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Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

For simulating:

phenomena
algorithms
protocols

In order to:

design

test

predict

better understand

Q: Do Internet protocols still work if Internet is 10 times larger ?
Generate a synthetic network and simulate
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Low global density
Short distances
Heterogeneous degrees
High local density



Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

4 classic properties:

Low global density - parameter
® Short. diStances. ..o - __induced by randomness...... Erdos-Renyi 1960

Heterogeneous degrees
High local density



Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

4 classic properties:

Low global density — parameter
® Short. diStances. ..o - __induced by randomness...... Erdos-Renyi 1960
° Heterogeneous degrees.. ... - compatible with randomnesdMolloy & Reed 1995

High local density



Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

4 classic properties:

Low global density — parameter
® Short. diStances. ..o - __induced by randomness...... Erdos-Renyi 1960
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“loosely constrained
=P randomness

“strongly impacted by their context
= structure

Complex networks

-+

structure randomness

[Watts & Strogatz 1998]

High local density Short distances



Watts & Strogatz model

Regular Small-world Random

Regular lattice with n nodes
ki power of the cycle, k<<n

Second endpoint of each edge
IS rewired with probabillity p
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“loosely constrained
=P randomness

“strongly impacted by their context
= structure

Complex networks = structure + randomness

‘ strongly structured ‘ random modifications

+ .

structure noise




INPUT TARGET CLASS

(ex: chordal graphs)

arbitrary graph




Graph editing algorithms

INPUT TARGET CLASS
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INPUT

arbitrary graph

edition
algorithm

TARGET CLASS
(ex: chordal graphs)

P+ A+ A

output graph
in the class

‘ GOAL.: perform as few modifications as possible ‘




Graph editing algorithms

Community detection

EDITING

Original network Resulting cluster graph

Degree anonymization

Edit the graph so that all vertices have same degree



Graph editing algorithms

TARGET CLASS
(ex: chordal graphs)

[ D] V4744

arbitrary graph output graph
in the class

INPUT

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for most properties

Even when only one type of modifications is allowed (eg. only additions)

Different approaches: Restricted inputs
Exact exponential algorithms
Parameterized algorithms

Approximation algorithms
Inclusion minimal modification
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Graph editing algorithms

INPUT TARGET CLASS
(ex: chordal graphs)

[ D] V4744

arbitrary graph output graph
in the class

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for most properties

Even when only one type of modifications is allowed (eg. only additions)

Relaxation of the problem:

set of modifications minimal for inclusion = polynomial time

A each target class needs a specific algorithm !

EX : interval graphs, permutation graphs, cographs



Results for some target classes

Completion:

Interval completion : O(n?)
1981, 2005, 2013

Chordal completion : O(nm)
2006

Trivially perfect completion : O(n+m’)
2008

Comparability completion : O(n*m)
2008

Split completion : O(n+m’)
2009

Cograph completion : O(n+m’)
2010

Permutation completion : O(n?)
2015

Deletion:

Planar deletion : O(n+m)
2006



Minimal cograph editing algorithms




Coedit : a tool for cograph editing

INPUT: an arbitrary graph

Computes either:

a minimal cograph completion
a minimal cograph deletion
a minimal cograph editing

OUTPUT: the cotree of the cograph obtained

Input format: Output format:
# of vertices n # of nodes n
!u d°(u) Label of the root | (=0 or 1)
degrees lv_d°(v) ! u #child(u)
5 # of children | v #Chlld(V)
!ul vl l
edges jyu2 v2 arent(u) u
° \ : Edges of ! Barentgv)) Vv
' the tree l
Written in C

Sources available at https://www.ii.uib.no/~christophec/coedit/
Under GNU GPL licence (can do whatever you want with it)



For completion

“An O(n+m’) algorithm with minimum at each incremental step
= improve heuristics

“An O(n+m log?n) algorithm
= almost linear in the size of the input

For editing

“An O(n+m) algorithm with minimum at each incremental step

The vertex incremental approach : vertices are processed one by one

edit only
edges
R X incident to x

 enehreiie —




Cographs and incremental app.

Obtained from single vertices by using 2 operations: cotree
disjoint union complete union O(n) space
(/) (S)
O O K\'\
c d
Gl GZ Gl GZ S t y :

Incremental approach: a cograph G and x a new incoming vertex

a cograph and we want to add (and/or delete) edges incident to x
so that G+x become a cograph

G a cograph X new vertex




Completion algorithms

First algorithm: O(n+m’)




A characterisation of cographs

[Corneil, Perl, Stewart 1981]
G+x Is a cograph iff there exists a node u st.:

.X
full &full
hollow % gsz hollow

full // full

hollow

hollow
Insertion node

full full  hollow hollow



A characterisation of cographs

[Corneil, Perl, Stewart 1981]
G+x Is a cograph iff there exists a node u st.:

full full
hollow hollow
full full
u
hollow hollow

Insertion node

full full

hollow hollow



In our algorithm : G+x is not a cograph

X

</
e N0
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In our algorithm : G+x is not a cograph

