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Abstract

We present a methodology to investigate the structure of dynamic
networks in terms of concentration of changes in the network. We
handle dynamic networks as series of graphs on a fixed set of nodes
and consider the changes occurring between two consecutive graphs
in the series. We apply our methodology to various dynamic contact
networks coming from different contexts and we show that changes in
these networks exhibit a non-trivial structure: they are not spread all
over the network but are instead concentrated around a small fraction
of nodes. We compare our observations on real-world networks to three
classical dynamic network models and show that they do not capture
this key property.

1 Introduction

During the last decade, the study of large scale networks has attracted a
large amount of attention and works from several domains: sociology [12],
biology [7], computer science [1], epidemiology [8]. Complex networks have
become a new area of research. The availability of large data sources on hu-
man mobility [9] has opened new perspectives for investigating the interplay
of social networks, human mobility and dynamical processes. Then, it be-
comes crucial to study the evolution in time of complex networks, i.e. their
dynamical aspect. Indeed most complex networks change: new edges appear
while some other disappear. In all the scientific domains cited above, the
dynamics is an intrinsic property: people make new acquaintances, change
their relations, communication links fail, etc.

A dynamic network is made of interactions between entities occuring
at different times. In the networks considered here, interactions are con-
tacts occuring between sensor devices. We refer to this type of networks
as dynamic contact networks. And as usual, entities of the network will
be referred to as nodes or vertices and interactions, or contacts, as links or
edges. A very common way to describe such a dynamic network is to use a
graph series: a series of network snapshots taken at different times. These
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Lyon, Université de Lyon – christophe.crespelle@inria.fr
3ENS de Lyon, DNET/INRIA, LIP UMR CNRS 5668, Université de Lyon – eric.
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snapshots are obtained by aggregating all interactions on a given time pe-
riod, that is, by forming the graph of the interactions which occurred during
this period. Doing so for fixed-length and disjoint time periods covering the
whole period of experiment, one obtains a series of graphs describing the
dynamics of the network. Then, many works dedicated to analyse or model
such dynamics focus on the structural properties of the obtained snapshots.
This reveals very useful information, but also suffers from a clear limitation.
Since all snapshots are considered independently, this approach is unable to
capture a key information about the dynamics: the relationships that link
consecutive graphs in the series. This information is essential to understand
the very evolution of the network, which is more than a simple juxtaposition
of its states at different times. This is why some works designed models that
introduce some form of temporal correlations: for example, [5, 3] takes into
account the probability of presence of an edge depending on whether this
edge is present at the previous step, and [9] respects the distribution of con-
tact times (number of consecutive snapshots containing a given edge) and
the distribution of intercontact times (number of consecutive snapshots not
containing a given edge). As pointed out by [9], models based on these time
parameters and only simple graph parameters, such as number of edges and
degrees of nodes, are unable to properly reproduce the structure of real-
world graph series regarding many aspects. Thus, there is a strong need
for introducing non-trivial structural graph parameters for analysing and
modelling the evolution of real-world dynamic networks. Here, we present
a novel approach for this purpose and prove its relevance for the analysis of
real-world dynamic contact networks.

Our approach

In this paper, we do not consider the snapshots of the network but the
changes between two consecutive snapshots, which we call the difference
graph. Formally the difference graph ∆G of two consecutive graphs G1 and
G2 in the series has the same set of nodes4 as G1 and G2, and for two nodes
a and b, ab is an edge in ∆G if and only if either ab is an edge in G1 and not
in G2, or ab is an edge in G2 but not in G1. In other words, the difference
graph is the graph whose edge set is formed by all the pairs of nodes whose
adjacency relationship changes between G1 and G2.

