M1 Info - Systemes Complexes Avances

Cours 5 - Algorithmes de detection

de communautes
Girvan-Newman, Louvain, Leiden

Semestre Automne 2022-2023 - Université Cote D'azur

Christophe Crespelle
christophe.crespelle@univ-cotedazur.fr

DIGITAL SYSTEMS

UNIVERSITE .;. v
COTEDAZUR "+ . FORHUMANS

1/20

Communities in complex networks

What is a community ?
"Moral” definition
® A group of nodes that share something...
» People with a common interest
» Web pages with similar content
» Proteins realising a common function

2/20

Communities in complex networks

What is a community ?
"Moral" definition
® A group of nodes that share something...
» People with a common interest
» Web pages with similar content
» Proteins realising a common function

® .. that makes them be in relationship in the network !

Political blogs in US Languages in Belgium

2/20

Communities in complex networks

What is a community ?
Structural definition

® A highly connected group of nodes

3/20

Communities in complex networks

What is a community ?
Structural definition

® A highly connected group of nodes

> Density inside the community much higher than global density
of the network

3/20

Communities in complex networks

What is a community ?
Structural definition

® A highly connected group of nodes
> Density inside the community much higher than global density
of the network
> Only few edges toward the rest of the network

3/20

Types of structural communities

® Partition of the nodes into dense parts sparsely connected
between them

» High density inside communities
> Few edges between communities

4/20

Types of structural communities

® Partition of the nodes into dense parts sparsely connected
between them

» High density inside communities 0

> Few edges between communities O, o !
G

® Qverlapping communities J
A node can belong to several communities

» more realistic
» problem : how toiepﬂ.t.e communities ?

5/20

Types of structural communities

® Partition of the nodes into dense parts sparsely connected
between them

» High density inside communities
> Few edges between communities
® Qverlapping communities
A node can belong to several communities
> more realistic
» problem : how to separate communities ?
® Partition of the links

> a link belong to exactly one community
» a node can have links in different communities

6/20

Partition of the nodes

Various approaches, among them :
® random walks

® spectral methods

hierarchical clustering

divisive methods

® | ouvain, Leiden

7/20

Partition of the nodes

Various approaches, among them :
® random walks
® spectral methods
® hierarchical clustering

e divisive methods

oeiden

7/20

Partition of the nodes

Various approaches, among them :
® random walks

® spectral methods

hierarchical clustering

divisive methods

Louvain, Leiden

7/20

Divisive approach : Girvan & Newman 2002

The idea :
1. identify inter-community links

2. remove them

8/20

How to identify inter-community links ?

® Betweenness centrality of I|u+<s
> CB@ ‘Where

» o4 = # shortest paths from s to t
» o (e) = # shortest paths from s to t containing e

9/20

How to identify inter-community links ?

® Betweenness centrality of links
> Cgle) = 3 22 where

Tst
s#t
» o4 = # shortest paths from s to t
» o (e) = # shortest paths from s to t containing e
> high betweenness < e is on a high proportion of shortest

paths for a high proportion of pairs of nodes

9/20

How to identify inter-community links ?

® Betweenness centrality of links
> Cgle) = 3 22 where

Tst
s#t
» o4 = # shortest paths from s to t
» o (e) = # shortest paths from s to t containing e
> high betweenness < e is on a high proportion of shortest

paths for a high proportion of pairs of nodes

N

9/20

The algorithm (7)

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

10/20

The algorithm (7)

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

10/20

The algorithm (7)

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

> remove e from G

10/20

The algorithm (7)

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

> remove e from G

» update the connected components of G

10/20

The algorithm (7)

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

> remove e from G

» update the connected components of G

3. output the dendogram of G

10/20

The algorithm (?7)

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

> remove e from G

» update the connected components of G

3. output the dendogram of G

Silll
I

(e} D) O (
29 25 28 33 34 30 24 31 9 23 21 19 16 15 26 3

10/20

UL et s w
¢ Algo Girvan-Newman(G)