X

O,
T4

@ )
'l Choose one node u for which

‘ you make the situation of the
[CPS 81]'s theorem happen




In our algorithm : G+x is not a cograph

x Definition: u is an eligible node Iff all parallel
e o strict ancestors of u are such that all their children

(but one) are hollow
o e

notlow (s () hollow
o Ne

hoIIow‘ hoIIow
O OO C

non-hollow hollow




Completion anchored at u

In our algorithm : G+x is not a cograph

x Definition: u is an eligible node Iff all parallel
® strict ancestors of u are such that all their children
(but one) are hollow

Il Proceed as follows :

1) choose one eligible node u

Il

non-hollow hollow
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Completion anchored at u

In our algorithm : G+x is not a cograph

x Definition: u is an eligible node Iff all parallel
strict ancestors of u are such that all their children
(but one) are hollow

Proceed as follows :

1) choose one eligible node u

2) make the non-hollow children of u become full
(leave the others hollow)

3) for each series ancestor v of u, make all its
children (but one) full

—> you obtain a cograph completion of G+x

called the completion anchored at u

non-hollow hollow Question: Is it minimal ?

==y We have a characterization for this



First algorithm : O(n+m’)

Search the tree bottom up from the leaves adjacent to x

Find the eligible nodes that satisfy the characterization
S

&
&

Choose one u of minimum cost and update the data structure by
running [CPS 81]'s algorithm.

Note : we search only
non-hollow nodes

Complexity : O(d’)
[LMP 10]

Complexity : O(d’) for one incremental step
O(n+m’) for the whole algorithm




Completion algorithms

Second algorithm: O(n + m log?n)
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== there is an O(n) space representation of cographs




“ No reason to use adjacency lists to encode the output

== there is an O(n) space representation of cographs

“ What is the expected number of edges m’ in a cograph completion?
° If the input G has the vertex-expansion property, then G’ has O(n?) edges

° Random graphs with fixed average degree, O(n) edges, have the
expansion property with high probability

== |h practice, O(n+m’) ~ O(n?)
== \We achieve O(h+m log?n) time




Why is O(n+m’) not necessarily optimal?

No reason to use adjacency lists to encode the output

= there is an O(n) space representation of cographs

What is the expected number of edges m’ in a cograph completion?
If the input G has the vertex-expansion property, then G’ has O(n?) edges

Random graphs with fixed average degree, O(n) edges, have the
expansion property with high probability

== |n practice, O(n+m’) ~ O(n?)
== \We achieve O(n+m log?n) time

Where is the room for improvement of the complexity?
X

A constant number of neighbours of x
can force to search an Q(n) part of the co tree




Second algorithm : O(n + m logZ®n)

Note: we abandon the minimum incremental — only minimal

we use a dynamic data-structure for lowest ancestor queries
[Sleator, Tarjan 1983]

In O(log n) time: w=lca(u,v) and w, the child of w that is an ancestor of u
Update the structure in O(log n) time under elementary tree modifications

we use ordered lists
[Dietz, Sleator 1987]

In O(1) time: order between two elements in the list

Update the structure in O(1) time under deletion and insertion of an element



Our goal : determine the lowest eligible, non-hollow and non-forced nodes
== minimal completion
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Our goal : determine the lowest eligible, non-hollow and non-forced nodes

= minimal completion

“ Lowest eligible nodes
= highest parallel nodes with =22 non-hollow children

° build T’ : the subtree of lowest common ancestors of neighburs of x
* Keep the highest parallel nodes in T’

O(d) size

->

1) sort neighbours of x from left to right : O(d log?n) time

L\

2) insert neighbours one by one
Total :0(d log n) time



Our goal : determine the lowest eligible, non-hollow and non-forced nodes
= minimal completion
“ Lowest eligible nodes

= highest parallel nodes with =22 non-hollow children

° build T’ : the subtree of lowest common ancestors of neighburs of x
* Keep the highest parallel nodes in T’

O(d) size
*
(J (J ®
J (J (J (J (J (J UJ
® ® O O 0 O 0 O OO
1) sort neighbours of x from left to right : O(d log?n) time 2) insert neighbours one by one

Total :O(d log n) time




Second algorithm : O(n + m log?®n)

Our goal : determine the lowest eligible, non-hollow and non-forced nodes
= minimal completion
Lowest eligible nodes
=P highest parallel nodes with =2 non-hollow children

build T’ : the subtree of lowest common ancestors of neighburs of x
Keep the highest parallel nodes in T’

O(d) size
Q Q ®
® ® O ® O ® O
O ® O O O OO O O ¢
1) sort neighbours of x from left to right : O(d log?n) time 2) insert neighbours one by one

. Total :0(d log n) time
Non-forced condition

Find the lowest non-forced node above each node of W (grand-parent)

Complexity : O(d log?®n) for one incremental step
O(n+m log?n) for the whole algorithm




Editing algorithm

O(n + m) time




“Editing: use both additions and deletions of edges

“Minimal for inclusion

“Linear time: O(n+m)

“Additional feature: minimum editing at each incremental step

“number of edits returned is = m




The local iIncremental approach

Vertices are processed one by one

Only edges incident to x are modified

edit only
edges
X incident to x o X

— -

Always possible when: ¢ The class is hereditary

Contains no maximal element for
Induced subgraph relationship

=P Our goal : O(d) time complexity at each incremental step



In our algorithm : G+x is not a cograph
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Proceed as follows :

