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Abstract. An intense activity is nowadays devoted to the definition of
models capturing the properties of complex networks. Among the most
promising approaches, it has been proposed to model these graphs via
their clique incidence bipartite graphs. However, this approach has, until
now, severe limitations resulting from its incapacity to reproduce a key
property of this object: the overlapping nature of cliques in complex net-
works. In order to get rid of these limitations we propose to encode the
structure of clique overlaps in a network thanks to a process consisting
in iteratively factorising the maximal bicliques between the upper level
and the other levels of a multipartite graph. We show that the most nat-
ural definition of this factorising process leads to infinite series for some
instances. Our main result is to design a restriction of this process that
terminates for any arbitrary graph. Moreover, we show that the resulting
multipartite graph has remarkable combinatorial properties and is closely
related to another fundamental combinatorial object. Finally, we show
that, in practice, this multipartite graph is computationally tractable
and has a size that makes it suitable for complex network modelling.

1 Introduction

It appeared recently [10, 1, 3] that most real-world complex networks (like
the internet topology, data exchanges, web graphs, social networks, or bi-
ological networks) have some non-trivial properties in common. In partic-
ular, they have a very low density, low average distance and diameter, an
heterogeneous degree distribution, and a high local density (usually cap-
tured by the clustering coefficient [10]). Models of complex networks aim
at reproducing these properties. Random 4 graphs with given numbers of

4 In all the paper, random means uniformly chosen in a given class.



vertices and edges [4] fit the density and distance properties, but they have
homogeneous degree distributions and low local density. Random graphs
with prescribed distributions [9] and the preferential attachment model
[2] fit the same requirement, with the degree distribution in addition,
but they still have a low local density. As these models are very sim-
ple, formally and computationnaly tractable, and rather intuitive, there
is nowadays a wide consensus on using them.

However, when one wants to capture the high local density in addition
to previous properties, there is no clear solution. In particular, we are un-
able to construct a random graph with prescribed degree distribution and
local density. As a consequence, many proposals have been made, e.g. [10,
3, 7, 6] , each with its own advantages and drawbacks. Among the most
promising approaches, [6, 7] propose to model complex networks based
on the properties of their clique incidence bipartite graph (see definition
below). They show that generating bipartite graphs with prescribed de-
gree distributions for bottom and top vertices and interpreting them as
clique incidence graphs results in graphs fitting all the complex network
properties listed above, including heterogeneous degree distribution and
high local density.

However, the bipartite model suffers from severe limitations. In par-
ticular, it does not capture overlap between cliques, which is prevalent in
practice. Indeed, as evidenced in [6, 8], the neighbourhoods of vertices in
the clique incidence bipartite graph of a real-world complex network gen-
erally have significant intersections: cliques strongly overlap and vertices
belong to many cliques in common. On the opposite, when one gener-
ates a random bipartite graph with prescribed degree distributions, the
obtained bipartite graph have much smaller neighbourhood intersections,
almost always limited to at most one vertex (under reasonable assump-
tions on the degree distributions). Indeed, the process of generation based
on the bipartite graph is equivalent to randomly choosing sets of vertices
of the graph (with prescribed size distribution) that we all link together.
Because of the constraints imposed on this size distribution by the low
density of the graph , the probability of choosing several vertices in com-
mon between two such random sets tends to zero when the graph grows.
As a consequence, the bipartite model fails in capturing the overlapping
nature of cliques in complex networks. This leads in particular to graphs
which have many more edges than the original ones (two cliques of size
d lead to d.(d − 1) edges in the model graph, while the overlap between
cliques make this number much smaller in the original graph).



Our contribution Since the random generation process of the bipar-
tite graph is not able to generate non-trivial neighbourhood intersections
(that is having cardinality at least two), a natural direction to try to
solve this problem consists in using a structure explicitly encoding these
intersections. This can be done using a tripartite graph instead of a bi-
partite one: one may encode any bipartite graph B = (⊥,⊤, E) into a
tripartite one T = (⊥,⊤, C, E′) where C is the set of non-trivial maximal
bicliques (complete bipartite graphs having at least two bottom vertices
and two top vertices) of B and E′ is obtained from E by adding the edges
between any biclique c in C and all the vertices of B which belong to c

and removing the edges between vertices of C. This process, which we
call factorisation, can be iterated to encode any graph in a multipartite
one where there are hopefully no non-trivial neighbourhood intersections.

