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Abstract. This paper presents an optimal fully dynamic recognition algorithm for directed cographs.
Given the modular decomposition tree of a directed cograph G, the algorithm supports arc and vertex
modification (insertion or deletion) in O(d) time where d is the number of arcs involved in the operation.
Moreover, if the modified graph remains a directed cograph, the modular decomposition tree is updated;
otherwise, a certificate is returned within the same complexity.

1 Introduction

Directed cographs is the family of digraphs recursively defined from the single vertex under the closure of the
operations of disjoint union, series and order composition. Let G1,..., Gy be a set of k disjoint digraphs.
The disjoint union of the G;’s is the digraph whose connected components! is precisely the G;’s. The series
composition of the G;’s is the union of these k& graphs plus all possible arcs between vertices of different
G;’s. The order composition of the G;’s is the union of these k graphs plus all possible arcs from G; towards
G;, with 1 <4 < j < k. These operations define a unique tree representation of a directed cograph which
corresponds to its modular decomposition tree [14]. The leaves are mapped to the vertices of the graph and
the inner nodes are labelled by the different composition operations (see Fig. 1). Notice that by definition of
the composition operations, the complement of a directed cograph is a directed cograph. Indeed, the term
cograph [3] stands for complement reducible graph. Moreover the directed cograph family is hereditary: any
induced subgraph of a directed cograph is also a directed cograph. It should also be noticed that directed
cographs can be characterised by forbidden subgraphs (see Theorem 2 and Fig. 2).
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Fig.1. A directed cograph and its modular decomposition tree. Since set {a, b} is in series composition
with the rest of the vertices, for any = & {a,b} and y € {a, b}, both arcs zy and yx exist.

Restricted to posets, directed cographs are the series-parallel orders [13] for which the recognition problem
has been solved in linear time [17]. In the case of undirected graphs, the series composition and the order
composition are equivalent. The family of undirected graphs defined from the single vertex graph by the
closure of the series composition and the disjoint union is the family of cographs. The modular decomposition
tree of a cograph is called a cotree. A number of linear time cograph recognition algorithms is now known:
the first one was presented in [4] and the most recent one in [1].

The dynamic recognition and representation problem for a family F of graphs aims to maintain a characteristic

! In this paper, notion of connectivity of a digraph refers to connectivity of its underlying undirected graph.



representation of dynamically changing graphs as long as the modified graph belongs to F. The input of the
problem is a graph G € F with its representation and a series of modifications. Any modification is of the
following: adding a vertex (along with the arcs incident to it), deleting a vertex (and its incident arcs), adding
or deleting an arc or two symmetric arcs (note that the insertion/deletion of only one of these symmetric
arcs may not result in a graph of F, while the insertion/deletion of both would). We consider only valid
modification queries: any vertex or arc to be inserted must not previously exist in the graph, and similarly,
any vertex or arc to be deleted must exist. Moreover, as pointed out by [12], if the property of belonging
to F is no longer satisfied, providing a certificate would be highly desirable in practise (e.g. for debugging
features). This paper considers this problem for the family of directed cographs. The representation we
maintain is based on the modular decomposition tree.

Related works. The dynamic recognition and representation problem has been considered for various

