
Fully dynamic algorithm for recognition and

modular decomposition of permutation graphs

Christophe Crespelle Christophe Paul

CNRS - Département Informatique, LIRMM, Montpellier
{crespell,paul}@lirmm.fr

Abstract

This paper considers the problem of maintaining a compact repre-
sentation (O(n) space) of permutation graphs under vertex and edge
modifications (insertion or deletion). That representation allows us
to answer adjacency queries in O(1) time. The approach is based
on a fully dynamic modular decomposition algorithm for permutation
graphs that works in O(n) time per edge and vertex modification.
We thereby obtain a fully dynamic algorithm for the recognition of
permutation graphs.

1 Introduction

The dynamic recognition and representation problem (see e.g. [10]) for a fam-
ily F of graphs aims to maintain a characteristic representation of dynami-
cally changing graphs as long as the modified graph belongs to F . The input
of the problem is a graph G ∈ F with its representation and a series of mod-
ifications. Any modification is of the following: inserting or deleting a vertex
(along with the edges incident to it), inserting or deleting an edge. Several
authors have considered the dynamic recognition and representation problem
for various graph families. [8] devised a fully dynamic recognition algorithm
for chordal graphs which handles edge operations in O(n) time. For proper
interval graphs [7], each update can be supported in O(d+log n) time where
d is the number of edges involved in the operation. Cographs, a subfamily
of permutation graphs, have been considered in [10] where any modification
(edge or vertex) is supported in O(d) time, where d is the number of edges
involved in the modification. This latter result has recently been generalised
to directed cographs in [3].

1

This paper deals with the family of permutation graphs. Our algorithm
maintains an O(n) space canonical representation based on modular decom-
position which enables us to answer adjacency queries in O(1) time. It should
be noted that in [9] a purely incremental algorithm is presented for comput-
ing the modular decomposition tree of any graph. It runs in O(n) time per
vertex insertion. Unfortunately, it is based on a partial representation of
the graph compromising the possibility of any vertex deletion. Therefore
such an algorithm cannot be applied for efficient fully dynamic recognition
of permutation graphs. Our algorithm also performs in O(n) time per oper-
ation, but supports insertion as well as deletion of vertices and edges. Let us
note that a modification of the input graph may lead to O(n) changes in the
modular decomposition tree. Therefore our algorithm does not present any
complexity extra cost in the maintain of the modular decomposition tree.

2 Preliminaries

2.1 Modular decomposition

Theory of modular decomposition of graphs has been widely developed since
Gallai first introduced it in [5]. Here, we give some known definitions and
results that we use in the following. Let G = (V,E) be a graph. The
neighbourhood of a vertex x ∈ V is denoted N(x) and its non-neighbourhood
N(x). A subset S (V of vertices is uniform w.r.t. to vertex x ∈ V \ S if
S ⊆ N(x) or S ⊆ N(x) (otherwise S is mixed). A module of a graph
G = (V,E) is a subset of vertices M ⊆ V which is uniform w.r.t. any
vertex x ∈ V \ M . It also follows from definition that V and {x}, x ∈ V are
modules of G, namely the trivial modules. A graph is prime if all its modules
are trivial. A module M is strong if it does not overlap any module M ′, that
is M ∩M ′ = ∅ or M ⊆ M ′ or M ′ ⊆ M . Therefore, the inclusion order of the
strong modules of a graph defines a tree, called the modular decomposition
tree T . The leaves of T correspond to the singleton vertex sets of G (Lx

stands for {x}) and its root is the whole vertex set of G. In the following, a
node p of the modular decomposition tree could be identified with the strong
module P = V (p) it represents. Denoting Tp the subtree of T rooted at p, P
is the set of leaves of Tp. C(p) is the set of children in T of p.

Thanks to the well-known modular decomposition theorem (see [1] for
references), any non-leaf node p of the modular decomposition tree is labelled
as follows: parallel if G[P] is not connected; series if G[P] is not connected;
and prime otherwise (the three cases are disjoint). The label of node p is
denoted label(p). The series and parallel nodes are also called degenerate

2

nodes. We call maximal strong modules of a graph G = (V,E) the strong
modules of G maximal wrt. inclusion and distinct from V . It is well known
that the children p1 . . . pk of p (i.e. the maximal strong modules of G[P]) are
respectively in the parallel case, the connected components of G[P], in the
series case the co-connected components of G (i.e. the connected components
of G[P]) and in the prime case, the maximal modules of G[P] distinct from P .
Given a graph G, we denote MSM(G) the set of maximal strong modules
of G.

