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Communities in complex networks

What is a community ?
”Moral” definition
• A group of nodes that share something...

I People with a common interest
I Web pages with similar content
I Proteins realising a common function

• ... that makes them be in relationship in the network !

Political blogs in US Languages in Belgium
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Communities in complex networks

What is a community ?
Structural definition

• A highly connected group of nodes

I Density inside the community much higher than global density
of the network

I Only few edges toward the rest of the network
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Types of structural communities

• Partition of the nodes into dense parts sparsely connected
between them
I High density inside communities
I Few edges between communities

• Overlapping communities
A node can belong to several communities
I more realistic
I problem : how to separate communities ?

• Partition of the links
I a link belong to exactly one community
I a node can have links in different communities
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Partition of the nodes

Various approaches, among them :

• random walks

• spectral methods

• hierarchical clustering

• divisive methods

• Louvain, Leiden
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Divisive approach : Girvan & Newman 2002

The idea :

1. identify inter-community links

2. remove them
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How to identify inter-community links ?
• Betweenness centrality of links

I CB(e) =
∑
s 6=t

σst(e)
σst

where

I σst = # shortest paths from s to t
I σst(e) = # shortest paths from s to t containing e

I high betweenness ⇔ e is on a high proportion of shortest
paths for a high proportion of pairs of nodes
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The algorithm ( ?)

• Algo Girvan-Newman(G )

1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

I remove e from G

I update the connected components of G
I update the betweenness centrality of all links

3. output the dendogram of G
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The algorithm

• Algo Girvan-Newman(G )

1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

I remove e from G

I update the connected components of G

I update the betweenness centrality of all links

3. output the dendogram of G

• Complexity
I betweenness for all links : O(nm)
I connected components : O(m)
I m iterations
I Overall : O(nm2)
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The Louvain algorithm

• Idea : optimize a quality function for node partitions

I modularity :maximize(#edges inside - #edges outisde)
⇔ maximize(#edges inside)

• Problem... the best partition is a single community ! ! !

• Correction : compare to a randomized version of the network

original network configuration model
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Modularity

original network configuration model
• Proportion of edges inside communities

A the adjacency matrix of G
ki the degree of node i
ci the community of node i
δ is the Kronecker symbol : δ(ci , cj) = 1 iff ci = cj

I In the original network : 1
2m

∑
i,j∈V

Aijδ(ci , cj) where

I In the configuration model : 1
2m

∑
i,j∈V

kikj
2m δ(ci , cj)

• modularity : Q(P) = 1
2m

∑
i ,j∈V

[Aij −
kikj
2m ]δ(ci , cj)

= 1
2m

∑
c∈P

[ec − a2
c

2m ]

I NP-hard to maximize modularity
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Utility of modularity

• Come back to the dendogram produced by Girvan-Newman
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Other quality functions

• Distance to cluster graphs

I dist-cluster(P)=#missing edges inside + #edges outside

I NP-hard to minimize distance to cluster graphs

• Constant Potts Model

I CPM(P)=
∑
c

[ec − γ
(
nc
2

)
]

where ec=# edges inside communauty c
and nc=# nodes in communauty c
γ is a chosen constant ≤ 1

I for γ = 0 ?
I for γ = 1 ?
I for γ = 1/2 ?
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Is modularity a good quality function ?

• Resolution isuue : tends to make too large communities

Example : ring of p copies of a k-clique (n = p.k)

Pa = the cliques
Pb = the cliques grouped by two

I Which one is ”morally” the best community partition ?
I Which one has higher modularity ?
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Louvain algorithm

• Given a partition, make a pass through all the vertices :
I consider each vertex x once in an arbitrary order
I move x to the community that gives the largest increase in

modularity

(eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :
I place x alone in its own community
I consider moving x to each neighbourhing community

G (n=30,m=46)

∆Q(C , i) =
[ eC+ki,C

2m −
(
aC+ki

2m

)2]
−
[
eC
2m −

(
aC
2m

)2 −
(

ki
2m

)2]
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Louvain algorithm

• Given a partition, make a pass through all the vertices :
I consider each vertex x once in an arbitrary order
I move x to the community that gives the largest increase in

modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :
I place x alone in its own community
I consider moving x to each neighbourhing community