graphs families. [11] devised a fully dynamic recognition algorithm for chordal graphs which handles edge
operations in O(n) time. For proper interval graphs [10], each update can be supported in O(d + logn)
where d is the number of edges involved in the operation. [6] presented a fully dynamic recognition algorithm
for the class of permutation graphs which runs in O(n) time per edge or vertex modification. Concerning
cographs, a constant time algorithm for edge modification (insertion or deletion) has been designed in [16].
The undirected cograph recognition algorithm of [4] is incremental: given a cograph G, its cotree T and a
vertex x, it modifies T iff G + x is a cograph. Merging the results of [4] and [16] provides a fully dynamic
recognition algorithm for cographs with O(d) worst case time complexity per operation. Pushing further
Algorithm of [4], if G+ x is not a cograph, it is possible, within the same complexity, to extract a certificate
(namely a Py, an induced path of 4 vertices).
The work of [4] has recently been extended for bipartite graphs. A new decomposition dedicated to bipartite
graphs has been proposed in [8] and the family of bipartite graphs totally decomposable, as are the cographs
for the modular decomposition, are defined: the weak-bisplit graphs. In [9], a linear time recognition algorithm
for weak-bisplit graphs is given. It turns out that the incidence bipartite graph of a directed cograph is a
weak-bisplit graph. As for cographs, the decomposition tree is built by adding the vertices one by one. But
unfortunately, to get linear time complexity, the vertices have to be ordered with respect to their degree. It
follows that the incremental aspect can not be guaranteed.

Our results. We present an optimal algorithm for the dynamic recognition and representation problem
for the family of directed cographs. If needed, our algorithm is also able to find a certificate. Therefore, it
extends the algorithms of [4,16]. In the case of vertex insertion, we use a straightforward generalisation of
the marking process of [4] to colour nodes of the tree representation (di-cotree) we use for directed cographs.
As done in [4], we use the result of this marking step to determine whether the insertion results in a directed
cograph. To that aim, we check, on the coloured di-cotree, that the conditions of Theorem 4 are satisfied.
Theorem 4 gives a new characterisation of the augmented graph being a directed cograph, independently
from the forbidden subgraph characterisation of the class (see further). Moreover, unlike the algorithm of [9]
restricted to directed cographs, our algorithm supports arc modification and the dynamic aspect is guaranteed
(that is the updates can be handled in arbitrary order). A summary of this work was previously given at [5].

Theorem 1. The dynamic recognition and representation problem for directed cographs is solvable in O(d)
worst case time per update, where d is the number of edges involved in the updating operation. Moreover,
if needed, a certificate that the modified graph is not a directed cograph is provided within the same time
complexity.

2 Preliminaries

We consider finite, loopless, simple and directed graphs G = (V, E), with |V| = n and |E| = m. The
complement of a graph G is denoted by G. If X is a subset of vertices, then G[X] is the subgraph of G
induced by X. Since the graphs are directed, the arc zy differs from yz. Let x be a vertex, then N*(z) =
{z € Vjaz € E}, N~ () = {y € Vyzx € E} and N(z) = N~ (z) U N*(x) stand respectively for its

out-neighbourhood, its in-neighbourhood and its neighbourhood. The non-neighbourhood of z, which is the



complement of its neighbourhood, will be denoted N(z). The degree d(x) of a vertex x is the sum of its
in-degree, d~(z) = [N~ ()|, and its out-degree, d*(z) = |[N*(z)|. Let G = (V, E) be a digraph, z ¢ V be
a vertex and N~ (x) C V, NT(z) C V be two subsets of vertices of G. Then G + = denotes the digraph
G = (VU{z},EU{zz,2 € Nt(2)} U{yz,y € N~ ()}), in which N~(z), N*(z) are the in and out-
neighbourhood of z. If 2y € FE, G — zy will be the graph G’ = (V, E\ {zy}). G — z and G + xy are similarly
defined.

As for the cograph family, directed cographs can be characterised by forbidden subgraphs. Unfortunately,
such a characterisation does not help for an efficient recognition algorithm (even for a non-dynamic one).
Nevertheless, these subgraphs will be useful to provide a certificate if the referred graph is not a directed
cograph. This characterisation can be retrieved from a result of [7].

Theorem 2. A digraph is a directed cograph iff it does not contain any graph of Fig. 2 as induced subgraph.
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Fig. 2. The set of forbidden subgraphs for the directed cographs family. Note that this set is closed under
complementation.

A module M is a set of vertices such that for any x ¢ M and y € M, zy € Eif Vz € M, zz € F and
yr € Eiff Vz € M, zx € E. The following claim is straightforward.