In this paper, we show that this iterated factorising process do not
end for some graphs. We then introduce variations of this base process
and study them with regard to termination issue. Our main result is the
design of such a process, which we call clean factorisation, that terminates
on any arbitrary graph. In addition, we show that the multipartite graph
on which terminates this process has remarkable combinatorial properties
and is strongly related to a fundamental combinatorial object. Namely,
its vertices are in bijection with the chains of the inf-semilattice of inter-
sections of maximal cliques of the graph. Finally, we give an upper bound
on the size and computation time of the graph on which terminates the it-
erated clean factorising process of G, under reasonable hypothesis on the
degree distributions of the clique incidence bipartite graph of G; therefore
showing that this multipartite graph can be used in practice for complex
network modelling.

Outline of the paper We first give a few notations and basic definitions
useful in the whole paper. We then consider the most immediate general-
isation of the bipartite decomposition (Section 2) and show that it leads
to infinite decompositions in some cases. We propose a more restricted
version in Section 3, which seems to converge but for which the question
remains open. Finally, we propose another restricted version in Section 4
for which we prove that the decomposition scheme always terminates.

Notations and preliminary definitions All graphs considered here
are finite, undirected and simple (no loops and no multiple edges). A
graph G having vertex set V and edge set E will be denoted by G =



(V, E). We also denote by V (G) the vertex set of G. The edge between
vertices x and y will be indifferently denoted by xy or yx.

A k-partite graph G is a graph whose vertex set is partitioned into
k parts, with edges between vertices of different parts only (a bipartite
graph is a 2-partite graph, a tripartite graph a 3-partite graph, etc):
G = (V0, . . . , Vk−1, E) with E ⊆ {uv | u ∈ Vi, v ∈ Vj , i 6= j}. The vertices
of Vi, for any i, are called the i-th level of G, and the vertices of Vk−1 are
called its upper vertices.

K(G) denotes the set of maximal cliques of a graph G, and NG(x)
the neighbourhood of a vertex x in G. When G = (V0, . . . , Vk−1, E) is k-
partite, we denote by NG

i (x), where 0 ≤ i ≤ k − 1, the set of neighbours
of x at level i: NG

i (x) = NG(x) ∩ Vi. When the graph referred to is clear
from the context, we omit it in the exponent. A biclique of a graph is
a set of vertices of the graph inducing a complete bipartite graph. We
denote B(G) the clique incidence graph of G = (V, E), i.e. its bipartite
decomposition: B(G) = (V,K(G), E′) where E′ = {vc | c ∈ K(G), v ∈ c}.

In all the paper, an operation will play a key role, we name it factori-
sation and define it generically as follows.

Definition 1 (factorisation). Given a k-partite graph G = (V0, . . . , Vk−1, E)
with k ≥ 2 and a set V ′

k of subsets of V (G), we define the factorisation
of G with respect to V ′

k as the (k + 1)-partite graph G′ = (V0, . . . , Vk, (E \
E−) ∪ E+) where:

– Vk is the set of maximal (with respect to inclusion) elements of V ′
k,

– E− = {yz | ∃X ∈ Vk, y ∈ X ∩ Vk−1 and z ∈ X \ Vk−1}, and
– E+ = {Xy | X ∈ Vk and y ∈ X}.

When Vk 6= ∅, the factorisation is said to be effective.

In the rest of the paper, we will refine the notion of factorisation by
using different sets V ′

k on which is based the factorisation operation, and
we will study termination of the graph series resulting from each of these
refinements.

The converse operation of the factorisation operation is called projec-
tion.