Given a set F of disjoint modules, let F ⊆ V be a set of vertices such
that for any M ∈ F , |F ∩M | = 1. The quotient graph G/F is the subgraph
induced by the vertices of (V \ ∪M∈FM) ∪ F . From the modular decompo-
sition theorem, the quotient G/MSM(G) of G by the set of its maximal
strong modules is either a stable (parallel case) or a clique (series case) or a
prime graph. If with each prime node p of the modular decomposition tree
T , we associate a representation of the quotient G[P]/MSM(G[P]), then
adjacency queries between any pair of vertices x, y can be answered by a
search in T and in the quotient graphs.

2.2 Permutation graphs

If π is a linear order on the vertices, π(x) denotes the rank of vertex x in π
while π−1(i) is the vertex at rank i. Permutation graphs are those graphs for
which there exists a pair (π1, π2) of linear order on the vertex set such that
x and y are adjacent iff π1(x) < π1(y) and π2(y) < π2(x). For a graph G,
such a pair R = (π1, π2) is a realiser of G. If π2 denotes the reverse order
of π1, then R = (π1, π2) is a realiser of G. It is known that, if G is a prime
graph, then its realiser is unique up to reversal and exchange1 (the reader
should refer to [6, 1] for more details on permutation graphs). Moreover, a
graph G is a permutation graph iff the quotient graphs associated with the
prime nodes of its modular decomposition tree are permutation graphs. It
follows that associating the modular decomposition tree T with the realiser
of each of its prime nodes provides an O(n) space canonical representation
of a permutation graph G, called hereafter the full modular representation of
G.

Since the full modular representation contains a realiser for each prime
node of T , it is well known that a realiser of the whole graph G can be
retrieved in O(n) time by a simple search of T . As our dynamic algorithm
works in O(n) time per operation, a realiser of G can be maintained without
any extra cost. That guarantees the possibility of answering at any time

1that is (π2, π1), (π1, π2) and (π2, π1) are considered as the same realiser as (π1, π2).

3

adjacency queries in O(1) time.
An interval of a linear order π on V is a set of consecutive elements of

V in π. Given a pair (π1, π2) of linear orders, a common interval is a set
I that is an interval of π1 and of π2. Recently, [11] proposed an O(n + K)
algorithm computing all common intervals of a pair of linear orders, K being
the number of common intervals. A common interval is strong if it does not
overlap any other common interval. Clearly common intervals of a realiser
R = (π1, π2) of a permutation graph G are modules of G. The converse is
false, but:

Proposition 1 [4] The strong modules of a permutation graph G = (V,E)
are exactly the strong common intervals of any of its realiser R.

2.3 Dynamic arc operations

Unfortunately an edge modification may imply O(n) changes in the modular
decomposition tree. As we propose an O(n) time algorithm for the vertex
insertion and for the vertex deletion operations, inserting or deleting an edge
e incident to vertex x will be handled by first removing x and then re-inserting
x with the updated neighbourhood.

3 Vertex deletion

Let G′ = G− x be the graph resulting from the deletion of a vertex x in the
graph G. Since the family of permutation graphs is hereditary, removing x
reduces to compute the full modular representation of G′ from the one of G.
We shall distinguish the case where p, the parent node of x in T , is a prime
node from the case where p is a degenerate node.

3.0.1 Degenerate case.

This is the easy case to handle. If x has at least two siblings, then the leaf
Lx is removed from T . Assume x has only one sibling say q2. If q2 is a leaf,
Lx and p are removed from T and q2 becomes a child of q1 replacing p (i.e.
if q1 is a prime node, then q2 takes the place of p in the associated realiser).
Assume q2 is a non-leaf node. If q1 and q2 are both series nodes or both
parallel nodes, then Lx, p and q2 are removed from T and the children of
q2 are made children of q1. Otherwise Lx and p are removed from T and
q2 becomes a child of q1 replacing p. Such an update of the full modular
representation can be done in O(|C(q2)|) = O(n) since it leaves unchanged
the quotient graphs of the prime nodes.

