M2 Complex Systems - Complex Networks

Lecture 5 - Community detection
algorithms

Girvan-Newman, Louvain, Leiden

Automn 2021 - ENS Lyon

Christophe Crespelle
christophe.crespelle@ens-lyon.fr

1/20

Communities in complex networks

What is a community ?
"Moral” definition
® A group of nodes that share something...
» People with a common interest
» Web pages with similar content
» Proteins realising a common function

2/20

Communities in complex networks

What is a community ?
"Moral" definition
® A group of nodes that share something...
» People with a common interest
» Web pages with similar content
» Proteins realising a common function

® .. that makes them be in relationship in the network !

Political blogs in US Languages in Belgium

2/20

Communities in complex networks

What is a community ?
Structural definition
~———

® A highly connected group of nodes

3/20

Communities in complex networks

What is a community ?
Structural definition

® A highly connected group of nodes

> Density inside the community much higher than global density
of the network

3/20

Communities in complex networks

What is a community ?
Structural definition

® A highly connected group of nodes
> Density inside the community much higher than global density
of the network
‘P Only few edges toward the rest of the network

3/20

Types of structural communities

e Partition of the nodes into dense parts sparsely connected

between them

» High density inside communities
> Few edges between communities

4/20

Types of structural communities

® Partition of the nodes into dense parts sparsely connected
between them

» High density inside communities
> Few edges between communities
® Qverlapping communities
A node can belong to several communities

> more realistic
» problem : how to separate communities ?

5/20

Types of structural communities

® Partition of the nodes into dense parts sparsely connected
between them
» High density inside communities
> Few edges between communities

® Qverlapping communities
A node can belong to several communities
> more realistic
» problem : how to separate communities ?

® Partition of the links

> a link belong to exactly one community
» a node can have links in different communities

6/20

Partition of the nodes

Various approaches, among them :

® random walks

® spectral methods

® hierarchical clustering
(e divisive methods

® | ouvain, Leiden

7/20

Partition of the nodes

Various approaches, among them :
® random walks

® spectral methods

hierarchical clustering

divisive methods

Louvain, Leiden

7/20

Partition of the nodes

Various approaches, among them :
® random walks

® spectral methods

hierarchical clustering

divisive methods

o waj_n._ Leiden

7/20

Divisive approach : Girvan & Newman 2002

The idea :

1. identify inter-community links

2. remove them

8/20

How to identify inter-community links ?

® Betweenness centrality of links
> Cg(e) = Zhere CB (a) = é “7)1'[“')

s#t i
» o5 = # shortest paths from s to t 2'1@*_ “34—

» o (e) = # shortest paths from s to t containing e

9/20

How to identify inter-community links ?
® Betweenness centrality of links [
> Ca(e) = Y %) where ()
s#t

» o4 = # shortest paths from s to t
» o (e) = # shortest paths from s to t containing e

> high betweenness < e is on a high proporti f shortest

paths for a high proportion of pairs of nodes

w3

9/20

How to identify inter-community links ?

® Betweenness centrality of links
> Cgle) = 3 22 where

sAt Ost
» o4 = # shortest paths from s to t

» o (e) = # shortest paths from s to t containing e

> high betweenness < e is on a high proportion of shortest
paths for a high proportion of pairs of nodes

9/20

How to identify inter-community links ?

® Betweenness centrality of links
> Cgle) = 3 22 where

o2t Ost
» o4 = # shortest paths from s to t

» o (e) = # shortest paths from s to t containing e

> high betweenness < e is on a high proportion of shortest
paths for a high proportion of pairs of nodes

9/20

The algorith

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

10/20

The algorithm (7)

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

10/20

The algorithm (7)

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

> remove e from G

10/20

The algorithm (7)
¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G
2. for all links e in decreasing betweenness centrality do

> remove e from G

» update the connected components of G

10/20

The algorithm (7)

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

> remove e from G

» update the connected components of G

3. output the dendogram of G

10/20

The algorith

¢ Algo Girvan-Newman(G)

1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do
> remove e from G

» update the connected components of G

3. output the dendogram of G

=TT
i] A O

FAR

220 11382 17 6 5 11

2 3%s¢ 3 »9 10

10/20

The algorithm

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

> remove e from G

» update the connected components of G
» update the betweenness centrality of all links

3. output the dendogram of G

bdoo b

10 0O DOOO000O0
32925283334302431 9 232119161526322710 4142 1 8 2220181312717 6 5 11

10/20

The algorithm

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do A

> remove e from G
» update the connected components of G 0 (ﬂq)

P> update the betweenness centrality of all links 0 (MM)

3. output the dendogram of G

e Complexity
> betweenness for all links : O(nm)
> connected components : O(m)
> m iterations

> Overall : O(nm?) O (M'\'M) OlM‘l)

) S

11/20

The Louvain algorithm

® |dea : optimize a quality function for node partitions

> modularity :maximize(#edges inside - #edges outisde)
< maximize(#edges inside)

12/20

The Louvain algorithm

® |dea : optimize a quality function for node partitions

> modularity :maximize(#edges inside - #edges outisde)
< maximize(#edges inside)

® Problem... the best partition is a single community ! ! !

12/20

The Louvain algorithm

® |dea : optimize a quality function for node partitions

> modularity :maximize(#edges inside - #edges outisde)
< maximize(
® Problem... the best partition is a single community ! !'!