Difference graphs have already shown their interest for graph visualisa-
tion [2] and for IP traffic analysis [6]. The reason why we focus on difference
graphs instead of the graphs of the series themselves is that those differ-
ence graphs contain a key information on the evolution of the networks: the
correlation between two consecutive graphs of the series. This constitutes

4In this paper, we consider networks on a fixed set of nodes. This is natural in many
contexts and this is not a limitation in general, as one can consider the set of nodes
encountered during the whole life of the network.
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a basic but fundamental part of the time correlations in the series, which
is precisely the part used in the well-known Edge-Markovian Model [5, 3].
The originality of our approach is that we do not consider time correlations
independently edge by edge like in the Edge-Markovian Model. Instead,
we consider all the changes occurring between two consecutive steps of the
series as a whole and we fully tackle the graph structure of this object.
Moreover, we do not investigate this structure only by classic (and limited)
graph parameters, such as number of edges and degrees (as in [6] which
stresses the need for more advanced metrics), but we use a non-trivial struc-
tural graph parameter, called Minimum Vertex Cover, which, applied to
difference graphs, capture key properties on the structure of changes in a
dynamic network. More precisely, it allows us to determine whether the
changes in the network topology are well spread all over the network or
rather concentrated in some restricted parts of it.

We emphasize that our approach is purely based on the contacts between
nodes of the network and does not assume any additional information on
the location of nodes. Here, we are not interested in the mobility of nodes
in some metric space but only in the consequence of this mobility on the
structure of contacts in the dynamic networks, which is the key informa-
tion in many contexts, such as communication networks or the spread of
epidemics. The fact that our approach is purely contact-based is a very
important feature that makes it applicable to a broad class of dynamic net-
works independently from the context where they come from. Indeed, in
many cases, the changes in the links of the network are not the consequence
of any mobility. Let us cite for example e-mail exchanges, online social net-
works, disruption tolerant networks (where links fail). Moreover, even when
the changes are the consequence of some geographic mobility, the informa-
tion on the location of nodes is often not available in data footprint. This is
in particular true for the 5 data sets we use, where sensors do not record any
information on the location, but only contacts occurring with other sensors.

Our contribution

We design a general methodology to analyse the concentration of changes in
dynamic networks, and we apply it to five real-world contact networks. Our
approach reveals striking common properties for contact networks coming
from various contexts (Sec. 5): changes affect only a fraction of nodes at each
step (Sec. 2), and these changes are concentrated around a small fraction of
those nodes (Sec. 3). In other words, at each time step, it is possible to find
a very restricted set of nodes of the network that can be held responsible
for changes, while other nodes do not change the adjacency relationships
between them. A striking point of our results is that these observations
hold regardless of the time scale (aggregation period) that has been chosen
to study the network (Sec. 4). Finally, we show that these concentration
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properties are not captured by classical models of dynamic networks (Sec. 6),
which emphasizes the need for models that take them into account.

Data sets

We use five different data sets to which we apply our methodology (see
Sec. 5). All these data sets were obtained using the same technique: contacts
between participants to an experiment were recorded using sensor devices
carried by the participants and that send signals at fixed time intervals
(sampling period). Those signals include the ID of their source device which
is recorded together with a time stamp by devices that are close enough from
this source. These experiments took place in various contexts (see Sec. 5),
ranging from a hospital to a rollerblade tour in Paris, and presenting very
different properties regarding the struture of the changes that occur in the
network.

In what follows, except in Sec. 5 which is devoted to the comparison of
the different data sets, we use a single data set called Infocom’06 [10] in
order to illustrate and discuss our methodology. This data set contains the
contacts between participants to an Infocom’06 workshop. In the case of
Infocom’06, the network contains 78 nodes and the sampling period is 120s
for a three-day measurement. As the network is almost empty during night
time, we removed nights from the data set. We chose an aggregation period
of 900s (15mn), which we consider to be average-to-long: within 15mn, many
changes can occur in such a human group. It follows that this choice should
not be too favorable to our conclusions on the property of concentration of
changes. Sec. 4 specifically studies the impact of the aggregation period on
our observations.