Claim. Let G = (V, E) be a graph and 2 ¢ V a vertex to be inserted in G. Let M C V such that M U {«}
is a module of G + z, then M is a module of G.

The modules of a graph are a potentially exponential-sized family. However, the sub-family of strong
modules, the modules that overlap? no other module, has size O(n). The inclusion order of this family
defines the modular decomposition tree, which is enough to represent the modules family of a graph [14].
The root of this tree is the trivial module V and its n leaves are the trivial modules {z},z € V. The leaf
corresponding to singleton {x} will be denoted I,. Any node p of the tree corresponds to a set of vertices
M (p), the set of the leaves in the subtree rooted at p, which is a module of G. To shorten the notations, the
set M (p) will be denoted by P. The set of children of a node p will be denoted C(p). We call sibling of a node
p1 in the tree, a node ps which has the same parent as p; has. In the case of directed cographs, the internal
nodes are labelled by one of the three composition operations: parallel, series or order (see Fig. 1). Let us
call the modular decomposition tree of a directed cograph, the di-cotree. In the proofs, we will often use the
fundamental decomposition theorem for directed cographs, given below. We call maximal strong module of
a graph G = (V, E), a strong module of G different from V and maximal wrt. inclusion. A directed graph
G = (V,E) is a k — order, with k € N* (the set of strictly positive integers) if there exists a partition®
Viu---uVy of V such that for all z € V; and for all y € V;, if i < j then zy € E and yz € E. There exists
a unique maximal k and a unique partition such that G is a k — order. The sets of this unique partition are
called the order components of G. Note that the order components are naturally ordered, from the first V;
to the last V. V4 and Vj, will also be referred as the extremal order components of G. A directed graph is
said to be co-connected iff its complement is connected.

Theorem 3. A directed cograph G is either:

— not connected, then its maximal strong modules are its connected components, or

2 Aoverlaps Bif ANB#0, A\B# (@ and B\ A # 0
3 The symbol LI denotes the union of disjoint sets.



— not co-connected, then its mazximal strong modules are its co-connected components, or
— connected and co-connected, then G is a k — order, for some k € N\ {0,1}, and its mazimal strong
modules are its order components.

A set S C V of vertices is uniform wrt. 2 € Sin Gif S C NT(z) or SN NT(z) =2, and S C N~ (z) or
SNN~(x) = @. Equivalently, S is uniform iff S is a module of the graph G[SU{z}]. If S is not uniform, then
it is mized. We say that a node p is uniform (resp. mixed) wrt. x if P is. Finally, a set S of vertices (resp. a
node p of the di-cotree) is linked to a vertex x ¢ S in G, if there exists y € S (resp. y € P) st. 2y € E or
yx € E. If S is uniform and linked, we say it is uniformly linked; and if S is uniform and not linked, we say
that S is uniformly not linked. In the following, if no confusion is possible, we will omit to mention the graph
in which the above notions are applied. The subtree of the di-cotree T', rooted at a node p will be denoted
by Tp. The set of ancestors of node p in T will be denoted Ancr(p) and the set of its descendants will be
denoted Desr(p). Note that p is considered as an ancestor and a descendant of itself, p € Ancy(p)NDesr(p).
When there is no confusion, we omit the tree referred to and denote Anc(p). The path between p and the
root 7 of T' will be denoted P,. Finally, M, stands for the minimum (wrt. inclusion) module that contains
vertices x and y. Since My, is not necessarily strong, it is a subset of M (p,) where p, is the least common
ancestor in T of the leaves corresponding to x and y (denoted lca(x,y)) . A factorising permutation [2] T
is a permutation of the vertices such that any strong module M is a factor of 7 (the vertices of M occur
consecutively). A DFS of the modular decomposition tree orders the leaves as a factorising permutation.
Maintaining a factorising permutation will be helpful to find a certificate.