® Correction : compare to a randomized version of the network

s°e ovs

original network configuration model

12/20

Modularity

s"e ovs

original network configuration model
® Proportion of edges inside communities

A the adjacency matrix of G

ki the degree of node /i

¢i the community of node /

d is the Kronecker symbol : d(ci, ¢j) =1 iff ¢i = ¢

20 gfsrwinR

13/20

Modularity

original network configuration model
® Proportion of edges inside communities

A the adjacency matrix of G

ki the degree of node i

¢i the community of node i

d is the Kronecker symbol : d(ci, ¢j) =1 iff ¢i = ¢

» In the original network SA §(c,, ¢;) where
JGV

Cis)

13/20

Modularity

original network configuration model
® Proportion of edges inside communities

A the adjacency matrix of G

ki the degree of node /i

¢i the community of node /

d is the Kronecker symbol : d(ci, ¢j) =1 iff ¢i = ¢

> In the original network : 5= >~ A;d(c;, ¢;) where
ijev

» In the configuration model : 5= % G, Cj
sion o, % (le-)
5 S 0
l %i
’l‘kl\l((\(l*lt | £

T m R

13/20

Modularity

s"e ovs

original network configuration model
® Proportion of edges inside communities

A the adjacency matrix of G
ki the degree of node /i
¢i the community of node /

d is the Kronecker symbol : d(ci, ¢j) =1 iff ¢i = ¢

> In the original network : 5= >~ A;d(c;, ¢;) where
ijev

> In the configuration model : ;5 >° l;:j d(cis g)

ijev
* modularity : Q(P) = = > [Aj— %]5(@'7(:])
ijev
_ %——- Mt g Mot Pby
HQ icd €
Hedp ik C

N

N
g

13/20

Modularity

original network configuration model

® Proportion of edges inside communities
A the adjacency matrix of G
ki the degree of node i
¢i the community of node i
0 is the Kronecker symbol o(ci,¢)=1iff ¢ =¢

> In the original network : 5= >~ A;d(c;, ¢;) where

JGV
> In the configuration model : ;5 >° l;:j d(cis g)
ijev
« kik;
* modularity : Q(P) = 5= Y [Aj— 2-210(ci, q))
ijev
1
= 2m [ec _L

ceP

» NP-hard to maximize modularity
13/20

Utility of modularity

® Come back to the dendogram produced Py Girvan-Newman

~ /]

|

oo

14/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
.

15/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs

15/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs
e Constant Potts Model
> CPM(P)=X[ec - y(%)]
where e.=# edges inside communauty ¢

and n.=# nodes in communauty ¢
~ is a chosen constant <1

15/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs

e Constant Potts Model
> CPM(P)=3[ec —7(5)]
c
where e.=# edges inside communauty ¢
and n.=# nodes in communauty ¢

~ is a chosen constant <1
> fory=07

15/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs
e Constant Potts Model
> CPM(P)=3[ec —7(5)]
where eczﬁi edges inside communauty ¢

and n.=# nodes in communauty ¢
~ is a chosen constant <1

:?”i‘l’i = Al Mumodsy Avoghiy
T D B Maavdy Al

15/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs

e Constant Potts Model 4.;_
> CPM(P)=Slec — ()] T,
c B

where e.=# edges inside communauty ¢ 2
and n.=# nodes in communauty ¢ .
~ is a chosen constant <1

> fory=07?

> fory=17

> fory=1/27

15/20

Is modularity a good quality function?

® Resolution isyue : tends to make too large communities

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities

: ring of p copies of a k-clique (n = p.k)

Example

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities
Example : ring of p copies of a k-clique (n = p.k)

P, = the cliques

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities
Example : ring of p copies of a k-clique (n = p.k)

=30
A ’
25 % 16 300
—_— =
330 330

P, = the cliques
P, = the cliques grouped by two

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities
Example : ring of p copies of a k-clique (n = p.k)

P, = the cliques
P, = the cliques grouped by two

» Which one is "morally” the best community partition ?

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities
Example : ring of p copies of a k-clique (n = p.k)

P, = the cliques
P, = the cliques grouped by two

» Which one is "morally” the best community partition ?
» Which one has higher modularity ?

16/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity

G (n=30,m=46)

17/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity

Obs. : non-neighbouring community is never the best

° 06
G)

G (n=30,m=46)

17/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

G (n=30,m=46)

17/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :
» place x alone in its own community
P consider moving x to each neighbourhing community

G (n=30,m=46)

17/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :
» place x alone in its own community
P consider moving x to each neighbourhing community

G (n=30,m=46)

17/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :
» place x alone in its own community
P consider moving x to each neighbourhing community

G (n=30,m=46)

18/20

Louvain algorithm

1 augmented<— true;
2 (while augmented do

3 Po + {{x} | x€ V(G)}; P+ TPo; Q«0;

4 while augmented do

5 augmented<— faux;

6 or i de 1 a ndo

7 Qori + Q;

8 i moves to ciso = {i}; Q + Q — AQout(i);
9 Qmax < Q; Cmax < Ciso;

10 for c € P do

11 if Q+ AQjn(c) > Qmax then

12 Qmax < Q + AQix(i, ¢);

13 Cmax < C;

14 4‘1549 end

15 end

16 If Qmax = Qori then cmax < cori else augmented«— true;
17 i moves to Cmax; Q < Qmax;

18 nd

19 end

20 Qf P # Po then augmented < true; G <« G/P;)
21 end

22 return {Expand(P) | P € P};

19/20

Leiden algorithm

Two improvements over Louvain

e Complexity

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconpected (or poorly connected) communities

2%

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice
® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community
> Place vertices alone in their own sub-community

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community

> Place vertices alone in their own sub-community
P> Merge sub-communities that are strongly connected

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community

> Place vertices alone in their own sub-community
P> Merge sub-communities that are strongly connected

» Contract only the obtained sub-communities

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community
> Place vertices alone in their own sub-community
P> Merge sub-communities that are strongly connected
» Contract only the obtained sub-communities
> At the next step start from the partition defined by the whole
communities

20/20

