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Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

Q: Do Internet protocols still work if Internet is 10 times larger ?

Generate a synthetic network and simulate

For simulating:

 phenomena
 algorithms
 protocols

In order to:

 design
 test
 predict
 better understand
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4 classic properties:

 Low global density
 Short distances
 Heterogeneous degrees
 High local density
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Modelling static networks

4 classic properties:

 Low global density → parameter
 Short distances → induced by randomness
 Heterogeneous degrees → compatible with randomness
 High local density → problem

Big challenge: Generate networks having these 4 properties

Idea: obtain these properties as a consequence of a higher order property

low global density short distances heterogeneous degrees high local density

higher order property

Erdös-Rényi 1960

Molloy & Reed 1995

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS
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Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

High local density Short distances[Watts & Strogatz 1998]
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Regular lattice with n nodes
kth power of the cycle, k<<n

Second endpoint of each edge 
is rewired with probability p

Clustering C(p)
vs

average distance L(p)

as p increases



Watts & Strogatz model

Regular lattice with n nodes
kth power of the cycle, k<<n

Second endpoint of each edge 
is rewired with probability p

Clustering C(p)
vs

average distance L(p)

as p increases

Tradeoff
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Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

+

strongly structured random modifications1 2

structure noise
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Graph editing algorithms

Community detection

Degree anonymization

 Edit the graph so that all vertices have same degree

Original network Resulting cluster graph

EDITING



Graph editing algorithms
INPUT TARGET CLASS

arbitrary graph output graph
in the class

edition 
algorithm (ex: chordal graphs)

Unfortunately: minimum number is NP-hard for most properties

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed (eg. only additions)

Different approaches:
 Exact exponential algorithms
 Parameterized algorithms

 Approximation algorithms

 Inclusion minimal modification

 Restricted inputs
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Graph editing algorithms
INPUT TARGET CLASS

arbitrary graph output graph
in the class

edition 
algorithm (ex: chordal graphs)

Unfortunately: minimum number is NP-hard for most properties

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed (eg. only additions)

Relaxation of the problem:

set of modifications minimal for inclusion    → polynomial time

! each target class needs a specific algorithm !

Ex : interval graphs, permutation graphs, cographs



Results for some target classes

Chordal completion : O(nm)
 2006

Interval completion : O(n2)
1981, 2005, 2013

Permutation completion : O(n2)
2015

Split completion : O(n+m’) 
2009

Comparability completion : O(n2m) 
2008

Trivially perfect completion : O(n+m’) 
2008

Cograph completion : O(n+m’)
2010

Planar deletion : O(n+m)
2006

Completion:

Deletion:



Minimal cograph editing algorithms



Coedit : a tool for cograph editing

INPUT: an arbitrary graph

Computes either:

 a minimal cograph completion
 a minimal cograph deletion
 a minimal cograph editing

In order to:

 Written in C
 Sources available at https://www.ii.uib.no/~christophec/coedit/
 Under GNU GPL licence (can do whatever you want with it) 

OUTPUT: the cotree of the cograph obtained

Input format:
n
u d°(u)
v d°(v)

u1 v1
u2 v2

Output format:
n
l (=0 or 1)
u #child(u)
v #child(v)

parent(u) u
parent(v) v

# of vertices

degrees

edges

# of nodes

# of children

Edges of 
the tree

Label of the root



Algorithms
For completion

An O(n+m log2n) algorithm

An O(n+m’) algorithm with minimum at each incremental step
improve heuristics

almost linear in the size of the input 

For editing

An O(n+m) algorithm with minimum at each incremental step

The vertex incremental approach : vertices are processed one by one

X X

edit only 
edges 

incident to x



Cographs and incremental app.

S

//

S S

a

b

t zs yc d

Obtained from single vertices by using 2 operations:

disjoint union 
(//)

complete union
(S)

G
1

G
2

G
1

G
2

cotree

O(n) space

S

//

S

//

S S S

X

fullmixed

hollow

G a cograph new vertex

Incremental approach: a cograph G and x a new incoming vertex

G+x is not a cograph and we want to add (and/or delete) edges incident to x
so that G+x become a cograph



Completion algorithms
First algorithm: O(n+m’)



A characterisation of cographs

S

//

S

//

S

fullfull

full full

full full

hollowhollow

hollowhollow

hollow hollow

u

X

G+x is a cograph iff there exists a node u st.:
[Corneil, Perl, Stewart 1981]

Insertion node
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fullfull

full full
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hollowhollow

hollow hollow

u

X

G+x is a cograph iff there exists a node u st.:
[Corneil, Perl, Stewart 1981]

Insertion node

S

//
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A characterisation of cographs