Definition 2 (projection). Given a k-partite graph G = (V0, . . . , Vk−1, E)
with k ≥ 3, we define the projection of G as the (k − 1)-partite graph
G′ = (V0, . . . , Vk−2, (E ∩ (

⋃
1≤i≤k−2 Vi)

2) ∪ A+) where A+ = {yz | ∃i, j ∈
J1, k − 2K, i 6= j and y ∈ Vi and z ∈ Vj and ∃t ∈ Vk−1, yt, zt ∈ E} is the
set of edges between any pair of vertices of

⋃
1≤i≤k−2 Vi having a common

neighbour in Vk−1.



It is worth to note that the projection is the converse of the factori-
sation operation independently from the set V ′

k used in the definition of
the factorisation.

2 Weak factor series

As explained before, our goal is to improve the bipartite model of [6, 7]
in order to be able to encode non-trivial clique overlaps, that is overlaps
whose cardinality is at least two. Since these overlaps in the graph result
from the neighbourhood overlaps of the upper vertices, the purpose of
the new model we propose is to encode the graph into a multipartite
one by recursively eliminating all non-trivial neighbourhood overlaps of
the upper vertices. We first describe this process informally, then give its
formal definition and exhibit an example for which it does not terminate.

Neighbourhood overlaps of the upper vertices in a bipartite graph
B = (V0, V1, E) may be encoded as follows. For any maximal5 biclique
C that involves at least two upper vertices and two other vertices, we
introduce a new vertex x in a new level V2, add all edges between x and
the elements of C, and delete all the edges of C, as depicted on Figure 1.
We obtain this way a tripartite graph T = (V0, V1, V2, E

′) which encodes
B (one may obtain B from T by the projection operation) and which has
no non-trivial neighbourhood overlaps in its first two level (V0 and V1).

Fig. 1. Example of multipartite decomposition of a graph. From left to right: the orig-
inal graph; its bipartite decomposition; its tripartite decomposition; and its quadripar-
tite decomposition, in which there is no non-trivial neighbourhood overlap anymore.
In this case, the decomposition process terminates.

5 The reason why one would take the maximal bicliques is simply to try to encode all
neighbourhood overlaps using a reduced number of new vertices. Notice that there
are other ways to reduce even more the number of new vertices created, for example
by taking a biclique cover of the edge set of B. This is however out of the scope of
this paper.



This process, which we call a factorising step, may be repeated on
the tripartite graph T obtained (as well as on any multipartite graph)
by considering the bipartite graph between the upper vertices and the
other vertices of the tripartite (or multipartite) graph, see Figure 1. All
k-partite graphs obtained along this iterative factorising process have no
non-trivial neighbourhood overlap between the vertices of their k−1 first
levels. Then, the key question is to know whether the process terminates
or not.

We will now formally define the factorising process and show that it
may result in an infinite sequence of graphs. In the following sections, we
will restrict the definition of the factorising step in order to always obtain
a finite representation of the graph.

Definition 3 (V •
k and weak factor graph). Given a k-partite graph

G = (V0, . . . , Vk−1, E) with k ≥ 2, we define the set V •
k as:

V •
k = {{x1, . . . , xl}∪

⋂

1≤i≤l

N(xi) | l ≥ 2, ∀i ∈ J1, lK, xi ∈ Vk−1 and |
⋂

1≤i≤l

N(xi)| ≥ 2}.

The weak factor graph G• of G is the factorisation of G with respect to
V •

k .

The weak factorisation admits a converse operation, called projection,
which is defined in Section 1. It implies that the factor graph of G, as
well as its iterated factorisations, is an encoding of G.

The weak factor series defined below is the series of graphs produced
by recursively repeating the weak factorising step.

Definition 4 (weak factor series WFS(G)). The weak factor series of
a graph G is the series of graphs WFS(G) = (Gi)i≥1 in which G1 = B(G)
is the clique incidence graph of G and, for all i ≥ 1, Gi+1 is the weak
factor graph of Gi: Gi+1 = G•

i . If for some i ≥ 1 the weak factor operation
is not effective then we say that the series is finite.