4

3.0.2 Prime case.

The removal of x may create some modules in G′[P ′] (where P ′ = P \ {x}).
We show it can be tested in O(n) time. Moreover if G′[P ′] is not a prime
graph, the updated full modular representation can be computed within the
same complexity.

Lemma 1 Let G = (V,E) be a prime permutation graph and x be a vertex.
The non trivial strong modules of G′ = G − x can be partitioned in two
families (possibly empty) totally ordered by inclusion.

This is a consequence of Proposition 1 which implies that if R = (π1, π2)
is the realiser of G, then for any strong module M ′ of G′, I = M ′ ∪{x} is an
interval of π1 or π2. Therefore G′ contains O(n) strong modules. Moreover,
as there is at most two non-trivial maximal strong modules, the root of the
modular decomposition tree T ′ of G′ has at most two non-leaf children, and
each internal nodes of T ′ have at most one non-leaf child. The next lemma
complete the information about degenerate internal nodes of T ′.

Lemma 2 Let G = (V,E) be a prime permutation graph and x be a vertex.
Every degenerate node of the modular decomposition tree of G′ = G − x has
at most two children which are leaves.

It follows that the number of modules (not necessarily strong) of G′ is
O(n) so there is also O(n) common intervals of the realiser R′ of G′. Therefore
applying [11]’s algorithm will cost O(n) time to find the common intervals
of R′. From that algorithm the two families of strong common intervals
(or equivalently modules) can be retrieved in O(n) time. Moreover from
Lemma 2 given a common interval it is possible to find its label (series,
parallel or prime) in O(1) time. As the realiser of each prime node of T ′

can be easily extracted from R, the full modular representation of G′ can be
computed in O(n).

Theorem 1 Updating the full modular representation of a permutation graph
under vertex deletion costs O(n) time.

4 Vertex insertion

Given a graph G = (V,E), a vertex x 6∈ V and a subset N(x) ⊆ V , let
us define G′ = G + x as the graph on vertex set V ∪ {x} with edge set
E ∪ {{x, y} | y ∈ N(x)}). Each node p of the modular decomposition tree

5

T of G is assigned a type w.r.t. x : linked (resp. notlinked) if P = V (p)
is uniform w.r.t. x and P ⊆ N(x) (resp. P ⊆ N(x)), and mixed otherwise.
Cl(p) (resp. Cnl(p)) stands for the set of children of p which are typed linked
(resp. notlinked) and Cm(p) for the set of children of p which are typed
mixed. For t ∈ {m, l, nl}, we denote Ft(p) =

⋃
f∈Ct(p)

V (f).

4.1 Modular decomposition tree of G + x

4.1.1 Insertion node.

To compute the modular decomposition tree T ′ of G′ = G + x, we can
restrict our attention to a subtree Tq of T rooted at a certain node q, called
the insertion node. q is such that Tq contains all the modifications implied
by the insertion of x. Moreover, in T ′, x will be inserted as a child or a
grand-child of node q′ representing set Q′ = Q ∪ {x}. The discussion bellow
gives the definition of q and shows that inserting x in G reduces to insert x
in G[Q].

Definition 1 A node p of T is a proper node iff either p is uniform wrt.
x, or p is a mixed node with a unique mixed child f such that F ∪ {x} is a
module of G′[P ∪ {x}]. Otherwise p is a non-proper node.

From Definition 1, any mixed node p has at least one non-proper de-
scendant. Indeed p always enjoys a mixed descendant having only uniform
children. It follows that if any node of T is proper, then the vertex set is
uniform w.r.t. x. That is x is either a universal vertex or an isolated vertex.
Therefore inserting x preserves the property of being a permutation graph
and the full modular representation is easy to update. That case will not be
considered anymore in the following.

Definition 2 The insertion node q is the lca of non-proper nodes of T .

Lemma 3 The insertion node q is such that Q′ = Q∪{x} is a strong module
of G′ = G + x.

Since Q is a strong module of G and Q′ = Q ∪ {x} is a strong module
of G′ = G + x, then G′/{Q′} = G/{Q}. That is the changes implied by the
insertion of x are located in Tq. Moreover, the permutation graphs family is
hereditary and closed under substitution, it follows that:

Lemma 4 G′ = G + x is a permutation graph iff G′[Q′] = G[Q] + x is a
permutation graph.

