proof of (2)

* E[S] =2, E[Z°]> ¥ E[Zf]l= X X
k<logy(+v/n) k<logy(+v/n)
> 1 )\|0g>\ > f

® |et us assume again that | Zx| follows a Poisson law of
parameter \K

x2
> we then have P(||Zx| — M| > x) < 2e 2%+
> which gives for x = VAK, P(||Zc| — AK| > VAK) < 2e3
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Proof of (2)

* E[S]=Y,ElZ71> ¥ E[Z7]= X X
k<logy(+v/n) k<logy(+v/n)
> 1 )\|0g>\ > f
® |et us assume again that | Zx| follows a Poisson law of
parameter \K

x2
> we then have P(||Zx| — M| > x) < 2e 2%+
> which gives for x = VAK, P(||Zc| — AK| > VAK) < 2e3

e for large n, we obtain P(|S;| > @) > cte
—> there is a constant fraction of the nodes (say a.n) that
are in a component of size at least %
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Proof of (2)

® Assume there is more than one component of size g we will
show that the probability this happens — 0 when n — 400
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® Assume there is more than one component of size g we will
show that the probability this happens — 0 when n — 400

® |et C; be the smallest of these components and let A be the
union of all these components
> we denote |G| = k > @
> P(C; not connected to A\ C;) = (1 — p)kUAI=K) <

any/n _ A anvn _davhn
(1-2)" <e m™% =e "7 —0when n— +oo
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Proof of (2)

® Assume there is more than one component of size g we will
show that the probability this happens — 0 when n — 400

® |et C; be the smallest of these components and let A be the
union of all these components
> we denote |G| = k > @
> P(C; not connected to A\ C;) = (1 — p)kUAI=K) <

any/n _ A anvn _davhn
(1-2)" <e m™% =e "7 —0when n— +oo

® this means that the probability that the vertices of A are
grouped in a single connected component — 1 when n — 400

® since |A| > a.n, this constitutes a giant component
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Size of the giant component

® Let G = G,_1,p pe an ER graph with p(n) = % with A > 1

® Add a n'" vertex to G and connect it to the rest of the vertices
with probability p(n) and denote G’ the resulting graph

® We denote p the fraction of vertices that are not in the giant
component and we assume that, for large n, p is the same in
G and G’

® vertex n is not in the giant component iff none of its
neighbours are

> This gives p=3_ ;5 Pgpd = &(p)
® The analysis of function ® shows that it has a unique fixed
point p* €]0, 1]
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Mean distance at the connectivity threshold
(very) roughly speaking

* E[#conflicts at stage k| < np?E[Z?] ~ @. log? n =
log2(k+1) 5
n

28/35



Mean distance at the connectivity threshold
(very) roughly speaking

* E[#conflicts at stage k| < np?E[Z?] ~ @. log? n =
log2(k+1) 5
n

» What about edges between vertices of Z; ?

28/35



Mean distance at the connectivity threshold
(very) roughly speaking

* E[#conflicts at stage k| < np?E[Z?] ~ @. log? n =
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Mean distance at the connectivity threshold
(very) roughly speaking

2
* E[#conflicts at stage k| < np?E[Z?] ~ IOgT". log? n =
log2(k+1)
n
» What about edges between vertices of Z; ?

2(k+1) p,

e Conflicts are negligible until logT =1, that is
_ log n
k= 2loglogn 1
IIolgn
logn log n)loglogn
® Then |S;| ~ (log n)Z2Wglosn . % = lo\gn

® One can cover the vertex set by approx. y/nlog n balls of size

vn

log n

approx.

® the probability for two such balls not to be connected by an
edge is (1 — p)bg%" < e ios

® 50 the proba for them to be connected is at least

_ 1 1
_ [
1 e en o~ log n
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Mean distance at the connectivity threshold

e let us write N = y/nlog n, and call G the graph on the N balls
that cover G

® we have log N ~ |°§" and G contains an ER graph on N

vertices with g =

1
2log N
® In G the probability for two given nodes to be at distance

N—1
_ 1 yN-1 “3logN
o) < e 2leN — (0 when

more than 2 is at most (1
N — +o0.

® Therefore, between any two vertices of G there exists with
probability tending to 1 when n — 400 a path of length

| | | 21
(ZIOC;gIc?gn _1)+1+2(2|oogg|:gn _1)+1+(2|00gg|c?gn _1) < Iog?c;ggnn
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Configuration model — Molloy & Reed 1995

Input : an arbitrary degree distribution

Output : a random graph with this degree distribution
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Configuration model — Molloy & Reed 1995

Input : an arbitrary degree distribution
Output : a random graph with this degree distribution

Generation process :

1. Assign a fixed number of semi-links to each node
(according to the input degree distribution)

2. Pair the semi-links uniformly at random

3. Remove self-loops and multiple edges

What degree distribution should we take as parameter ?
® The degree distribution of some real-world network

¢ A mathematically defined one, powerlaw P(k) ~ k~.
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Configuration model : implementation and complexity

® Put the semi-links in a table of size 2m

® Pick m times two of them uniformly at random
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Properties of the configuration model

Four properties to check :

® | ow global density

> the degree distribution is the parameter of the model and
Zogkgn—1 k. N

controls m: m= 5

32/35



Properties of the configuration model

Four properties to check :

® |ow global density
® Short distances
Expansion property :
» Degree of the extremity of one edge :
3 K'P(K’
P(d°(ext) = k') = X2&)
» Probability that following one edge leads to k new vertices :
q(k) =P(d°(ext) = k+1)
» Expected number of new vertices following one edge :
Y ka(k) = <Kz
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Properties of the configuration model

Four properties to check :

® Low global density

® Short distances

® Heterogeneous degrees
® High local density

AN

?

> Probability to have a link between v and k with d°(u) = k and
d°(v) = k' : P(uv|kk') = —K€

T <k>N
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Properties of the configuration model

Four properties to check :

Low global density
Short distances
Heterogeneous degrees

High local density

AN

?

> Probability to have a link between v and k with d°(u) = k and
d°(v) = k' : P(uv|kk') = K
» Probability to have a link between v and v :

P(triangle) = Elle Zk’ZI <’;7k>qu(k)q(k’)
= Zk>N Zk21 kq(k) Zk/21 K'q(k')

_ 1 (<KP>—<k>)?

- N <k>3
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Properties of the configuration model

Four properties to check :

Low global density
Short distances
Heterogeneous degrees

High local density X

AN

?

> Probability to have a link between v and k with d°(u) = k and
d°(v) = k' : P(uv|kk') = =&

- ) = k>SN
» Probability to have a link between v and v :

P(triangle) = Elle Zk’ZI <’;7k>qu(k)q(k’)
= Zk>N Zk21 kq(k) Zk/21 K'q(k')

1 (<k*>—<k>)?

=N <k>3
— 0 when N — +o00
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