Figure 1 gives an illustration for this definition. In this case, the weak
factor series is finite. However, this is not true in general; see Figure 2.
Intuitively, this is due to the fact that a vertex may be the base for
an infinite number of factorising steps (like vertex e in the example of
Figure 2). The aim of the next sections is to avoid this case by giving
more restrictive definitions.
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Fig. 2. An example graph for which the weak factorising process is infinite. From left
to right: the original graph G, its bipartite decomposition B(G), and its tripartite
decomposition B(G)•. The shaded edges are the ones involving vertex e, which play a
special role: all the vertices of the upper level of the decompositions are linked to e.
The structure of the tripartite decomposition is very similar to the one of the bipartite
decomposition, revealing that the process will not terminate.

3 Factor series

In the previous section, we have introduced weak factor series which ap-
pear to be the most immediate extension of bipartite decompositions of
graphs. We showed that, unfortunately, weak factor series are not neces-
sarily finite. In this section, we introduce a slightly more restricted defi-
nition that forbids the repeated use of a same vertex to produce infinitely
many factorisations (as observed on the example of Figure 2). However,
we have no proof that it necessarily gives finite series, which remains an
open question.

Definition 5 (V ◦
k and factor graph). Given a k-partite graph G =

(V0, . . . , Vk−1, E) with k ≥ 2, we define the set V ◦
k as:

V ◦
k = {X ∈ V •

k such that |
⋂

y∈X∩Vk−1

Nk−2(y)| ≥ 2}.

The factor graph G◦ of G is the factorisation of G with respect to V ◦
k .

This new definition results from the restriction of the weak factor
definition by considering only sets X ∈ V •

k such that the vertices of
X ∩ Vk−1 have at least two common neighbours at level k − 2. In this
way, the creation of new vertices depends only on the edges between
levels k − 1 and k − 2 (even though some other edges may be involved
in the factorisation operation). Thus, a vertex will not be responsible for
infinitely many creations of new vertices. This restriction also plays a key
role in the convergence proof of the clean factor series, defined in next
section. That is why we think it may be possible that it is sufficient to
guarantee the convergence of the factor series, but we could not prove it
with this sole hypothesis.



4 Clean factor series

In the two previous sections, we studied two multipartite decompositions
of graphs. The first one is very natural but it does not lead to finite ob-
jects. The second one remains very general but we were unable to prove
that it leads to finite object. As a first step towards this goal, we introduce
here a more restricted definition for which we prove that the decomposi-
tion is finite. This new combinatorial object has many interesting features,
and we consider it worth of study in itself. In particular, we prove that
it is a decomposition of a well-known combinatorial object: the inf-semi-
lattice of the intersections of maximal cliques of G. This correspondence
allows to calculate quantities of graph G from elements of M . One of such
results is an explicit formula (not presented here) giving the number of
triangles in G, which is a very important parameter of complex networks.

The clean factor graph (defined below) is a proper restriction of the
factor graph in which the vertices at level k − 1 used to create a new
vertex at level k are required to have exactly the same neighbourhoods
at all levels strictly below level k − 2, except at level 1. Intuitively, this
requirement implies that the new factorisations push further the previous
ones and are not simply a rewriting at a higher level of a factorisation
previously done. The particular role of level 1 will allow us to differentiate
vertices of the multipartite graph by assigning them sets of nodes at level
0. Let us now formally define the clean factor graph and its corresponding
series.

Definition 6 (V ∗
k and clean factor graph). Given a k-partite graph

G = (V0, . . . , Vk−1, E) with k ≥ 4, we define the set V ∗
k as:

V ∗
k = {X ∈ V ◦

k | ∀x, y ∈ X∩Vk−1,∀p ∈ {0}∪J2, k−3K, Np(x) = Np(y)}.

The clean factor graph G∗ of G is the factorisation of G with respect to
V ∗

k .