1) for each parallel ancestor of u, make all its
children (but one) hollow
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In our algorithm : G+x is not a cograph

.X Proceed as follows :

1) for each parallel ancestor of u, make all its
children (but one) hollow

2) for each series ancestor of u, make all its
children (but one) full




Editing anchored at u

In our algorithm : G+x is not a cograph

.X Proceed as follows :

1) for each parallel ancestor of u, make all its
children (but one) hollow

2) for each series ancestor of u, make all its
children (but one) full




Editing anchored at u

In our algorithm : G+x is not a cograph

X Proceed as follows :

1) for each parallel ancestor of u, make all its
children (but one) hollow

2) for each series ancestor of u, make all its
children (but one) full

3) make the preponderant children of u become full
and make the non-preponderant ones hollow

prepon  non-preponderant
derant



Editing anchored at u

In our algorithm : G+x is not a cograph

X Proceed as follows :

1) for each parallel ancestor of u, make all its
children (but one) hollow

2) for each series ancestor of u, make all its
children (but one) full

3) make the preponderant children of u become full
and make the non-preponderant ones hollow

== Yyou obtain a cograph editing of G+x
called the editing anchored at u
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Editing anchored at u

In our algorithm : G+x is not a cograph

X Proceed as follows :

1) for each parallel ancestor of u, make all its
children (but one) hollow

2) for each series ancestor of u, make all its
children (but one) full

3) make the preponderant children of u become full
and make the non-preponderant ones hollow

== Yyou obtain a cograph editing of G+x
called the editing anchored at u

Question: Is it minimal? minimum ?

O(n) time algorithm trying all

Prepon non-preponderant possible nodes of the cotree



Maximal preponderant nodes

Def.: u is preponderant iff the subtree of u contains more neighbours
of X than non-neighbours of x

u preponderant u non-preponderant

Def.: u is maximal preponderant iff u is preponderant and no
ancestor of u is.

Cor. [CPS81]: the insertion node of a minimum editing has a
preponderant child

_» The insertion node is either in the subtree of some maximal preponderant
node or is the parent of some maximal preponderant node

Only O(d) candidates for the insertion node




Outline of the algorithm

1) compute all maximal preponderant nodes (and their parents)

2) for each maximal preponderant node u, determine the minimum editing
anchored in its subtree or at its parent
= O(n) algo applied on a subcotree where n=0(d)

3) keep the minimum editing among all the editings found for each
maximal preponderant node u : need to compute cost-above(u)

S

/ —

by




Principle of the bottom-up search

Obs.: we need the cost of the editing anchored at u only if it is less
than the cost of the delete-all editing

e

nonp prep
Il
| u
& Initialisation : bud(u):Bprep(u)-Wprep(u)
= exc(u)

nonp prep




Principle of the bottom-up search

Obs.: we need the cost of the editing anchored at u only if it is less
than the cost of the delete-all editing

e

nonp prep

I

Encounter a parallel node:

y

(%—% bud(u) unchanged
& Initialisation : bud(u):Bprep(u)-Wprep(u)
= exc(u)

nonp prep




Principle of the bottom-up search

Obs.: we need the cost of the editing anchored at u only if it is less
than the cost of the delete-all editing

|
\" :
Encounter a series node V:
9 bud(u) « bud(u) +B__ (V)-W__ (V) +B_ (V)-W (V)

nonp prep = bud
=P Routine SearchTree(c,bud)

I

| Encounter a parallel node:
u

(%—% bud(u) unchanged
& Initialisation : bud(u):Bprep(u)-Wprep(u)

= exc(u)
nonp prep




Principle of the bottom-up search

Obs.: we need the cost of the editing anchored at u only if it is less
than the cost of the delete-all editing

Stop when either the budget becomes negative
‘ or when the search reaches the root with non-
I negative budget — deduce cost-above(u)

v Encounter a series node V:
9 bud(u) « bud(u) +B__ (V)-W__ (V) +B_ (V)-W (V)
nonp prep = bud
=P Routine SearchTree(c,bud)

Encounter a parallel node:
bud(u) unchanged

Initialisation : bud(u):Bprep(u)-Wmep(u)

= exc(u)
nonp prep



Routine SearchTree(u,s)

Makes a DFS limited by a ttl and counts the difference between
black and white leaves in cpt

Initially, ttl < 2+5s and cpt < s

ttl iIs decreased when an edge is traversed
DFS stops when tt/=-1

Main property:.

W(u)-B(u) < s iff Search-tree(u, s) searches the entire subtree of
u and ends with a value cpt = 0.

Complexity : O(min{s,W(u)-B(u)})

why ttl < 2+5s ?