2 Number of nodes involved in changes

The first quantity we examine in order to study the concentration of changes
in the network is the number of nodes that are affected by changes between
two consecutive graphs of the series, that is nodes whose neighbourhoods
in the two graphs are different. This is exactly the number of non-isolated
nodes in the difference graph (nodes having at least one neighbour). We
compute this quantity for the difference series of the Infocom’06 data set
and depicts the results on Fig.1(top). First, we see that at any time in the
series, some nodes are not concerned by changes: the number of non-isolated
nodes in the difference series (dashed line) never reaches the total number
of nodes in the network, its maximum value is 72 out of 78. Moreover, this
number is usually much lower, it is less than 55 in average, i.e. 70% of the
total number of nodes.

One may think that the fact that not all nodes are non-isolated simply
comes from the number of edges in the difference graphs. Indeed, since we
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consider the difference between two consecutive graphs in the series, there
may be only few changes in the adjacency relationships between nodes of the
network. In this case, the number of edges of the difference graphs will be
small and consequently some nodes will be isolated. In order to compare the
result we obtain for the difference graphs of the real-world series to what can
be expected for graphs of this density, we also compute, for each difference
graph of the series, the number of non-isolated nodes in an Erdös-Rényi
random graph (ER graph for short) having the same number of edges (see
e.g. [4]). We will often use this series of ER graphs for comparison in the rest
of the paper; we call it the Diff-ER series. The purpose of such comparisons
is not to assess the fact that difference graphs of the Infocom’06 experiment
are not random, which is clear. The rationale behind these comparisons is
actually to determine whether the behaviour of the real graphs with regard
to a given parameter (like the number of non-isolated nodes) is a consequence
of its number of edges (i.e. whether graphs with this number of edges usually
have a similar value for this parameter), or whether the real series reveal a
particular behaviour with regard to this parameter. And in the latter case,
it is still to know if the value of the parameter is higher or lower than what
is expected and by how much. In all the article, because of space limitation,
we present the comparisons with a single random choice. For each curve, we
actually made ten random choices which all gave the same result.

Here, the comparison is striking: in the ER graphs having the same
number of edges as the real difference graphs (plain line in Fig.1(top)),
the number of non-isolated nodes is almost always 78 (the total number
of nodes) and the average value is more than 75. This indicates that the
result observed on the real difference graphs cannot simply be explained by
their density. The edges of those graphs touch only a restricted part of the
nodes (around 70% here) which is not at all what is expected for a graph
having this number of edges. Thus, the difference graphs of the real series
have a special structure in terms of concentration of their edges, which we
investigate deeper in the next section thanks to Minimum Vertex Cover.

3 Number of nodes that concentrate changes

In this section, we push further the analysis of where changes are located in
the topology of the network. For this purpose, we use a well-known graph
parameter called Minimum Vertex Cover (MVC in the following).

3.0.1 Minimum Vertex Cover

In a graph, a vertex cover is a subset of nodes such that all edges of the graph
are incident to at least one node in this subset. The Minimum Vertex Cover
(MVC) is the minimum number of nodes in a vertex cover. We compute this
parameter on the difference graphs of the Infocom’06 data set. The rationale
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Figure 1: Top: number of non-isolated nodes in the difference graphs of the
real series (dashed line) and in the corresponding Diff-ER series (plain line).
Bottom: MVC value of the real difference series (dashed line) and of the
corresponding Diff-ER series (plain line).
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for doing so is that it gives us a minimal set of nodes that concentrate all
the changes in the network. Consider the following situation: a contact
network whose nodes are a group of people equipped with sensors (as in our
data sets). Suppose that, within a time step of the series describing this
dynamic network, all nodes stay still except one which moves and changes
its adjacency relationships with all the other nodes (for example moving
from a conversation group to another). In this toy example, the difference
graph will be a star, made of all possible edges from the only moving node
to all other nodes. Then, following the analysis of the previous section, all
nodes of the network are affected by changes. But all these changes are
due to the behaviour of a single node: the others stood still and did not
change at all the adjacencies between them. This situation can be revealed
by the MVC parameter: in this case the MVC of the difference graph is 1.
Opposite to this example is the one where all nodes move in such a way that
the adjacency between any pair of nodes is changed: in this case the MVC
of the difference graph is n− 1, the number of nodes in the network minus
1. This is the meaning of the MVC of the difference graph: the minimum
number of nodes that can be held responsible for the changes occurring in
the network.