Definition 7 (clean factor series CFS(G)). The clean factor series of
a graph G is the series of graphs CFS(G) = (Gi)i≥1 in which G1 = B(G)
is the clique incidence graph of G, G2 = G◦

1, G3 = G◦
2 and, for all i ≥ 3,

Gi+1 is the clean factor graph of Gi: Gi+1 = G∗
i . If for some i the clean

factor operation is not effective then we say that the series is finite.

The rest of this section is devoted to proving the following theorem.

Theorem 1. For any graph G, the clean factor series (Gi)i≥1 is finite.



Notation 1 Let (Gi)i≥1 be the clean factor series of G. For any i ≥ 1,
any x ∈ Vi and any j < i, we denote by Vj(x) the set NGi

j (x) and by V (x)
the set

⋃
0≤j<i Vj(x).

Remark 1. In the rest of the paper, when referring to Definition 6, it is
worth keeping in mind that for x ∈ Vk−1 and p ≤ k − 3, the sets Np(x)
and Np(y) used in the definition are precisely the sets Vp(x) and Vp(y).

Definition 8. We denote by O′ the set {O ⊆ V (G) | ∃k ≥ 2,∃C1, . . . , Ck ∈
K(G), (∀j, l ∈ J1, kK, j 6= l ⇒ Cj 6= Cl) and O =

⋂
1≤i≤k Ci}; and by O

the set {O ∈ O′ | |O| ≥ 2}. For any O ∈ O′, we denote by K(O) the set
{C ∈ K(G) | O ⊆ C}. We also denote by C the set {Y ⊆ K(G) | ∃O ∈
O′, Y = K(O)}.

It is clear from the definition that O′ is closed under intersection, this
is also the case for C.

In all the Gi’s of the clean factor series, vertices at level 0 correspond
to vertices of G, vertices at level 1 correspond to the maximal cliques of
G, that is for any y ∈ V1, V0(y) ∈ K(G). That is the reason why in the
following we do not distinguish between the elements of K(G) and those
of V1. We will show that the vertices of V2 correspond to the elements of
O. Indeed, x 7→ V0(x) is a bijection from V2 to O. First, for any x ∈ V2,
by definition, |V0(x)| ≥ 2, then V0(x) =

⋂
y∈V1(x) V0(y) belongs to O.

Let O ∈ O. Let us show that X = K(O) ∪
⋂

y∈K(O) V0(y) is a maximal
element of V ◦

2 . First note that X ∩ V0 = O and then |X ∩ V0| ≥ 2. Now,
if you augment X with an element of y ∈ V1 \ K(O), since y 6∈ K(O),
X ∩ V0 will decrease. Thus X is maximal and there is a corresponding
x ∈ V2 such that V0(x) = O. Furthermore, it is straightforward to see
that the maximality of V (x) implies that V1(x) = K(O). Which proves
the uniqueness of the x ∈ V2 such that V0(x) = O.

Definition 9. Let G be a graph and let (Gi)i≥1 be its clean factor series.
The characterising sequence S(x) = (O1(x), . . . , Ok−1(x) of a vertex x ∈
Vk, with k ≥ 2, is defined by:

– O1(x) = V0(x)
– ∀j ∈ J2, k−1K, Oj(x) is the unique element6 of O′ such that K(Oj(x)) =⋂

y∈Vj(x) V1(y).

Note that Oj is properly defined. Indeed, since C is closed under in-
tersection, a simple recursion would show that for all i ≥ 3 and for all
y ∈ Vi, V1(y) =

⋂
z∈Vi−1

V1(z) ∈ C.

6 By convention, Oj(x) = V (G) when
T

y∈Vj(x) V1(y) = ∅.



Theorem 2 is our main combinatorial tool for proving the finiteness
of the clean factor series (Theorem 1). Its proof is rather intricate, but
it gives much more information than the finiteness of the series. By asso-
ciating a sequence of sets to each vertex in levels greater than V2 in the
multipartite graph, we show that each such vertex corresponds to a chain
of the inf-semi-lattice of the intersections of maximal cliques of G. The
correspondence thereby highlighted between this very natural structure
and the multipartite factorisation scheme we introduced is non-trivial and
of great combinatorial interest.