4s-2 edge traversals

s white leaves



“Searching repeatedly the same part of the tree with the same budget

e

“Using repeatedly the same budget in the bottom-up search

I
’V bud(u) < bud(u) +B,,_ (v)}-W (V) +B__(V)-W__ (V)
/

\
N\

o\
Co-




Inclusion-minimal cograph editing in linear time

®* minimum at each incremental step
* at most m edits at the end

“ Showing that minimal cograph completion is not solvable in
linear time
O(n+mlog?n) from [Crespelle,Lokshtanov,Phan, Thierry 2020]

“ Inclusion-minimal editing for other graph classes,
In linear time?




Complex networks as

almost cographs?




Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

33

Context Network n m d° | %mod
WWW in-2004 1148875 12281937 | 21.4 12%
WWW cnr-2000 227058 2187201 | 19.3 19%
PROTEIN reactome 5973 145778 | 48.8 22 %
SOFTWARE jdk 6434 53658 | 16.7 29 %
SOFTWARE jung-j 6120 50290 | 16.4 29 %
WWW eu-2005 835044 15718784 | 37.7 29 %
CO-AUTHOR ca-GrQc 4158 13422 6.5 34%
CO-AUTHOR ca-HepPh 11204 117619 | 21.0 34 %
SPECIES foodweb 183 2434 | 26.6 43 %
CO-AUTHOR dblp 317080 1049 866 6.6 45 %
WORD-REL. wordnet 145145 656 230 9.0 48 %
COMMUNIC. wiki-Talk 2388953 4656 682 3.9 49%
CO-SOLD amazon 334863 925872 5.5 49 %
CO-AUTHOR ca-CondMat 21363 91 286 8.6 52%
RANDOM ER-Gnm_1M-2 796 208 958 827 DAk 52 %
CO-AUTHOR ca-HepTh 8638 24 806 5.7 54 %
INTERNET as2000 6474 12572 3.9 54 %
ROAD roadNet-TX 1351137 1879201 2.8 54 %
INTERNET as-caida2007 26475 53 381 4.0 55%
CO-AUTHOR ca-AstroPh 17903 196972 | 22.0 59 %
INTERNET topology 34761 107720 | 62| 61%
RANDOM ER-Gnm_1M-3 940987 1494643 3.2 63 %
INTERNET as-skitter 1694616 11094209 | 13.1 64 %
CO-OCCUR bible-names 1707 9059 | 10.6 67 %
PROTEIN figeys 2217 6418 5.8 67 %
CITATION-SCI. cora 23166 89157 7.7 68 %
SOCIAL youtube 1134890 2987624 5.3 69 %
CO-ACTOR actor-col. 374511 15014 839 | 80.2 71%
P2P-CONNECT. | p2p-Gnutella 62561 147878 4.7 1%
RANDOM ER-Gnm_1M-4 980191 1999203 4.1 71 %
CITATION-SCI. citeseer 365154 1721981 9.4 75 %
CITATION-PAT. | cit-Patents 3764117 16511740 8.8 76 %
SOFTWARE linux 30817 213208 | 13.8 77 %
SOCIAL LiveJournal 3997962 34681189 | 174 78 %
CITATION-SCI. cit-HepTh 27400 352021 | 25.7 79 %
RANDOM ER-Gnm_1M-6 997479 2999 988 6.0 79 %
CITATION-SCI. cit-HepPh 34401 420784 | 24.5 81 %
RANDOM ER-Gnm_1M-8 999 684 3999999 8.0 84 %
RANDOM ER-Gnm_1M-10 999952 5000000 | 10.0 87%
RANDOM ER-Gnm_1M-15 | 1000000 7500000 | 15.0 91 %
SOCIAL orkut 3072441 | 117185083 | 76.3 91%
RANDOM ER-Gnm_1M-20 | 1000000 10000000 | 20.0 93 %
WORD-REL. Thesaurus 23132 297094 | 25.7 93 %




Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

33
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RANDOM ER-Gnm_1M-8 999 684 3999999 8.0 84 %
RANDOM ER-Gnm_1M-10 999952 5000000 | 10.0 87 %
RANDOM ER-Gnm_1M-15 | 1000000 7500000 | 15.0 91 %
SOCIAL orkut 3072441 | 117185083 | 76.3 91 %
RANDOM ER-Gnm_1M-20 | 1000000 10000000 | 20.0 93 %
WORD-REL. Thesaurus 23132 297094 | 25.7 93 %

RESULTS

Some networks are very

close from cographs



Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs
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Context Network n m d°

WWW in-2004 1148875 12281937 | 21.4

WWW cnr-2000 227058 2187201 | 19.3
PROTEIN reactome 5973 145778 48.8_
SOFTWARE jdk 6434 53658 | 16.7
SOFTWARE jung-j 6120 50290 | 16.4