S

//

S

//

S

X

In our algorithm : G+x is not a cograph

Choose one node u for which 
you make the situation of the 
[CPS 81]’s theorem happen



Eligible nodes

non-hollow hollow

X

In our algorithm : G+x is not a cograph

Definition: u is an eligible node Iff all parallel 
strict ancestors of u are such that all their children 
(but one) are hollow

S

//

S

//

S

hollow hollow

hollowhollow



Completion anchored at u

S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

Proceed as follows :

S

Definition: u is an eligible node Iff all parallel 
strict ancestors of u are such that all their children 
(but one) are hollow



Completion anchored at u
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(but one) are hollow
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//
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//

non-hollow hollow
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Completion anchored at u

S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

2) make the non-hollow children of u become full
    (leave the others hollow)

3) for each series ancestor v of u, make all its           
    children (but one) full

Proceed as follows :

you obtain a cograph completion of G+x

called the completion anchored at u

S

Question: Is it minimal ?

Definition: u is an eligible node Iff all parallel 
strict ancestors of u are such that all their children 
(but one) are hollow

We have a characterization for this



First algorithm : O(n+m’)

Complexity : O(d’)

Note : we search only 
non-hollow nodes

S

S

S

//

//

[LMP 10]

 Search the tree bottom up from the leaves adjacent to x

 Find the eligible nodes that satisfy the characterization

 Choose one u of minimum cost and update the data structure by     
 running [CPS 81]’s algorithm.

Complexity : O(d’) for one incremental step
O(n+m’) for the whole algorithm



Completion algorithms
Second algorithm: O(n + m log2n)
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Why is O(n+m’) not necessarily optimal?
 No reason to use adjacency lists to encode the output

 What is the expected number of edges m’ in a cograph completion?

 If the input G has the vertex-expansion property, then G’ has O(n2) edges

 Random graphs with fixed average degree, O(n) edges, have the 
expansion property with high probability

In practice, O(n+m’) ~ O(n2)

there is an O(n) space representation of cographs

We achieve O(n+m log2n) time

 Where is the room for improvement of the complexity?
X

A constant number of neighbours of x
can force to search an Ω(n) part of the co tree



Second algorithm : O(n + m log2n)

 Note: we abandon the minimum incremental → only minimal

 we use a dynamic data-structure for lowest ancestor queries

 In O(log n) time: w=lca(u,v) and w
u
 the child of w that is an ancestor of u

 Update the structure in O(log n) time under elementary tree modifications

[Sleator, Tarjan 1983]

 we use ordered lists

 In O(1) time: order between two elements in the list

 Update the structure in O(1) time under deletion and insertion of an element

[Dietz, Sleator 1987]
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Our goal : determine the lowest eligible, non-hollow and non-forced nodes

minimal completion
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 build T’ : the subtree of lowest common ancestors of neighburs of x

Our goal : determine the lowest eligible, non-hollow and non-forced nodes
minimal completion

1) sort neighbours of x from left to right : O(d log2n) time 2) insert neighbours one by one
    Total :O(d log n) time

???
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O(d) size
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Second algorithm : O(n + m log2n)

 Lowest eligible nodes

 build T’ : the subtree of lowest common ancestors of neighburs of x

 Non-forced condition
 Find the lowest non-forced node above each node of W (grand-parent) 

Our goal : determine the lowest eligible, non-hollow and non-forced nodes
minimal completion

1) sort neighbours of x from left to right : O(d log2n) time

Complexity : O(d log2n) for one incremental step
  O(n+m log2n) for the whole algorithm

highest parallel nodes with ≥2 non-hollow children 

 Keep the highest parallel nodes in T’

O(d) size

2) insert neighbours one by one
    Total :O(d log n) time



Editing algorithm
O(n + m) time



Algorithm for cograph editing

Editing: use both additions and deletions of edges

Additional feature: minimum editing at each incremental step

Linear time: O(n+m)

Minimal for inclusion

number of edits returned is ≤ m



The local incremental approach

X X

edit only 
edges 

incident to x

 Only edges incident to x are modified 

 Vertices are processed one by one 

Always possible when:

 Contains no maximal element for 
induced subgraph relationship

 The class is hereditary

Our goal : O(d) time complexity at each incremental step



Editing anchored at u
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S

//

S

//

prepon
derant

non-preponderant

X

In our algorithm : G+x is not a cograph

S
u

1) for each parallel ancestor of u, make all its           
 children (but one) hollow

2) for each series ancestor of u, make all its            
children (but one) full

3) make the preponderant children of u become full
    and make the non-preponderant ones hollow

Proceed as follows :

you obtain a cograph editing of G+x

called the editing anchored at u

Question: Is it minimal? minimum ?