3 Data structure

As we mentioned previously, the representation of a directed cograph we maintain along the algorithm is
based on its di-cotree. We also maintain a factorising permutation. Note that it is not necessary for the
recognition algorithm itself, but for finding a certificate within the desired complexity.

More precisely, as depicted on Fig. 3, each node ¢ of the di-cotree stores 6 pointers:

— one pointer to its parent p in the di-cotree, and one pointer to its position in the list of children of p;
— one pointer to the first (resp. the last) element of its list of children in the di-cotree;
— one pointer to the first (resp. the last) vertex of @ in the factorising permutation.

The lists of children and the factorising permutation are doubly-linked lists (for sake of clearness, those lists
are represented as simple lists in Picture 3). The list of children of any order node is ordered coherently with
the order defined by the node, from the first order component to the last one. In addition to the list of its
children, each node stores the number of its children.

Note that this data structure allows to answer adjacency queries on a pair x, y of vertices in O(Max(d(z), d(y))
time. To determine the adjacency relationship between x and y, we can first find py,y = lca(z, y). If its label
is series or parallel, it is known; otherwise, we need to find which order component, the one of = or the one
of y, is first in the order defined by p.y. This two steps can be done in O(Maxz(d(x),d(y)) time. Indeed, the
length of the path between any leaf I, and the root r of the di-cotree is O(d(x)), because, on this path, of
two consecutive nodes, at most one is labelled parallel. Moreover, the number of children of an order node
q is O(d(z)), for any = € Q.

The pointers from a node g to the factorising permutation allows to access in constant time to the list of
vertices of (), which is not possible in the di-cotree.

4 Dynamic vertex operations

This section deals with vertex modification, insertion or deletion. In the case of vertex deletion, the resulting
graph G — x is always a directed cograph and the algorithm comnsists in updating its di-cotree and the
factorising permutation. Knowing how the di-cotree is modified under vertex deletion is helpful to characterise
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Fig. 3. The data structure maintained by the algorithm. Though it is not represented in the picture,
the lists of children of a node as well as the factorising permutation are stored in doubly-linked lists. In
addition, any node of the tree stores the number of its children.

the cases where the insertion of vertex x is possible. Theorem 4 is the basis of the insertion algorithm that
either updates the di-cotree (and the factorising permutation) or finds a certificate that G + x is not a
directed cograph. For sake of simplicity, the certificate consists in a set of 4 vertices that induces a subgraph
containing a forbidden subgraph of Fig. 2. Pushing further the algorithm, an exact forbidden subgraph can
be found. The complexity of the deletion algorithm, as well as the insertion algorithm, is O(d(x)) where z is
the vertex to be deleted or inserted.

4.1 Deleting a vertex

As already noticed, the deletion operation only requires to update the di-cotree T' of G to obtain the di-cotree
T of G (see fig. 4.1). It can be done in O(d(x)) as follows (see [16] for a similar algorithm). The case where
x is the only vertex is trivial. Otherwise, let ¢ be the parent node of x in T.

1. If = has at least 2 siblings, then x is removed from T'.
2. Otherwise, let p be the sibling of x.

(a) If g is the root of T or the label of parent(q) = ¢ is different from the one of p, nodes x and ¢ are
removed from T'. If q is the root of T, then p becomes the root of T'. Otherwise, p is inserted in the
children of ¢ in the exact place of ¢ (it is crucial if ¢ is an order node).

(b) If label(q) = label(p), nodes z,q and p are removed from T. The children of p are inserted in the
children of g, instead of ¢. If ¢ is an order node, then the relative order of the children of p has to be
respected and they must be inserted in the children of § as an interval in the exact place of q.

One can ensure that the new tree T' we built above is indeed the unique di-cotree of G’ by checking that
the following properties are satisfied: i) no node of T’ has the same label as its parent, all the internal nodes
have at least two children, and all the nodes are labelled series, order or parallel (i.e. T” is a valid di-cotree);
ii) the adjacencies induced by T are exactly the adjacencies of G[V \ {z}].