There is an important fact that one should keep in mind reading the
subsequent analysis: if a graph has MVC equal to k then there exists a subset
of n− k nodes having no edges at all between them. In other words, if the
MVC of some difference graph is 30% of the nodes in the network, it means
that 70% of the nodes did not change at all the adjacency relationships
between them.

Though computing the MVC of a graph is NP-complete, in practice, this
does not constitute a real limitation to our approach. Indeed, the real-world
graphs of the data sets we use do not present the pathologic cases that
makes the problem difficult in theory. Therefore, thanks to the leaf removal
technique, which is known to perform very well on sparse graphs [13] and
which turned out to perform even better for the real-world graphs of our data
sets, we could compute the exact value of the MVC, using a theoretically
exponential algorithm, for all difference graphs in a quite reasonable time,
even for graphs with a large number of nodes (more than 300 in the Mosar
data set).

3.0.2 Results

We compute the MVC for the difference graphs of the real series and we
compare it to the MVC of ER random graphs having the same number of
edges (the Diff-ER series), see Fig.1(bottom). One can see that the MVC of
real difference graphs is usually low (dashed line). The average value is less
than 30 nodes, which corresponds to about 38% of the nodes in the network.
This shows that only a relatively small number of the nodes concentrates all
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Figure 2: Number of non-isolated nodes (plain line) and value of the MVC
(dashed line) for the difference graphs of the Infocom’06 data set.

changes that occur between a graph in the series and its successor. Again,
this value has to be compared to what is expected for a graph with this
number of edges. One can see that for the Diff-ER series (plain line) the
value of the MVC is much higher: its average value is about 45, which is
50% higher than the value obtained for the real difference graphs. Thus, the
property of concentration of changes around a low number of nodes in the
real series is remarkable and denotes a very particular structure.

Now, we directly compare the value of the MVC and the number of non-
isolated nodes, in order to determine, among nodes affected by changes,
what is the fraction of nodes that can be held responsible for these changes
and what is the fraction of nodes that simply undergo these changes. Fig.2
shows the evolution of these two quantities along the series. One can see
that the value of the MVC (dashed line) is always much smaller than the
number of non-isolated nodes. The average number of non-isolated nodes is
around 55 while it is less than 30 for the MVC, i.e. almost twice less. This
is a remarkable property in terms of concentration of changes: not only a
relatively small number of nodes are involved in changes but also a much
smaller part of them endorse the responsibility for those changes.

3.0.3 Further analysis

We saw that the number of non-isolated nodes and the MVC of the difference
graphs are smaller than what is expected for graphs with this number of
edges. A natural question is whether the latter property is a consequence of
the former. To answer this question, we plotted on Fig.3 the MVC of the real
difference graphs (dashed line) together with the MVC of ER graphs having
the same number of edges and the same number of non-isolated nodes (plain
line). That is, we generate an ER graph with the desired number of edges on
a vertex set whose cardinality is precisely the number of non-isolated nodes
in the corresponding difference graph. We refer to the obtained series as the
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Figure 3: MVC of the Diff-ER-iso series (plain line) and MVC of the real
difference series (dashed line).
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Figure 4: Average number of non-isolated nodes and average MVC value for
the real difference series, the Diff-ER series and the Diff-ER-iso series.