G (n=30,m=46) G/P

1

1

1

1

3

1

1

1

1

2

18/20



Louvain algorithm

1 augmented← true;
2 while augmented do
3 P0 ← {{x} | x ∈ V (G)} ; P ← P0 ; Q ← 0;
4 while augmented do
5 augmented← faux;
6 for i de 1 a n do
7 Qori ← Q;
8 i moves to ciso = {i} ; Q ← Q −∆Qout(i);
9 Qmax ← Q ; cmax ← ciso ;

10 for c ∈ P do
11 if Q + ∆Qin(c) > Qmax then
12 Qmax ← Q + ∆Qin(i , c);
13 cmax ← c;

14 end

15 end
16 IfQmax = Qori then cmax ← cori else augmented← true;
17 i moves to cmax ; Q ← Qmax ;

18 end

19 end
20 If P 6= P0 then augmented ← true ; G ← G/P;

21 end
22 return {Expand(P) | P ∈ P};
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Leiden algorithm

Two improvements over Louvain

• Complexity

I Consider moving only vertices whose neighbours have moved
I Maintain a queue for them
I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities

I Just before contracting communities, for each community

I Place vertices alone in their own sub-community
I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities
I At the next step start from the partition defined by the whole

communities

20/20



Leiden algorithm

Two improvements over Louvain

• Complexity
I Consider moving only vertices whose neighbours have moved

I Maintain a queue for them
I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities

I Just before contracting communities, for each community

I Place vertices alone in their own sub-community
I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities
I At the next step start from the partition defined by the whole

communities

20/20



Leiden algorithm

Two improvements over Louvain

• Complexity
I Consider moving only vertices whose neighbours have moved
I Maintain a queue for them

I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities

I Just before contracting communities, for each community

I Place vertices alone in their own sub-community
I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities
I At the next step start from the partition defined by the whole

communities

20/20



Leiden algorithm

Two improvements over Louvain

• Complexity
I Consider moving only vertices whose neighbours have moved
I Maintain a queue for them
I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities

I Just before contracting communities, for each community

I Place vertices alone in their own sub-community
I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities
I At the next step start from the partition defined by the whole

communities

20/20



Leiden algorithm

Two improvements over Louvain

• Complexity
I Consider moving only vertices whose neighbours have moved
I Maintain a queue for them
I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities

I Just before contracting communities, for each community

I Place vertices alone in their own sub-community
I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities
I At the next step start from the partition defined by the whole

communities

20/20



Leiden algorithm

Two improvements over Louvain

• Complexity
I Consider moving only vertices whose neighbours have moved
I Maintain a queue for them
I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
I Just before contracting communities, for each community

I Place vertices alone in their own sub-community
I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities
I At the next step start from the partition defined by the whole

communities

20/20



Leiden algorithm

Two improvements over Louvain

• Complexity
I Consider moving only vertices whose neighbours have moved
I Maintain a queue for them
I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
I Just before contracting communities, for each community

I Place vertices alone in their own sub-community

I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities
I At the next step start from the partition defined by the whole

communities

20/20



Leiden algorithm

Two improvements over Louvain

• Complexity
I Consider moving only vertices whose neighbours have moved
I Maintain a queue for them
I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
I Just before contracting communities, for each community

I Place vertices alone in their own sub-community
I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities
I At the next step start from the partition defined by the whole

communities

20/20



Leiden algorithm

Two improvements over Louvain

• Complexity
I Consider moving only vertices whose neighbours have moved
I Maintain a queue for them
I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
I Just before contracting communities, for each community

I Place vertices alone in their own sub-community
I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities

I At the next step start from the partition defined by the whole
communities

20/20



Leiden algorithm

Two improvements over Louvain

• Complexity
I Consider moving only vertices whose neighbours have moved
I Maintain a queue for them
I Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
I Just before contracting communities, for each community

I Place vertices alone in their own sub-community
I Merge sub-communities that are strongly connected

I Contract only the obtained sub-communities
I At the next step start from the partition defined by the whole

communities

20/20