From Lemma 4 and the discussion above, we conclude that inserting x in
G reduces to insert x in G[Q].

6

4.1.2 Modular decomposition tree of G′[Q′].

As the insertion node q is non-proper, it can either be: 1) a degenerate node
with no mixed child but with uniform children of both types (i.e. linked and
notlinked); or 2) a degenerate node with at least one mixed child; or 3) a
prime node with no mixed child but a child being a twin of x in the quotient
of q; or 4) a prime node with no child being a twin of x in the quotient of q.
In cases 1) and 3), q is said to be cut (and uncut in cases 2) and 4)).

The case where the insertion node is a cut degenerate node (case 1)
above) is similar to the case, considered by [2], of maintaining the modular
decomposition tree of a cograph under vertex insertion. If q is a series (resp.
parallel) node, the root q′ of T ′

q′ is a series (resp. parallel) node. The children
of q′ are those children of q typed linked (resp. notlinked) and a new parallel
node q′1. The children of q′1 are {x} and the remaining children of q, i.e. those
typed notlinked (resp. linked).

The case where the insertion node is a cut prime node (case 3) above) is
quite easy to deal with. In the children of q, the twin f of x is replaced by a
new degenerate node q1 (i.e. q1 takes the place of f in the realiser of q). The
label of q1 is series if f is typed linked, and parallel if f is typed notlinked.
x and f are made children of q1.

Let us now consider the case where the insertion node q is uncut. Let
us define the vertex set Qs as the set Q if q is a prime node and as the set
Fm(q) ∪ Fnl(q) (resp. Fm(q) ∪ Fl(q)) if q a series node (resp. parallel node).
The modular decomposition tree T ′

q′ of G′[Q′] is organised as follows. If q is a
prime node, then q′ represents the nodes of Q′

s = Qs∪{x}. If q is degenerate,
then q′ is degenerate and has the same label than q. If q is a series (resp.
parallel) node, then the set of children of q′ is {q′s}∪Cl(q) (resp. {q′s}∪Cnl(q))
where q′s is a new node representing vertices of Q′

s. Theorem 2 states on the
modular decomposition of G′[Q′

s].
Theorem 2 Let x be a vertex to be inserted in a graph G. If the insertion
node q of the modular decomposition tree T of G is uncut, then G′[Q′

s] is
connected and co-connected. And the maximal strong modules of G′[Q′

s] are
{x} and the maximal uniform (w.r.t. x) modules of G[Qs].

Notice that the modular decomposition tree of G′[M], where M is a max-
imal uniform module of G[Qs], is the part of T restricted to M . Therefore
the whole modular decomposition tree T ′ of G′ follows from discussion above.

4.2 Dynamic characterisation of permutation graphs

As we ask G′ to be a permutation graph, the mixed nodes of Tq cannot be
spread anywhere in the tree. Lemma 5 claims that there are at most two

7

Cl(q) Cm(q)

label(q) = series label(q′) = series

label(q′s) = prime

LxM1 Mk

Cl(q)

+x

Cnl(q)....

Cnl(q)

Figure 1: Updating the modular decomposition tree when the insertion node
is a series node. The modules M1 . . . Mk are the maximal uniform modules
of G[Qs]

branches of mixed nodes in Tq beginning at q. These two branches correspond
to the two families of Lemma 1.

Lemma 5 If G′ is a permutation graph then the insertion node q has at most
two mixed children and any node p 6= q of Tq has at most one mixed child.

Unfortunately, Lemma 5 is not a sufficient condition for G′ being a
permutation graph. Theorem 3 gives necessary and sufficient conditions.
Given a graph G = (V,E), S (V and y ∈ V \ S, we denote G − yS =
(V , E \ {{y, z} | z ∈ S}). If p is a node of Tq, then set P ′ = P ∪ {x}. Since
the maximal strong modules of G[P] are uniform wrt. x in G′[P ′]− xFm(p),
they are modules of G′[P ′] − xFm(p). We denote

G̃′
p = (G′[P ′] − xFm(p))/(MSM(G[P]) ∪ {{x}}).

Theorem 3 Let x be a vertex to be inserted in a permutation graph G. Then
G′ = G + x is a permutation graph iff either the insertion node q of the
modular decomposition tree T of G is cut; or if q is uncut then:

1. q satisfies one of the following conditions :

(a) q has two mixed children f1 and f2, and G̃′
q is a permutation

graph admitting a realiser R = (π1, π2) such that x and f1 are
consecutive in π1, and x and f2 are consecutive in π2.