O(n) time algorithm trying all 
possible nodes of the cotree

Editing anchored at u



Maximal preponderant nodes
Def.: u is preponderant iff the subtree of u contains more neighbours 

of x than non-neighbours of x 

Cor. [CPS81]: the insertion node of a minimum editing has a 
preponderant child

u preponderant u non-preponderant

Def.: u is maximal preponderant iff u is preponderant and no 
ancestor of u is.

The insertion node is either in the subtree of some maximal preponderant 
node or is the parent of some maximal preponderant node

Only O(d) candidates for the insertion node



Outline of the algorithm
1) compute all maximal preponderant nodes (and their parents)

2) for each maximal preponderant node u, determine the minimum editing 
anchored in its subtree or at its parent 

3) keep the minimum editing among all the editings found for each 
maximal preponderant node u : need to compute cost-above(u)

O(n) algo applied on a subcotree where n=O(d)

u



Principle of the bottom-up search
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S

Obs.: we need the cost of the editing anchored at u only if it is less     
        than the cost of the delete-all editing
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Initialisation : bud(u)=B
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prep

(u)

prepnonp
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v
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//

= exc(u)
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Principle of the bottom-up search

S

//

S

Obs.: we need the cost of the editing anchored at u only if it is less     
        than the cost of the delete-all editing

u

Initialisation : bud(u)=B
prep

(u)-W
prep

(u)

Encounter a parallel node:
bud(u) unchanged

Encounter a series node v:
bud(u) ← bud(u) +B

prep
(v)-W

prep
(v) +B

nonp
(v)-W

nonp
(v)

prepnonp

prepnonp

Stop when either the budget becomes negative
or when the search reaches the root with non-
negative budget → deduce cost-above(u)

Routine SearchTree(q,bud)

= bud

v

q

//

= exc(u)



Routine SearchTree(u,s)

Main property:
   

Makes a DFS limited by a ttl and counts the difference between 
black and white leaves in cpt

W(u)-B(u) ≤ s iff Search-tree(u, s) searches the entire subtree of 
u and ends with a value cpt ≥ 0.
Complexity : O(min{s,W(u)-B(u)})

why ttl ← 2+5s ? u

s white leaves

4s-2 edge traversals

-1

-1

 Initially, ttl ← 2+5s  and cpt ← s
 ttl is decreased when an edge is traversed
 DFS stops when ttl=-1



Two threats to the complexity

Searching repeatedly the same part of the tree with the same budget
   

Using repeatedly the same budget in the bottom-up search

bud(u) ← bud(u) +B
prep

(v)-W
prep

(v) +B
nonp

(v)-W
nonp

(v)

u

   

v



Some open algorithmic questions

 Inclusion-minimal editing for other graph classes,
in linear time?

 Showing that minimal cograph completion is not solvable in 
linear time
 O(n+mlog2n) from [Crespelle,Lokshtanov,Phan, Thierry 2020]

Inclusion-minimal cograph editing in linear time
 minimum at each incremental step
 at most m edits at the end



Complex networks as
 almost cographs?
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RESULTS
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 Random graphs are never

 A wide range of proximity : 

12% to 93%
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real-world context
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Cograph edition of real-world graphs

www

software

Close to cographs

 The proximity with cographs 

highly depends on the

real-world context

34



Cograph edition of real-world graphs

Not close not far

internet

road

 The proximity with cographs 

highly depends on the

real-world context

34



Cograph edition of real-world graphs

Far from cographs

citation

social

 The proximity with cographs 

highly depends on the

real-world context

34
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Testing the modelling approach

+

strongly structured random modifications1 2

a

b

t zs yc d

cographs 
obtained 

from 
edition

same 
number as 
in edition 
problem

compare with the original 
real-world network

36



Conclusion

+

strongly structured random modifications1 2

a

b

t zs yc d

global density

distances

degree distribution

local density
?
?
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Results of generation

?
#

#
global CC =

Real distribution

Almost cograph model

Local density Degree distribution

38
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To complete the model

 Edit a real-world graph into a cograph
 Generate a similar cotree
 Apply random modifications to the cograph
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Perspectives

Improve algorithms : complexity and quality

 edition instead of completion
 avoid incremental approach

Consider other graph classes suitable for other kind of networks

Complete the modelling approach for cographs

 Related to planar graphs   →   internet, road networks 

 Chordal graphs   →   social networks, citations 
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Perspectives

 Modelling

 Global organization
 Specific roles

 Efficient encoding : space + query time

 Analysis

 Algorithmic theory of almost structured graphs
Take advantage of the proximity with a strongly structured graph

+=
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