WWW eu-2005 835044 15718784 | 37.7
CO-AUTHOR ca-GrQc 4158 13422 6.5 34 %
CO-AUTHOR ca-HepPh 11204 117619 | 21.0 34 %
SPECIES foodweb 183 2434 | 26.6 43 %
CO-AUTHOR dblp 317080 1049 866 6.6 45 %
WORD-REL. wordnet 145145 656 230 9.0 48 %
COMMUNIC. wiki-Talk 2388953 4656 682 3.9 49 %
CO-SOLD amazon 334863 925872 5.5 49%
CO-AUTHOR ca-CondMat 21363 91286 8.6 52
RANDOM ER-Gnm_1M-2 796 208 958 827 2.4l 52%
CO-AUTHOR ca-Heplh 3000 24 300 9.0 2470
INTERNET as2000 6474 12572 3.9 54 %
ROAD roadNet-TX 1351137 1879201 2.8 54 %
INTERNET as-caida2007 26 475 53381 4.0 55 %
CO-AUTHOR ca-AstroPh 17903 196972 | 22.0 59 %
INTERNET topology 34761 107720 6.2 61 %
RANDOM ER-Gnm_1M-3 940987 1494643 3.2 63 %
INTERNET as-skitter 1694616 11094209 | 13.1 64 %
CO-OCCUR bible-names 1707 9059 | 10.6 67 %
PROTEIN figeys 2217 6418 5.8 67 %
CITATION-SCI. | cora 23166 89157 7.7 68 %
SOCIAL youtube 1134890 2987624 5.3 69 %
CO-ACTOR actor-col. 374511 15014839 | 80.2 1%
P2P-CONNECT. | p2p-Gnutella 62561 147878 | 4.7 1%
RANDOM ER-Gnm_1M-4 980191 1999203 4.1 1%
CITATION-SCI. | citeseer 365154 1721981 9.4 75 %
CITATION-PAT. | cit-Patents 3764117 16511740 8.8 76 %
SOFTWARE linux 30817 213208 | 13.8 77 %
SOCIAL LiveJournal 3997962 34681189 | 174 78 %
CITATION-SCI. | cit-HepTh 27 400 352021 | 25.7 79%
RANDOM ER-Gnm_1M-6 997479 2999 988 6.0 79 %
CITATION-SCI. | cit-HepPh 34401 420784 | 24.5 81%
RANDOM ER-Gnm_1M-8 999 684 3999 999 8.0 84 %
RANDOM ER-Gnm_1M-10 999 952 5000000 | 10.0 87 %
RANDOM ER-Gnm_1M-15 | 1000000 7500000 | 15.0 91%
SOCIAL orkut 3072441 | 117185083 | 76.3 91 %
RANDOM ER-Gnm_1M-20 | 1000000 10000000 | 20.0 93 %
WORD-REL. Thesaurus 23132 297094 | 25.7 93 %

RESULTS

Some networks are very

close from cographs

Random graphs are never



Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

33

Context Network n m d°
WWW in-2004 1148875 12281937 | 21.4
WWW cnr-2000 227058 2187201 | 19.3
PROTEIN reactome 5973 145778 | 48.8
SOFTWARE jdk 6434 53658 | 16.7
SOFTWARE jung-j 6120 50290 | 16.4
WWW eu-2005 835044 15718784 | 37.7
CO-AUTHOR ca-GrQc 4158 13422 6.5
CO-AUTHOR ca-HepPh 11204 117619 | 21.0
SPECIES foodweb 183 2434 | 26.6
CO-AUTHOR dblp 317080 1049 866 6.6
WORD-REL. wordnet 145145 656 230 9.0
COMMUNIC. wiki-Talk 2388953 4656 682 3.9
CO-SOLD amazon 334863 925872 5.5
CO-AUTHOR ca-CondMat 21363 91286 8.6
RANDOM ER-Gnm_1M-2 796 208 958 827 2.4
CO-AUTHOR ca-HepTh 8638 24 806 5.7
INTERNET as2000 6474 12572 3.9
ROAD roadNet-TX 1351137 1879201 2.8
INTERNET as-caida2007 26 475 53381 4.0
CO-AUTHOR ca-AstroPh 17903 196972 | 22.0
INTERNET topology 34761 107720 6.2
RANDOM ER-Gnm_1M-3 940987 1494643 3.2
INTERNET as-skitter 1694616 11094209 | 13.1
CO-OCCUR bible-names 1707 9059 | 10.6
PROTEIN figeys 2217 6418 5.8
CITATION-SCI. | cora 23166 89157 7.7
SOCIAL youtube 1134890 2987624 5.3
CO-ACTOR actor-col. 374511 15014839 | 80.2
P2P-CONNECT. | p2p-Gnutella 62561 147878 4.7
RANDOM ER-Gnm_1M-4 980191 1999203 4.1
CITATION-SCI. | citeseer 365154 1721981 9.4
CITATION-PAT. | cit-Patents 3764117 16511740 8.8
SOFTWARE linux 30817 213208 | 13.8
SOCIAL LiveJournal 3997962 34681189 | 174
CITATION-SCI. | cit-HepTh 27 400 352021 | 25.7
RANDOM ER-Gnm_1M-6 997479 2999 988 6.0
CITATION-SCI. | cit-HepPh 34401 420784 | 24.5
RANDOM ER-Gnm_1M-8 999 684 3999 999 8.0
RANDOM ER-Gnm_1M-10 999 952 5000000 | 10.0
RANDOM ER-Gnm_1M-15 | 1000000 7500000 | 15.0
SOCIAL orkut 3072441 | 117185083 | 76.3
RANDOM ER-Gnm_1M-20 | 1000000 10000000 | 20.0
WORD-REL. Thesaurus 23132 297094 | 25.7