Diff-ER-iso series.
One can see that, as expected, the difference between the MVC of the

real difference graphs and the MVC of the ER graphs is smaller when
the number of non-isolated nodes is respected (Fig.3) than when it is not
(Fig.1(bottom)). But there is still a clear difference between the two series:
the MVC of the real difference graph is always smaller than the MVC of the
Diff-ER-iso graph, and the mean value of the MVC in the real series is less
than 30 while it is more than 36 in the Diff-ER-iso series, that is about 20%
higher. This shows that the special structure of the real series regarding
the concentration of changes is not entirely captured by the sole number of
nodes involved in changes. The MVC of the difference graphs are remark-
able and are not a simple consequence of the number of non-isolated nodes,
showing that this parameter should be taken into account for analysing and
modelling these networks.
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4 Influence of the aggregation period

At this point, one may have doubts about the generality of our results:
do they hold for other dynamic contact networks? Aren’t they particular
to the aggregation period we chose? The former question is addressed in
the next section. Here, we consider the latter and study the impact of the
aggregation period on the concentration of changes in the network, both in
terms of non-isolated nodes and in terms of MVC.

On Fig.4 we plotted the mean value of the number of non-isolated nodes
and the MVC for the real difference series of the Infocom’06 data set, for dif-
ferent aggregation periods. For comparison, we also plotted the same curves
for the corresponding Diff-ER series and Diff-ER-iso series. This gives a syn-
thetic view of how the property of concentration of changes evolves when
the aggregation period varies, from 300s (5mn) to 2700s (45mn). From these
curves, one can retrieve the results presented in the previous sections for an
aggregation of 900s (15mn). The plot shows that, as expected, when the ag-
gregation period becomes smaller than 900s, the concentration of changes in-
creases: there are less non-isolated nodes and the MVC becomes smaller. On
the opposite, when it grows higher than 900s, the concentration of changes
decreases. Nevertheless, it is striking to see that the concentration prop-
erties highlighted in Sections 2 and 3 for an aggregation of 900s still holds
regardless of the aggregation period chosen between 300s and 2700s.

On Fig. 5, we plotted, for the extreme values of the aggregation periods
(namely 300s and 2700s), the time evolution of the number of non-isolated
nodes in the real series as well as the MVC in the real series, the Diff-
ER series and the Diff-ER-iso series. One can observe that the qualitative
conclusions of the previous sections remain valid for these extremal values.
For 300s aggregation period, the average number of non-isolated nodes in
the difference series is 49 (63%) and the average MVC is 26 (34%), while the
average MVC for an ER random graph having the same number of edges
(Diff-ER series) is 39, i.e. 46% higher. For 2700s aggregation period, the
average number of non-isolated nodes and the average MVC are respectively
79% and 48% of the total number of nodes in the network while, again, the
average MVC in the Diff-ER series is much higher than in the real series:
55 nodes instead of 38, i.e. 45% higher.

Note that studying such a contact network at a time scale of 45mn of ag-
gregation is not completely natural: doing so, one loses a lot of information
on the dynamics. Then, such an aggregation period should be considered
more as a limit case to test our observations than as a suitable time scale to
study the network. In particular, one could expect that for such an aggrega-
tion time, there are so many changes in the network that the properties of
concentration highlighted at finer time scale may completely disappear. But
Fig. 5(bottom) shows that this is not the case. It is striking to see that even
in this range of time aggregation the topological correlations of changes in
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Figure 5: MVC value for the real difference series, the Diff-ER series and the
Diff-ER-iso series, and number of non-isolated nodes for the real difference
series, for aggregation periods of respectively 300s (top) and 2700s (bottom).
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Figure 6: Normalized inverse cumulative distributions of the number of non-
isolated nodes (top) and of the MVC (bottom) for the 5 datasets.

the network, i.e. their concentration around a small subset of nodes, are still
clearly visible. This shows that this property should be taken into account
whatever is the time scale used to study the network.

5 Results on different data sets

We consider five data sets, the Infocom’06 data set we used in the previous
sections plus 4 new ones: Infocom’05 [10] with 41 nodes, 120s sampling over
three days (nights removed), on participants to a workshop of Infocom’05;
RollerNet [11] with 62 nodes, 15s sampling over three hours, on participants
to a rollerblade tour in Paris; Cambridge [10] with 36 nodes, 10mn sampling
over two months, on students at the Cambridge University Computer Lab;
and the Mosar project data set with 315 nodes, 30s sampling over two weeks,
on staffs and patients in an hospital. Clearly, the mobility patterns of people
in a conference, an hospital, a universitary campus or a rollerblade tour are
very different, resulting in very different characteristics of the dynamics in
the data sets we use.