For complexity issues, the case where p and ¢ have the same label (case 2b above) has to be handled carefully:
only nodes containing neighbours of = can be touched. If ¢ is not a parallel node, the children of p are linked
to x. They can be disconnected from p and substituted for ¢ in the children of ¢. If ¢ is a parallel node, its
siblings are linked to z. They can be disconnected from ¢ and reconnected as new children of p (at their
right place if ¢ is an order node, see Fig.4.1). Finally p replaces q.

Updating the factorising permutation reduces to deleting x from it. Note that the only nodes remaining in
T after the deletion of x that have to change their pointers are the ancestors of x for which x is an extremity
of their corresponding segment in the factorising permutation. For these nodes, the pointer toward x has to
be changed to a pointer on the previous (resp. next) vertex of the factorising permutation if x is the last
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Fig. 4. Modifications of the modular decomposition tree under vertex deletion.

(resp. first) vertex of the segment corresponding to the considered node. Since the number of ancestors of
x is O(d(zx)), the complete update of pointers toward the factorising permutation can be done in O(d(x))
time. Only the parent or the grand-parent of x in 7" may have to update the number of their children. In
case 1, C(q) is decreased by one; in case 2.b, C(p) is added to C(¢). This can be done in constant time.

Fig. 5. Updating the di-cotree in O(d) time under vertex deletion. Nodes are labelled O for order and //
for parallel.

4.2 Adding a vertex

The main difficulty of the fully dynamic algorithm presented in this paper consists in maintaining a di-cotree
under vertex insertion. Theorem 4 characterises the cases where given a directed cograph G, a vertex x and
its neighbourhoods, the augmented graph G 4+ z remains a directed cograph. As done in [4], the algorithm
first proceeds with a marking step of the di-cotree T" of G. Then it tests whether the marks satisfy Theorem 4.
In the positive, the di-cotree is updated; otherwise a certificate that G + x is not a directed cograph is given.

Theorem 4. Let G = (V,E) be a directed cograph and T be its di-cotree. Let © ¢ V be a vertex and
N~=(x), NT(x) be its in and out-neighbourhoods. G' = G + x is a directed cograph iff for any node p of T
one of the following conditions holds:

1. P is uniform wrt. x;
2. P is mized wrt. x and has a unique mized child f such that F U{z} is a module of G'[P U {x}];



3. P is mized wrt.x, has no mized children and either
(a) there exists a unique non-empty set S C C(p) of children of p such that S = |J K is uniform wrt.

keS
x and SU{z} is a module of G'[P U {z}],
(b) or there exists a non-empty set S C C(p) of children of p such that S U {z}, (P \ S)U{x} are both
modules of G'[P U {z}], where S = |J K.
keS

A node of T satisfying condition 2 of Theorem 4 is called a single mized node, and a terminal mixed
node if it satisfies condition 3. It is worth to note that cases 3.(a) and 3.(b) of Theorem 4 are disjoint. In
case 3.(b), p has to be an order node. Otherwise, p would be uniform wrt. 2. Moreover, an order node p
that satisfies Condition 3.(b) does not satisfy Condition 3.(a). Indeed, the unicity of the set S of Condition
3.(a) would not be satisfied: set S and set C(p) \ S of Condition 3.(b) would both suit for condition 3.(a).
Corollary 1 bellow shows that, if G 4+ x is a directed cograph, the mixed nodes cannot be spread anywhere
in T" and there is a unique terminal mixed node.

Theorem 4 is an equivalence. Corollary 1 follows from the direct implication and is useful to prove the
converse implication of Theorem 4. Thus, we first prove that the conditions of Theorem 4 are necessary, then
we prove that these conditions imply Corollary 1, and finally we prove the converse implication of Theorem 4.