(b) q has a unique mixed child f1, and G̃′
q is a permutation graph ad-

mitting a realiser R = (π1, π2) such that x and f1 are consecutive
in π1.

(c) q has no mixed child and G̃′
q = G′[P ′]/(MSM(G[P])∪{{x}}) is

a permutation graph.

8

2. and any node p 6= q of Tq satisfies one of the two following conditions :

(a) p has a unique mixed child f1, and G̃′
p is a permutation graph ad-

mitting a realiser R = (π1, π2) such that x and f1 are consecutive
in π1, and x is the first element of π2.

(b) p has no mixed child, and G̃′
p is a permutation graph admitting a

realiser R = (π1, π2) such that x is the first element of π2.

Due to space limitation, we only prove that the above conditions are suffi-
cient.
Proof: ⇐: We first show by induction that any node p of Tq different from
q is such that G′[P ′] is a permutation graph admitting a realiser R such
that x is the first element of π2. If p is a leaf of Tq, it trivially satisfies the
inductive hypothesis. Let p 6= q be a node of Tq such that its children satisfy
the inductive hypothesis. If p has a unique mixed child f1, it satisfies con-
dition 2a of Theorem 3. According to the inductive hypothesis, G′[F ′

1] is a
permutation graph and admits a realiser R1 = (τ1, τ2) such that x is the first
element of τ2. To obtain a realiser of G′[P ′]/(MSM(G[P])\{F1}) such that

x is the first element of π2, the realiser R = (π1, π2) of G̃′
p is modified as

follows: in π1, substitute τ1 for the interval {x, f1}; and in π2 substitute, τ2

restricted to F1 for f1. Composing the resulting realiser with the realisers of
the (G[F])f∈C(p)\{f1}, we obtain a realiser of G′[P ′] which satisfies the induc-
tive hypothesis. The case where p has no mixed child follows as a particular
case of the previous one. This ends the induction.

If q has two mixed children f1 and f2, it satisfies condition 1a of Theorem
3. By the previous induction G′[F ′

1] and G′[F ′
2] are permutation graphs.

They respectively admit a realiser R1 = (τ1, τ2) and R2 = (σ1, σ2) such
that x is the first element of τ2 and σ2. In the realiser R = (π1, π2) of

G̃′
q, if f2 occurs after f1 in π2, we reverse both orders of R1, and if f2

occurs before f1 in π1, we reverse both orders of R2. To obtain a realiser of
G′[Q′]/(MSM(G[Q]) \ {F1, F2}), R is modified as follows: in π1, substitute
τ1 for the interval {x, f1}, and σ2 restricted to F2 for f2; and in π2, substitute
σ1 for the interval {x, f2}, and τ2 restricted to F1 for f1. Composing the
resulting realiser with the realisers of the (G[V (f)])f∈C(p)\f1,f2

, we obtain a
realiser of G′[Q′]. We therefore prove that G′[Q′] is a permutation graph. By
Lemma 4 we can conclude that G is a permutation graph. The cases where
p has a single or no mixed child follow as a particular cases of the above
discussion. 2

9

4.3 Algorithm and complexity

4.3.1 Data-structure.

The realiser R = (π1, π2) associated with a prime node p of the modular
decomposition tree will be stored in two doubly linked lists representing the
two linear orders π1 and π2. Each cell of a list represents a child c of p.
There are two symmetric pointers between c and the cell. Moreover each cell
contains its rank in the list (namely π1(c) or π2(c)).

4.3.2 Routine InsPrime.

As a prime permutation graph G has a unique realiser R = (π1, π2), G+x is
a permutation graph iff x can be inserted in R. Routine InsPrime performs,
if possible, that insertion.

Lemma 6 Let R = (π1, π2) be the realiser of a prime permutation graph G
and x /∈ V a vertex to be inserted. G + x is a permutation graph iff N(x)
and N(x) can be respectively partitioned into N1(x), N2(x) and N1(x), N2(x)
such that:

∀u1 ∈ N1(x) ∪ N1(x), v1 ∈ N2(x) ∪ N2(x), u1 <π1
v1

∀u2 ∈ N2(x) ∪ N1(x), v2 ∈ N1(x) ∪ N2(x), u2 <π2
v2

An initial common interval of a realiser R = (π1, π2) is a common interval
of R containing both π−1

1 (1) and π−1
2 (1). In order to find the partitions of

N(x) and N(x) satisfying Lemma 6, Routine InsPrime makes use of the
next corollary.