Here we aim at comparing these data sets with regard to the concentra-
tion of changes. Does the property of concentration around a small number
of nodes revealed for the Infocom’06 data set still hold in other contexts?
Can our methodology be used to classify dynamic networks with regard to
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their properties of concentration of changes? In order to answer these ques-
tions, we compute the number of non-isolated nodes and the MVC for the
difference series of the four new data sets. For each of them, we chose an
aggregation period that we consider as average: 900s (15mn) for Infocom’05,
120s (2mn) for RollerNet, 2h for Cambridge and 40mn for Mosar. Remem-
ber that we saw in Section 4 that the choice of the aggregation period has
a limited impact on the observations, and that the results are qualitatively
preserved for a wide range of aggregation periods. Fig.6(top) shows the
inverse cumulative distribution of the percentage5 of isolated nodes for the
difference series of the 5 data sets, while Fig.6(bottom) shows the inverse cu-
mulative distribution of the MVC, expressed in percentage as well. Roughly
speaking, we can classify the 5 data sets into three groups.

The first group is very homogeneous: the two Infocom data sets have
very similar distributions. This is not surprising as they were collected in
very similar contexts. More interestingly, it shows that the property of con-
centartion of changes still holds for a network with fewer nodes: Infocom’05
network has only 41 nodes while Infocom’06 has 78 nodes. This is worth
of interest, as diminishing the number of nodes may make a small num-
ber of changes touch a wider part of the network and then threaten their
concentration property. Fig. 6 shows that it does not happen (remember
that curves are in percentage, not in number of nodes): the concentration
of changes even in a network of limited size still appears as a key property.

The second group, containing only the RollerNet data set, is very dif-
ferent from the others: the number of non-isolated nodes is very high, since
in average 96% of the nodes (i.e. almost 60 out of 62 nodes) are involved
in changes from one snapshot to the following one. And the time series
(not presented here) reveals that more than half of the time, all nodes of
the network undergo changes in their neighbourhood. This is explained by

5Values are here expressed in percentage instead of number of nodes, in order to com-
pare networks with different number of nodes.
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Figure 8: MVC values for the real difference series of the Mosar data set,
the corresponding Diff-ER series and the Diff-ER-iso series.

the context where this data comes from: participants to the rollerblade tour
move fast and constantly, and then are more likely to change their contacts
very often. As a consequence, the MVC of the difference series is higher
than in the four other data sets (see Fig. 6): it is around 63% of the nodes
in average. Of course, this suggests that other parameters should be used
to properly describe the structure of changes in this very specific type of
dynamic contact networks, like in [11]. Nevertheless, even in this case, our
approach reveals an interesting fact: even though almost all nodes are al-
ways affected by changes in their neighbourhood along time, the proportion
of nodes that can be held responsible for those changes is significantly lower
than what can be expected for a network with this number of changes. This
is what is highlighted by Fig. 7 where one can see that the curve of MVC of
the Diff-ER series is clearly distinct from the one of the real series (always
above and about 10% higher in average). It must be clear that this sole fact
is not sufficient to properly describe the structure of this specific dynamics.
But on the other hand, this stresses the interest of the MVC parameter,
which is able to reveal a special structure with regard to concentration of
changes even in a context where changes affect the whole network at any
time.

On the opposite, in the third group, the group of Mosar and Cambridge
data sets, the proportion of non-isolated nodes and the MVC are almost
always very low. The first reason may be that these data sets were collected
in a wider-space environment and on a longer time period (2 weeks in a
hospital for Mosar, 2 months in a universitary campus for Cambridge). This
means that participants to these two experiments are more dispersed and
have less frequent contacts, while in the Infocom experiments for example,
the participants of the conference are gathered most of the time. This is the
reason why we chose longer aggregation periods to study these data sets,
namely 40mn for Mosar and 2h for Cambridge. Another difference is that we
did not remove night periods in Mosar and Cambridge data, as it appears less
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relevant to do so for them. The Cambridge data set is very heterogeneous,
the network is very sparse (or empty) at many times, and very often during
daytime as well. For this data set, we pushed the aggregation period up to
8h, and the shape of the distributions remained very similar.