Proof of the direct implication of Theorem 4: — . Assume G’ = G + z is a directed cograph. Let
T’ be its modular decomposition tree and ¢’ the parent of z in 7". Deleting x in G’, we obtain, as described
in Section 4.1 and Fig. 4.1, the modular decomposition tree T of G’ — x = G. The transformation of 7" in
T establishes some correspondences between the strong modules of G’ and the strong modules of G. We use
these correspondences to show that the conditions of Theorem 4 are satisfied.

Before successively considering the 3 cases of Section 4.1, we first distinguish the case where ¢’ is the root
of T", which is a particular case of case 1 and case 2.a of Section 4.1. In this case, the strong modules of
G are exactly the strong modules of G’ which do not contain x. Namely, they are the strong modules of
G’ corresponding to the nodes of T" different from the root and [,. Thus, they are all uniform and satisfy
condition 1 of Theorem 4.

From now on, ¢’ is supposed not to be the root of T”. Let ¢’ be its parent. After the deletion of z, ¢’
remains a node of the tree (see Fig. 4.1). We rename this node by ¢ in T'. In other words, ¢ is the node of T
corresponding to the strong module Q' \ {z} of G.

Claim. § is mixed wrt. x.

Proof. Indeed, the labels of ¢ and ¢’ are different which implies that the vertices of Q" \ @’ and the vertices
of @\ {z} have not the same adjacencies with z. It follows that Q = Q' \ {z} is mixed.

Claim. Let k € Ancr(§) \ {q}, k is single mixed.

Proof. Let k,, be the unique child of k£ being an ancestor of ¢. Since k,, is an ancestor of q, k,, is mixed.
From section 4.1 (see Fig. 4.1) K,,, U{z} is a strong module of G’, it is consequently a module of G'[ K U{x}].
Thus k is single mixed.

Remark. 1t follows that any child f of k different from the unique mixed child &, of k£ is uniform, and then
its descendants are as well.

— If = has at least two siblings in 7" (see case 1. of Section 4.1 and Fig. 4.1), then @’ \ {z} is a strong
module of G. We use ¢ to denote its corresponding node in 7. Let us examine ¢ and its descendants.
Let u be a child of ¢ different from ¢, then U is a module of G’ which does not contain z. It follows
that u and its descendants are uniform. For the same reasons, the children of ¢ are uniform. For ¢ and
g, we have to distinguish 2 cases. If ¢ is an order node and z is not an extremal component of ¢’, let
S={f€C(d)|f <q lz}, where <y is the order defined by ¢’ on its children, and let S = (J;cs F.
SU{z} and (Q\ S)U{z} are modules of G'[QU {z}] = G’[Q’]. Thus, by definition, ¢ is terminal mixed,
it satisfies condition 3.(b) of Theorem 4. As Q U {z} = Q' is a module of G'[Q U {z}] = G'[Q’], Q is



single mixed. Otherwise, if ¢’ is a parallel or a series node or ¢’ is an order node but x is an extremal
component of ¢/, then @ = Q' \ {z} is a module of G’ which does not contain x. Thus, @ is uniform, it
satisfies condition 1 of Theorem 4. And since Q U {z} = Q' is a module of G'[Q U {z}] = G'[Q'], G is
terminal mixed, it satisfies condition 3.(a) of Theorem 4 with S = {¢}. Such a subset S of children of §
is unique. Indeed, since S has to be uniform, from case 1 of Section 4.1 (see Fig 4.1), S C Q. Since S is
a subset of children of ¢, then S = {q¢}.

— If 2 has a unique sibling p’ in 77 and if p’ and ¢’ have different labels (see case 2.(a) of section 4.1 and
Fig. 4.1), then P’ is a strong module of G. We denote p its corresponding node in 7'. Similarly to the
previous case, the children of ¢ different from p are uniform. In addition, P is a strong module of G’ and
P does not contain z, then p is uniform. Finally, any descendant of ¢ is uniform. As PU {z} = Q' is a
module of G'[QU{z}] = G’[Q'], and since § is mixed then it is terminal mixed, it satisfies condition 3.(a)
of Theorem 4 with S = {p}. Again, such a set S is unique. Indeed, S has to be uniform, then S C P’ or
S C(Q'\ Q). SU{z} has to be a module of G'[Q U {z}] = G'[Q'], thus S = P’ = P.