Corollary 1 If N1(x) 6= ∅ (resp. N1(x) 6= ∅) then N1(x) is an initial
common interval of R[N(x)] (resp. R[N(x)]), the restriction of R to N(x)
(resp. N(x)).

Notice that an initial common interval of R[N(x)] defines a partition
N1(x), N2(x) of N(x) (and similarly for N(x)). The number of initial com-
mon intervals of a realiser is O(n).

Routine InsPrime computes in O(n) time the sets of initial common
intervals of R[N(x)] and of R[N(x)]. Then, it checks if there exists a pair
of partitions N1(x), N2(x) and N1(x), N2(x) satisfying Lemma 6. Testing a
given pair of partitions can be done in O(1) time by comparing the ranks
of the last elements of N1 (resp. N2) and N1 in π1 (resp. π2) with ranks of

10

the first elements of N2 (resp. N1) and N2. Scanning π1, a pair of partitions
satisfying the condition of Lemma 6 can be found in O(n) time.

Notice that G′ = G + x may not be prime. If it is the case, then x has a
twin vertex in G′ (i.e. a vertex y s.t. N(y) \ {x} = N(x) \ {y}). As {x, y} is
therefore a strong module of G′, by Proposition 1, x and y are consecutive in
both linear orders of the realiser of G′. It follows that testing the existence
of a twin can be done in O(1) time if x has been inserted.

To summarise, if G+x is a permutation graph, then in O(n) time, Routine
InsPrime returns a pair of doubly linked lists, the realiser of G + x, and
outputs the twin of x if it exists. Notice that the ranks of the cells are not
maintained in these lists.

4.3.3 The typing routine.

In a bottom-up process, each node p of T receives a type (linked, notlinked or
mixed). A leaf Ly of T is typed linked if y ∈ N(x) and notlinked otherwise.
The type of an inner node p of T depends on the types of its children. If
the children of p all have the same type, p inherits that type, otherwise p is
typed mixed. Since the number of nodes in T is O(n), the typing routine
runs in O(n) time.

4.3.4 Finding the insertion node q.

The purpose of this step is to find the insertion node q, in the case where
the root r of T is typed mixed. By Lemma 2, q is the lca of the non-proper
nodes of T . Any node p of the unique path between r and q is mixed and
proper if p 6= q. Since, by Definition 1, any proper mixed node has a unique
mixed child, finding the insertion node can be done by a top-down search of
the modular decomposition tree T . The search stops when the current node
p is non-proper, which can be tested as follows. If p is a series node (resp.
parallel node), then p is proper iff all its children but one are typed linked
(resp. notlinked) and the remaining child is mixed. If p is a prime node, p is
proper iff x has a twin in the quotient of p, which can be checked by Routine
InsPrime. In both cases, testing whether p is a proper node can be done in
O(|C(p)|). As T contains O(n) nodes, the search finds the insertion node q
in O(n) time.

4.3.5 Maintaining the full modular representation.

We now determine if G′[Q′] is a permutation graph or not, and in the positive,
update its full modular representation (i.e. its modular decomposition tree
and the realisers of the prime nodes).

11

x f1Cl(p) Cnl(p)

π2 x f1Cnl(p) Cl(p)

π1

Figure 2: The unique realiser of G̃′
p (if p is a series node) that fulfils condition

2a of Theorem 3. For a parallel node p, Cnl(p) and Cl(p) has to be exchanged
in π2.

If the insertion node q has more than two mixed children, from Lemma 5,
G′[Q′] is not a permutation graph: the algorithm stops. If q is cut, from
earlier discussion G′[Q′] is always a permutation graph (see Section 4.1). In
that case, the realisers of the prime nodes are not modified. Therefore T ′

q′ can
be computed in O(|C(q)|) as described in Section 4.1. When q is uncut, the
nodes of Tq have to fulfil the conditions stated in Theorem 3. To simplify the
presentation, let us present our algorithm as three-step process. But notice
in practice these three steps can be merged into a single one.