1. Compute the betweenness centrality of all links e of G)

. for al e in decreasing betweenness centrality do

» remove e from G M

M
(‘> update the connected components of G 0 ["i
» update the betweenness centrality of all links 0 (fLM\)

3. output the dendogram of G
2
0 (o a)
2
LS

i Ll

o) (
32925283334302431 9 232119161526322710 4142 1 8 2220181312717 6 5 11

10/20

The algorithm

¢ Algo Girvan-Newman(G)
1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do
> remove e from G
» update the connected components of G

> update the betweenness centrality of all links

3. output the dendogram of G

e Complexity
> betweenness for all links : O(nm)
> connected components : O(m)

» m iterations
> Overall :_ O(nm?)
S~—_

11/20

The Louvain algorithm

® |dea : optimize a quality function for node partitions

m

edges inside/~
ize(#edges inside
v

O - Btk

> modularity :maximize(
< maxim

12/20

The Louvain algorithm

® |dea : optimize a quality function for node partitions

> modularity :maximize(#edges inside - #edges outisde)
< maximize(#edges inside)

® Problem... the best partition is a single community ! ! !

12/20

The Louvain algorithm

® |dea : optimize a quality function for node partitions

Moé.@

> modularity :maximize(#edges inside - #edges outisde)
< maximize(#edges inside)

® Problem... the best partition is a single community ! ! !

e Correction : compare E&fﬂ:‘anndomized version of the network
(% =~ 4w b

configuration madel

original network

12/20

Modularity

original network configuration model

® Proportion of edges inside communities
A the adjacency matrix of G
ki the degree of node i
¢i the community of node i
d is the Kronecker symbol : d(ci, ¢j) =1 iff ¢i = ¢

13/20

Modularity

original network configuration model
® Proportion of edges inside communities

A the adjacency matrix of G
ki the degree of node i
¢i the community of node i

d is the Kronecker symbol o(ci,) :l iff ¢; = cJ 40 %

» In the original network : 2m @ where
VJE

13/20

Modularity

original network configuration model 2 A
® Proportion of edges inside communities

A the adjacency matrix of G] N~
ki the degree of node i \

¢i the community of node /
d is the Kronecker symbol : d(ci, ¢j) =1 iff ¢i = ¢ 2 m

o b A B
A’J\" -"'.‘7'
¢

13/20

Modularity

s"e ovs

original network configuration model
® Proportion of edges inside communities

A the adjacency matrix of G

ki the degree of node /i

¢i the community of node /

d is the Kronecker symbol : d(ci, ¢j) =1 iff ¢i = ¢

m .

> In the original network : 5= >~ A;d(c, ¢;) where
~icvy _———

> In the configuration model : ;L >° l;:j d(cis g)

ijev

® modularity : Q(P) =

13/20

Modularity

original network configuration model

® Proportion of edges inside communities
A the adjacency matrix of G
ki the degree of node i
¢i the community of node i
d is the Kronecker symbol : d(ci, ¢j) =1 iff ¢i = ¢

> In the original network : 5= >~ A;d(c;, ¢;) where

ijev
> In the configuration model : i > l;:; §(ci,)
ijev
- kk
® modularity : Q(P) = % S A - ﬁ](g(chcj)
ijev
1 2
= o5 2 lec — 3]
ceP

» NP-hard to maximize modularity
13/20

Utility of modularity

® Come back to the dendogram produced %y Girvan-Newman

I

—_—

\

O(ggOO oooo

3 29 2528 33 34 30 24 31 9 23 21 19 16 15 26 32 27 10 414 2 1 82220181312 7 17 6 5 11

14/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
M

o
<

15/20

Other quality functions

® Distance to cluster graphs
e —

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs

15/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs

® Constant Potts Model
> CPM(P)=>_[ec —@";)]
c
where e.=# edges inside communauty ¢

and n.=# nodes in communauty ¢
~ is a chosen constant <1

15/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs

e Constant Potts Model
> CPM(P)=3[ec —7(5)]
c
where e.=# edges inside communauty ¢
and n.=# nodes in communauty ¢