The time series for the Mosar data set are given on Fig. 8. Even though
the day-night alternance is clearly visible for this data set, the network do not
become empty during night, unlike in the Infocom experiments, resulting in a
more homogeneous dynamics. This comes from the fact that the experiment
was led in a specific service of the hospital which is active at night as well.
The concentration of changes in this network is very sharp: in average, at
each time step only 30% of nodes are concerned by changes and only 10%
of them can be held responsible for those changes (see Fig. 6). This may be
partly due to the large size of the network, which involves more than 300
nodes. But it should be clear that this strong concentration of the changes in
the network is not a simple consequence of the amount of changes compared
to the size of the network, but rather denotes a very particular topological
structure. Indeed, as shown on Fig. 8, the MVC of the real difference series
is always much smaller than what can be expected for graphs with this
number of nodes and this number of edges (Diff-ER series): the MVC of
the Diff-ER series is in average 110% higher than in the real difference series
(67.8 nodes in average instead of 32.3), which has to be compared to 50% for
the Infocom’06 data set (see Sec. 3 and Fig. 1(bottom)). Thus, the fact that
the amount of changes at each time step in the Mosar network is very small
compared to the size of the network is a critical property which results from
the structure of changes itself. And it appears crucial to take this structure
into account in order to properly describe the dynamics of such networks.

6 Comparison to classical models

We now compare the observations we made on real-world dynamic networks
to classical models of graph series, in order to determine whether these
models are able to reproduce the property of concentration of changes in
the network. Let us emphasize again that here, for the sake of generality,
we are interested in modellings of the dynamics that are based on contact
information only and not on additional information concerning space loca-
tion of nodes, as this information may not exist or may not be available in
many contexts where dynamic networks appear (as it is the case for the data
sets we studied). We use for comparison three different classical models of
graph series. Each of these models takes as input some parameters of the
real series and generate a random series having the same parameters. The
first model, which we call the ER series, consists in generating a series of
ER random graphs (see e.g. [4]), each of which having the same number of
edges as the corresponding graph of the real primitive series (i.e. not the
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difference series). The ER series model is very simple but has a drawback:
it produces uniform edge dynamics, in the sense that each pair u, v of nodes
in the graph has the same expectation of its number of occurrences in the
series.

The second classical model we use tackles this drawback: it preserves,
in expectation, the number of occurrences in the series of each edge of the
graph. We refer to it as the Heterogeneous Edge series, or HE series for
short. More precisely, for any pair u, v of vertices which is an edge in Nuv

graphs out of the N graphs of the real series, we put an edge between u and
v with probability Nuv/N in each graph of the HE series. This does not
result in a series where the density of each graph is the same as in the real
series, but the average of densities over all graphs of the series is preserved,
in expectation.

The last model we consider is the Edge-Markovian Model series [5, 3], or
EM series for short. As the HE series does, it considers each pair of vertices
independently. The first graph of the EM series is the same as the first one
of the real series. Then, at each step, the model decides for each pair u, v of
vertices to put an edge in the new graph depending on the stateof the pair
(1 if there is an edge, 0 otherwise) in the previous graph in the following
way: the probability to go from state s1 to state s2 (s1, s2 ∈ {0, 1}) in the
EM model is set to be exactly the same as the probability observed on the
real series. This model is very interesting for our purpose as it includes
part of the correlation in time between the graphs of the series, namely the
correlation of presence of an edge in two consecutive graphs of the series.
As a consequence, it preserves, in expectation, the average density of the
difference graphs over the whole series . And it also preserves, in expectation
as well, the average density of graphs in the primitive series.