• For each node p of Tq, we check whether p fulfils the condition of The-
orem 3. If p is a degenerate node having the right number of mixed
children (0, 1 or 2 depending on p = q), then G̃′

p always enjoys a re-
aliser satisfying Theorem 3 (see Figure 2). If p is prime, using Routine
InsPrime, we insert x in the realiser associated to p by making x ad-
jacent to Cl(p) and non-adjacent to Cm(p) ∪ Cnl(p). There may be two
different positions to insert x (only if has a twin vertex). We then test
if at least one of the possible positions fulfils the conditions of Theo-
rem 3 which simply consists in testing the position of x in the realiser
returned by InsPrime (extremity in an order and/or consecutiveness
with the mixed children). That can be done in O(1). Since we handle
only the quotients of the nodes p of Tq, each of which being processed
in O(|C(p)|) time, this first steps runs in O(n) time.

• Theorem 2 states that the maximal strong modules of G′[Q′
s] are {x}

and the maximal uniform modules of G[Qs]. These maximal uniform
modules can be found in O(n) time by a search in Tq since M is a
maximal uniform module iff there exists a mixed node p descendant of
the insertion node q such that either p is degenerate and M = Fl(p) or
M = Fnl(p); or p is prime and M is the vertex set of some uniform child
of p. By Theorem 2, these modules will be represented by the children
nodes of the new prime node q′s. Recall that the modular decomposition
tree of G′[M] is inherited from the modular decomposition tree T of G.

12

• The last step computes the realiser Rs of the quotient of G′[Q′
s] by

its maximal strong modules. Notice that in the intermediate realisers
computed along the process, the ranks of the cells in the lists are not
maintained.

To that aim, we applied the bottom-up process, described in the proof
of Theorem 3, on the modular decomposition tree T where each maxi-
mal uniform module has first been contracted into a single vertex (i.e.
replaced by a leaf in the tree T). For a prime mixed node p, the re-

aliser of G̃′
p is given by Routine InsPrime. For a degenerate node p,

the realiser of G̃′
p is the one depicted in Figure 2. As the realisers are

encoded by pairs of doubly linked lists, the substitution operation used
in the proof of Theorem 3 can be done in O(1) time. It follows that
the realiser Rs can be computed in O(n) time.

Finally to maintain the data-structure, a scan of the lists of Rs allows
to get the ranks of the cells.

Theorem 4 Updating the full modular representation of a permutation graph
under vertex insertion costs O(n) time.

References

[1] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: a Survey.
SIAM Monographs on Discrete Mathematics and Applications. Society
for Industrial and Applied Mathematics, 1999.

[2] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear time recognition
algorithm for cographs. SIAM Journal on Computing, 14(4):926–934,
1985.

[3] C. Crespelle and C. Paul. Fully-dynamic recognition algorithm and
certificate for directed cographs. In 30th Int. Workshop on Graph Theo-
retical Concepts in Computer Science (WG04), number 3353 in Lecture
Notes in Computer Science, pages 93–104, 2004.

[4] F. de Montgolfier. Décomposition modulaire des graphes - Théorie, ex-
tensions et algorithmes. PhD thesis, Université de Montpellier 2, France,
2003.

[5] Tibor Gallai. Transitiv orientierbare graphen. Acta Math. Acad. Sci.
Hungar., 18:25–66, 1967.

13

[6] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect
Graphs. Academic Press, New York, 1980.

[7] P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for rec-
ognizing and representing proper interval graphs. SIAM Journal on
Computing, 31(1):289–305, 2002.

[8] L. Ibarra. Fully dynamic algorithms for chordal graphs. In 10th ACM-
SIAM Annual Symposium on Discrete Algorithm (SODA’03), pages
923–924, 1999.

[9] J.H. Muller and J.P. Spinrad. Incremental modular decomposition algo-
rithm. Journal of the Association for Computing Machinery, 36(1):1–19,
1989.

[10] R. Shamir and R. Sharan. A fully dynamic algorithm for modular de-
composition and recognition of cographs. Discrete Applied Mathematics,
136(2-3):329–340, 2004.

[11] Takeaki Uno and Mutsunori Yagiura. Fast algorithms to enumerate all
common intervals of two permutations. Algorithmica, 26(2):290–309,
2000.

14