~ is a chosen constant <1
> fory=07

15/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs
e Constant Potts Model
> CPM(P)=3[ec —7(5)]
c

where e.=# edges inside communauty ¢

and n.=# nodes in communauty ¢

~ is a chosen constant <1
> fory=07
> fory=17

15/20

Other quality functions

® Distance to cluster graphs

> dist-cluster(P)=#missing edges inside + #£edges outside
» NP-hard to minimize distance to cluster graphs

® Constant Potts Model
> CPM(P)=3_[ec — ()]
c
where e.=# edges inside communauty ¢

and n.=# nodes in communauty ¢
~ is a chosen constant <1

> fory=07
> fory=17
> fory=1/27

15/20

Is modularity a good quality function?

® Resolution isgue : tends to make too large communities

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities

: ring of p copies of a k-clique (n = p.k)

Example

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities
Example : ring of p copies of a k-clique (n = p.k)

P, = the cliques

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities
Example : ring of p copies of a k-clique (n = p.k)

P, = the cliques
P, = the cliques grouped by two

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities
Example : ring of p copies of a k-clique (n = p.k)

P, = the cliques
P, = the cliques grouped by two

» Which one is "morally” the best community partition ?

16/20

Is modularity a good quality function?

® Resolution isuue : tends to make too large communities
Example : ring of p copies of a k-clique (n = p.k)

P, = the cliques
P, = the cliques grouped by two

» Which one is "morally” the best community partition ?
» Which one has higher modularity ?

16/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity

G (n=30,m=46)

17/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity

Obs. : non-neighbouring community is never the best

17/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

G (n=30,m=46)

17/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :
» place x alone in its own community
P consider moving x to each neighbourhing community

G (n=30,m=46)

17/20

Louvain algorithm 0 [,.,,)
® Given a partition, make a pass through all the vertices :

> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :
» place x alone in its own community
P consider moving x to each neighbourhing community

G (n=30,m=46)

17/20

Louvain algorithm

® Given a partition, make a pass through all the vertices :
> consider each vertex x once in an arbitrary order
» move x to the community that gives the largest increase in
modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :
» place x alone in its own community

» consider moving x _te-gach neighbourhing community
G (n=30,m=46) O /
0\ Aq 0 / ‘.

18/20

W

end

21 end

Louvain algorithm
; .dk‘,’.(a‘“obf)u"/" :

1 _augmented<— true;
hile augmented do

P(I)u;z a{j;rieln);etei ZéGW _,r&., 0{
\Jﬁggmented(— faux 96 M kw 0]

717//’1

or i de 1 a ndo

Qori — Q;

i moves to ciso = {i}; Q + Q — AQout(i);

Qmax < Q; Cmax < Ciso;

or c € P do 7

if Q-+ AQ,',,(C) > Qmax then)
Qmax +— Q + AQin(i7C); J-W M W ¢

— tq
Cmax < C;

end

nd
If Qmax = Qori then cmax < cori else augmented<«— true;

L i moves to Cmax; Q < Qmax;
nd

If P # Py then augmented < true; G < G/P;

22 return {Expand(P) | P € P};

19/20

Leiden algorithm

Two improvements over Louvain

e Complexity

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconnected (or poorly connected) communities

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice
® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community
> Place vertices alone in their own sub-community

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community

> Place vertices alone in their own sub-community
P> Merge sub-communities that are strongly connected

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community

> Place vertices alone in their own sub-community
P> Merge sub-communities that are strongly connected

» Contract only the obtained sub-communities

20/20

Leiden algorithm

Two improvements over Louvain

e Complexity
> Consider moving only vertices whose neighbours have moved
» Maintain a queue for them
> Same worst case complexity, but better in practice

® Disconnected (or poorly connected) communities
> Just before contracting communities, for each community
> Place vertices alone in their own sub-community
P> Merge sub-communities that are strongly connected
» Contract only the obtained sub-communities
> At the next step start from the partition defined by the whole
communities

20/20