Theorem 2. Let G be a graph and (Gi)i≥2 its clean factor series. We
then have the following properties:

1. ∀k ≥ 2, ∀x ∈ Vk, O1(x) ( . . . ( Ok−1(x) and if k = 3, O2(x) ∈ O
and if k ≥ 4, (O2(x), . . . , Ok−2(x)) ∈ Ok−3

2. ∀k ≥ 2, ∀x, y ∈ Vk, x 6= y ⇒ S(x) 6= S(y),

3. ∀k ≥ 2, ∀(O1, . . . , Ok−1) ∈ Ok−1, O1 ( . . . ( Ok−1 ⇒ ∃x ∈ Vk, S(x) =
(O1, . . . , Ok−1).

For lack of space, we do not give the proof of Theorem 2. It can be
made by recursion on k. The key of our proof is that we could characterise,
for any k ≥ 3, the vertices at level k− 1 involved in the creation of a new
vertex x at level k : roughly, they are those vertices y such that there
exist O1, . . . , Ok−3, Om, OM ∈ O and Sy = (O1, . . . , Ok−3, Ok − 2(y)) is
such that Om ⊆ Ok−2(y) ⊆ OM . Then, the characterising sequence of the
created vertex x is S(x) = (O1, . . . , Ok−3, Om, OM ). Please refer to the
webpages of the authors for a complete version of the paper including
proof of Theorem 2.

Theorem 1 is a corollary of Theorem 2. Indeed, Theorem 2 states
that the characterising sequence (O1(x), . . . , Ok−1(x)) of any node x at
level k is such that O1(x) ( . . . ( Ok−1(x). The strict inclusions imply
that the length of the characterising sequence, which is equal to k − 1,
cannot exceed the height h of the inclusion order of elements of O. Since
h ≤ n−1, necessarily Vn+1 is empty. It follows that the clean factor series
is finite and stops at rank at most n.

Size of the multipartite model The size of the multipartite graph M ob-
tained at termination of the clean factor series can be exponential in
theory, as the number of maximal cliques itself may be exponential. But
in practice, its size is quite reasonable and it can be computed efficiently.
Theorem 3 below shows that under reasonable hypotheses, the size of M



only linearly depends on the number of vertices of G, with a multiplicative
constant reflecting the complexity of imbrication of maximal cliques.

Theorem 3. If every vertex of G is involved in at most k maximal
cliques and if every maximal clique of G contains at most c vertices,
then |V (M)| ≤ 4 × min(k 2c c! , 2k k!) × n.

This upper bound can be obtained by bounding the number of se-
quences O1, . . . , Oi in two different ways: either by consedering sequences
ending with a fixed set Oi = A, which are obtained by starting from set
A and removing vertices one by one; or by considering sequences starting
with a fixed set O1 = B, which are obtained by starting from a maxi-
mal clique containing B and intersecting it by one more maximal clique
containing B at each step.

In practice, parameters k and c are quite small, as they are often
constrained by the context itself independently from the size of the graph.
Then, the size of M is small. An important consequence is that, using
algorithms enumerating the cliques or bi-cliques of a graph (see [5] for a
recent survey), M can be computed efficiently, that is in low polynomial
time, since the number of maximal cliques is small.

5 Perspectives

Many questions arise from our work. The first one is to find minimal re-
strictions of the factorising process that guarantee termination. On the
other hand, for processes that do not always terminate, one may de-
termine on which classes of graphs those processes terminate. Another
question of interest is the termination speed, as well as the size of the
obtained encoding: proving upper bounds with softer hypothesis would
be desirable.

Finally, the use of multipartite decompositions as models of complex
networks, in the spirit of the bipartite decomposition, asks for several
questions. In this context, the key issue is to generate a random multi-
partite graph while preserving the properties of the original graph. To do
so, one has to express the properties to preserve as functions of basic mul-
tipartite properties (like degrees, for instance) and to generate random
multipartite graphs with these properties. This is a promising direction
for complex network modelling, but much remains to be done.
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