%mod
12%
19 %
22%
29 %
29 %
29 %
34 %
34 %
43 %
45 %
48 %
49 %
49 %
52%
52 %
54 %
54 %
54 %
55%
59 %
61 %
63 %
64 %
67 %
67 %
68 %
69 %
1%
1%
1%
75 %
76 %
77 %
78%
79%
79 %
81%
84 %
87%
91 %
91 %
93 %
93 %

RESULTS

Some networks are very

close from cographs

Random graphs are never

A wide range of proximity :
12% to 93%



Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

33

Context Network n m d° | %mod
WWW in-2004 1148875 12281937 | 21.4 12%
WWW cnr-2000 227058 2187201 | 19.3 19%
PROTEIN reactome 5973 145778 | 48.8 22 %
SOFTWARE jdk 6434 53658 | 16.7 29 %
SOFTWARE jung-j 6120 50290 | 16.4 29 %
WWW eu-2005 835044 15718784 | 37.7 29 %
CO-AUTHOR ca-GrQc 4158 13422 6.5 34%
CO-AUTHOR ca-HepPh 11204 117619 | 21.0 34 %
SPECIES foodweb 183 2434 | 26.6 43 %
CO-AUTHOR dblp 317080 1049 866 6.6 45 %
WORD-REL. wordnet 145145 656 230 9.0 48 %
COMMUNIC. wiki-Talk 2388953 4656 682 3.9 49%
CO-SOLD amazon 334863 925872 5.5 49 %
CO-AUTHOR ca-CondMat 21363 91 286 8.6 52%
RANDOM ER-Gnm_1M-2 796 208 958 827 DAk 52 %
CO-AUTHOR ca-HepTh 8638 24 806 5.7 54 %
INTERNET as2000 6474 12572 3.9 54 %
ROAD roadNet-TX 1351137 1879201 2.8 54 %
INTERNET as-caida2007 26475 53 381 4.0 55%
CO-AUTHOR ca-AstroPh 17903 196972 | 22.0 59 %
INTERNET topology 34761 107720 | 62| 61%
RANDOM ER-Gnm_1M-3 940987 1494643 3.2 63 %
INTERNET as-skitter 1694616 11094209 | 13.1 64 %
CO-OCCUR bible-names 1707 9059 | 10.6 67 %
PROTEIN figeys 2217 6418 5.8 67 %
CITATION-SCI. cora 23166 89157 7.7 68 %
SOCIAL youtube 1134890 2987624 5.3 69 %
CO-ACTOR actor-col. 374511 15014 839 | 80.2 71%
P2P-CONNECT. | p2p-Gnutella 62561 147878 4.7 1%
RANDOM ER-Gnm_1M-4 980191 1999203 4.1 71 %
CITATION-SCI. citeseer 365154 1721981 9.4 75 %
CITATION-PAT. | cit-Patents 3764117 16511740 8.8 76 %
SOFTWARE linux 30817 213208 | 13.8 77 %
SOCIAL LiveJournal 3997962 34681189 | 174 78 %
CITATION-SCI. cit-HepTh 27400 352021 | 25.7 79 %
RANDOM ER-Gnm_1M-6 997479 2999 988 6.0 79 %
CITATION-SCI. cit-HepPh 34401 420784 | 24.5 81 %
RANDOM ER-Gnm_1M-8 999 684 3999999 8.0 84 %
RANDOM ER-Gnm_1M-10 999952 5000000 | 10.0 87%
RANDOM ER-Gnm_1M-15 | 1000000 7500000 | 15.0 91 %
SOCIAL orkut 3072441 | 117185083 | 76.3 91%
RANDOM ER-Gnm_1M-20 | 1000000 10000000 | 20.0 93 %
WORD-REL. Thesaurus 23132 297094 | 25.7 93 %