Number of non-isolated nodes

Fig.9(top) shows the inverse cumulative distribution of the number of non-
isolated nodes for the real difference series of the Infocom’06 data set, the
corresponding Diff-ER series, and the three models cited above (which were
given as input the characteristics of the Infocom’06 series). Obviously, none
of the three models reproduces correctly the number of non-isolated nodes
in the real difference graphs. For the three of them, this number is very
high, very close to the total number of nodes, for a vast majority of graphs
in the series. While, on the contrary, this number is only 70% of nodes in
average in the real series. Moreover, one can see that none of the model
performs significantly better than the Diff-ER series to which we compare
in Sec. 2. Thus, these models are not able to reproduce the fact that only a
fraction of nodes are affected by changes at each step of the series.
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Figure 9: Inverse cumulative distributions of the number of non-isolated
nodes (top) and of the MVC (bottom) for the real difference series of Info-
com’06, the Diff-ER series and the difference series of the three models we
consider.
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Fig.9(bottom) shows the inverse cumulative distribution of the MVC of the
difference graphs for the Infocom’06 data set, the corresponding Diff-ER
series and the three models. One can see that for the MVC as well, the
characteristics of the three models differ notably from those of the real series.
The ER series and the HE series have a similar behaviour: for these two
models the average value of the MVC of the difference graphs is around 57,
instead of 30 in the real series, which is almost twice higher. The reason is
that these models are based only on the probability of presence of edges in
the primitive series: this sole property is obviously not sufficient to capture
the structure of changes in the network.

The Edge Markovian Model gives better results. Indeed, the EM series
has an average MVC around 45 nodes, which is 50% higher than the real
series. Though it is far from reproducing the characteristics of the real series,
it is a clear improvement on the two previous models. The reason is that the
EM series respects the average density of the difference graphs, and not only
of the primitive graphs. On the other hand, one can see on Fig.9(bottom)
that the EM series does not perform significantly better, in terms of MVC,
than the Diff-ER series, to which we compare in our previous analysis. This
indicates, as one could expect, that, even though the Edge Markovian Model
captures some of the time correlations of the edges in the series, the fact
that it does not take into account the topological correlations of changes in
the dynamic network does not allow it to properly capture the structure of
the dynamics with regard to concentration of changes.

7 Conclusions and perspectives.

We designed a methodology to appreciate the concentration of changes in
a dynamic network and we applied it to several contact networks, revealing
their special structure with regard to this property: at each time step in
the series describing the dynamics, the changes only affect a limited number
of nodes and are concentrated around an even much smaller number of
nodes. We showed that this property denotes a non-trivial structure by
comparing to what can be expected for graphs with the same number of
edges. Moreover, we showed that this holds in contact networks coming
from contexts having very different spatial and time characteristics, and
that this property appears independently from the time scale chosen to
study the network. This shows that the concentration of changes is a non-
trivial and fundamental charasteristics of these dynamics, which is not taken
into account by most current modelling efforts, which concentrate mainly
on time correlations of the dynamics.

The most immediate perspective of our work is to apply our methodology
to other types of dynamic networks to determine whether they satisfy special
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properties with regard to concentration of changes. This is particularly
appealing for networks that do not result from mobility in some metric
spaces, like e.g. networks made of e-mail exchanges, telephone calls or online
social networks.

Our work emphasizes the need for dynamic network models purely based
on contacts that encompass the topological correlations of changes in the net-
work. We argue that such models should be based on node characteristics,
rather than only edge characteristics, in order to reproduce the concentra-
tion of changes around a restricted number of nodes of the network. The
difficulty in doing so is that one must be able to select, at each step of the
series, which nodes will change their neighbourhood and which adjacency
relationships will be changed around them. We believe that this is a very
promising research direction in which much remains to be done.

At last, let us mention that another key question arisen by our work is to
study the impact of the concentration of changes on phenomena taking place
over the network, such as diffusion of epidemics or information in human
groups and routing in mobile networks.
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