RESULTS

Some networks are very

close from cographs

Random graphs are never

A wide range of proximity :
12% to 93%

The proximity with cographs
highly depends on the

real-world context



Cograph edition of real-world graphs

Close to cographs

1 WWW
[ ] software

34

Context Network n m d° | %mod
WWW in-2004 1148875 12281937 | 21.4 12%
WWW cnr-2000 227058 2187201 | 19.3 19%
PROTEIN reactome 5973 145778 | 48.8 22 %
SOFTWARE jdk 6434 53658 | 16.7 29 %
SOFTWARE e 6120 50290 | 16.4 | 29%
WWW eu-2005 835044 15718784 | 37.7 29 %
CO-AUTHOR ca-GrQc 4158 13422 6.5 34%
CO-AUTHOR ca-HepPh 11204 117619 | 21.0 34 %
SPECIES foodweb 183 2434 | 26.6 43 %
CO-AUTHOR dblp 317080 1049 866 6.6 45 %
WORD-REL. wordnet 145145 656 230 9.0 48 %
COMMUNIC. wiki-Talk 2388953 4656 682 3.9 49%
CO-SOLD amazon 334863 925872 5.5 49 %
CO-AUTHOR ca-CondMat 21363 91 286 8.6 52%
RANDOM ER-Gnm_1M-2 796 208 958 827 DAk 52 %
CO-AUTHOR ca-HepTh 8638 24 806 5.7 54 %
INTERNET as2000 6474 12572 3.9 54 %
ROAD roadNet-TX 1351137 1879201 2.8 54 %
INTERNET as-caida2007 26475 53 381 4.0 55%
CO-AUTHOR ca-AstroPh 17903 196972 | 22.0 59 %
INTERNET topology 34761 107720 | 62| 61%
RANDOM ER-Gnm_1M-3 940987 1494643 3.2 63 %
INTERNET as-skitter 1694616 11094209 | 13.1 64 %
CO-OCCUR bible-names 1707 9059 | 10.6 67 %
PROTEIN figeys 2217 6418 5.8 67 %
CITATION-SCI. cora 23166 89157 7.7 68 %
SOCIAL youtube 1134890 2987624 5.3 69 %
CO-ACTOR actor-col. 374511 15014 839 | 80.2 71%
P2P-CONNECT. | p2p-Gnutella 62561 147878 4.7 1%
RANDOM ER-Gnm_1M-4 980191 1999203 4.1 71 %
CITATION-SCI. citeseer 365154 1721981 9.4 75 %
CITATION-PAT. | cit-Patents 3764117 16511740 8.8 76 %
SOFTWARE linux 30817 213208 | 13.8 77 %
SOCIAL LiveJournal 3997962 34681189 | 174 78 %
CITATION-SCI. cit-HepTh 27400 352021 | 25.7 79 %
RANDOM ER-Gnm_1M-6 997479 2999 988 6.0 79 %
CITATION-SCI. cit-HepPh 34401 420784 | 24.5 81 %
RANDOM ER-Gnm_1M-8 999 684 3999999 8.0 84 %
RANDOM ER-Gnm_1M-10 999952 5000000 | 10.0 87%
RANDOM ER-Gnm_1M-15 | 1000000 7500000 | 15.0 91 %
SOCIAL orkut 3072441 | 117185083 | 76.3 91%
RANDOM ER-Gnm_1M-20 | 1000000 10000000 | 20.0 93 %
WORD-REL. Thesaurus 23132 297094 | 25.7 93 %

The proximity with cographs
highly depends on the

real-world context



Cograph edition of real-world graphs

Not close not far

7 Internet

1 road

34

Context Network n m d° | %mod
WWW in-2004 1148875 12281937 | 21.4 12%
WWW cnr-2000 227058 2187201 | 19.3 19%
PROTEIN reactome 5973 145778 | 48.8 22 %
SOFTWARE jdk 6434 53658 | 16.7 29 %
SOFTWARE jung-j 6120 50290 | 16.4 29 %
WWW eu-2005 835044 15718784 | 37.7 29 %
CO-AUTHOR ca-GrQc 4158 13422 6.5 34%
CO-AUTHOR ca-HepPh 11204 117619 | 21.0 34 %
SPECIES foodweb 183 2434 | 26.6 43 %
CO-AUTHOR dblp 317080 1049 866 6.6 45 %
WORD-REL. wordnet 145145 656 230 9.0 48 %
COMMUNIC. wiki-Talk 2388953 4656 682 3.9 49%
CO-SOLD amazon 334863 925872 5.5 49 %
CO-AUTHOR ca-CondMat 21363 91 286 8.6 52%
RANDOM ER-Gnm_1M-2 796 208 958 827 DAk 52 %
CO-AUTHOR ca-HepTh 8638 24 806 5.7 54 %
INTERNET as2000 6474 112572 3.9 54 %
ROAD roadNet-TX 1L &1L 13T 1879201 2.8 54 %
INTERNET as-caida2007 26475 BEI3 4.0 55%
CO-AUTHOR ca-AstroPh 17903 196972 | 22.0 59 %
INTERNET EPEIE 34761 107720 | 6.2 | 61%
RANDOM ER-Gnm_1M-3 940987 1494643 3.2 63 %
INTERNET as-skitter 1694616 11094209 | 13.1 64 %
CO-OCCUR bible-names 1707 9059 | 10.6 67 %
PROTEIN figeys 2217 6418 5.8 67 %
CITATION-SCI. cora 23166 89157 7.7 68 %
SOCIAL youtube 1134890 2987624 5.3 69 %
CO-ACTOR actor-col. 374511 15014 839 | 80.2 71%
P2P-CONNECT. | p2p-Gnutella 62561 147878 4.7 1%
RANDOM ER-Gnm_1M-4 980191 1999203 4.1 71 %
CITATION-SCI. citeseer 365154 1721981 9.4 75 %
CITATION-PAT. | cit-Patents 3764117 16511740 8.8 76 %
SOFTWARE linux 30817 213208 | 13.8 77 %
SOCIAL LiveJournal 3997962 34681189 | 174 78 %
CITATION-SCI. cit-HepTh 27400 352021 | 25.7 79 %
RANDOM ER-Gnm_1M-6 997479 2999 988 6.0 79 %
CITATION-SCI. cit-HepPh 34401 420784 | 24.5 81 %
RANDOM ER-Gnm_1M-8 999 684 3999999 8.0 84 %
RANDOM ER-Gnm_1M-10 999952 5000000 | 10.0 87%
RANDOM ER-Gnm_1M-15 | 1000000 7500000 | 15.0 91 %
SOCIAL orkut 3072441 | 117185083 | 76.3 91%
RANDOM ER-Gnm_1M-20 | 1000000 10000000 | 20.0 93 %
WORD-REL. Thesaurus 23132 297094 | 25.7 93 %

The proximity with cographs
highly depends on the

real-world context



Cograph edition of real-world graphs

Far from cographs

34

] citation
[ social

Context Network n m d° | %mod
WWW in-2004 1148875 12281937 | 21.4 12%
WWW cnr-2000 227058 2187201 | 19.3 19%
PROTEIN reactome 5973 145778 | 48.8 22 %
SOFTWARE jdk 6434 53658 | 16.7 29 %
SOFTWARE jung-j 6120 50290 | 16.4 29 %
WWW eu-2005 835044 15718784 | 37.7 29 %
CO-AUTHOR ca-GrQc 4158 13422 6.5 34%
CO-AUTHOR ca-HepPh 11204 117619 | 21.0 34 %
SPECIES foodweb 183 2434 | 26.6 43 %
CO-AUTHOR dblp 317080 1049 866 6.6 45 %
WORD-REL. wordnet 145145 656 230 9.0 48 %
COMMUNIC. wiki-Talk 2388953 4656 682 3.9 49%
CO-SOLD amazon 334863 925872 5.5 49 %
CO-AUTHOR ca-CondMat 21363 91 286 8.6 52%
RANDOM ER-Gnm_1M-2 796 208 958 827 DAk 52 %
CO-AUTHOR ca-HepTh 8638 24 806 5.7 54 %
INTERNET as2000 6474 12572 3.9 54 %
ROAD roadNet-TX 1351137 1879201 2.8 54 %
INTERNET as-caida2007 26475 53 381 4.0 55%
CO-AUTHOR ca-AstroPh 17903 196972 | 22.0 59 %
INTERNET topology 34761 107720 | 62| 61%
RANDOM ER-Gnm_1M-3 940987 1494643 3.2 63 %
INTERNET as-skitter 1694616 11094209 | 13.1 64 %
CO-OCCUR bible-names 1707 9059 | 10.6 67 %
PROTEIN figeys 2217 6418 5.8 67 %
CITATION-SCI. cora, 23166 89157 7.7 68 %
SOCIAL youtube 1134890 2987624 5533 69 %
CO-ACTOR actor-col. 374511 15014 839 | 80.2 71%
P2P-CONNECT. | p2p-Gnutella 62561 147878 4.7 1%
RANDOM ER-Gnm_1M-4 980191 1999203 4.1 71 %
CITATION-SCI. citeseer 365154 1721981 9.4 75 %
CITATION-PAT. | cit-Patents 3764117 16511 740 8.8 76 %
SOFTWARE linux 30817 213208 | 13.8 77 %
SOCIAL LiveJournal 3997962 34681189 | 174 78 %
CITATION-SCI. cit-HepTh 27400 o2 5N 79%
RANDOM ER-Gnm_1M-6 997479 2999 988 6.0 79 %
CITATION-SCI. cit-HepPh 34401 420784 | 24.5 81 %
RANDOM ER-Gnm_1M-8 999 684 3999 999 8.0 84 %
RANDOM ER-Gnm_1M-10 999952 5000000 | 10.0 87%
RANDOM ER-Gnm_1M-15 | 1000000 7500000 | 15.0 91 %
SOCIAL orkut 3072441 | 117185083 | 76.3 91 %
RANDOM ER-Gnm_1M-20 | 1000000 10000000 | 20.0 93 %
WORD-REL. Thesaurus 23132 297094 | 25.7 93 %

The proximity with cographs
highly depends on the

real-world context
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‘ strongly structured ‘ random modifications

0 \ same
cographs . + " number as
obtained a ) in edition

from problem
edition

compare with the original
real-world network
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‘ strongly structured ‘ random modifications

N

global density
distances

degree distribution
local density
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global CC / real global CC
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‘ strongly structured ‘ random modifications
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‘ strongly structured ‘ random modifications

A

lobal densit
The cograph structure : gizt; CeinSI y
successfully captures v 4 oo
these properties egree distribution
" local density




‘ strongly structured ‘ random modifications

Sl

lobal i
The cograph structure : 3@2? C‘lins'ty
successfully captures v 4 oo
these properties egree |§ ribution
" local density

To complete the model

¢ Edit a real-world graph into a cograph
== °* Generate a Similar cotree
¢ Apply random modifications to the cograph

39



“Complete the modelling approach for cographs

“Consider other graph classes suitable for other kind of networks
® Chordal graphs — social networks, citations

¢ Related to planar graphs — internet, road networks

“Improve algorithms : complexity and quality

¢ edition instead of completion
¢ avoid incremental approach

40
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“ Modelling

“ Efficient encoding : space + query time

“ Analysis

* Global organization
¢ Specific roles

“ Algorithmic theory of almost structured graphs
== Take advantage of the proximity with a strongly structured graph
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