— If 2 has a unique sibling p’ in 77 and if p’ and ¢ have the same label (see case 2.(b) of section 4.1 and
Fig. 4.1), then, like above, all the descendants of ¢ are uniform. Let S = C(p’) and S = P'. SU{z} = Q'
is a module of G'[Q U {z}] = G'[Q']. As Q is mixed, it follows that it is terminal mixed, it satisfies
condition 3.(a) of Theorem 4 with S = {p}. The proof of the unicity of such a set S in the current case
is similar to the one of the previous case.

O

Corollary 1. If G + x is a directed cograph, there exists a unique mized node q such that the set of mized
nodes of T is exactly Anc(q). Node q is the unique terminal mized node, the only mized node without mized
children.

Proof of Corollary 1: If G + x is a directed cograph, then the conditions of Theorem 4 are satisfied.
Assume there exist two distinct mixed nodes ¢1 and g2 of T such that ¢1 € Anc(g2) and g2 € Anc(qr). Then
p = lca(qi, g2) is different from both ¢; and go. Let p1 (resp. p2) be the unique node in C(p)NAnc(qr) (resp. in
C(p)NAnc(gz2)). By definition of a mixed node, any ancestor of a mixed node is mixed. Since p; € Anc(q1), p1
is mixed, and similarly ps is mixed. Node p is mixed and has two mixed children, which refutes the conditions
of theorem 4.

Let ¢ be the lowest mixed node in 7. All the mixed nodes belong to Anc(q), and since any ancestor of a
mixed node is mixed, the set of mixed nodes is exactly Anc(q). O

Proof of the converse implication of Theorem 4: <= . Under the conditions of theorem 4, we build
a di-cotree T’ by inserting x in T. We show that the adjacencies induced by T between the vertices of V
are the adjacencies defined by E (also induced by T'), and the adjacencies induced by T’ between x and the
vertices of V are the relations defined by N*(x) and N~ (z). Since 7" is built using only parallel, series and
order nodes and since 7" is a modular decomposition tree, T” is a di-cotree. Moreover, since the modular
decomposition tree of a graph is unique, then 7" is the modular decomposition tree of G’ which is a directed
cograph.

As shown in the proof of Corollary 1, if the conditions of Theorem 4 are satisfied, then there exists a mixed
node g of T' such that the mixed nodes of T" are exactly the nodes on the path P; from ¢ to the root r of T'.

Lemma 1. QU {z} is a strong module of G'.

Proof of Lemma 1: Vp € Anc(q), p is mixed. If p is not the root, its parent p is mixed and has a mixed
child. Since the conditions of Theorem 4 are satisfied, p is single mixed. Thus p is the unique mixed child
of p and P U {z} is a module of G'[P]. It follows by recursion that @ U {z} is a module of G’. Let us show



that QU {x} is strong. Suppose for contradiction that there exists a module M’ of G’ that overlaps QU {x}.
Necessarily, M = M’ \ {z} # &. It follows that M is a module of G, and since @ is strong, M does not
overlap Q. Since M’ \ (Q U {z}) # &, then M ¢ Q. It follows that M NQ = and z € M’ or Q C M. In
the first case, (Q U {z})\ M’ = @ is a module of G’. In the latter case (Q C M), since M’ overlap Q U {z},
then z ¢ M’'. Thus, (Q U {z}) N M’ = @Q is a module of G'. As @ does not contain x, in both cases @ is
uniform : contradiction. |

Consequently, building 7" reduces to inserting = in T,. In this way, we obtain the desired adjacencies
between x and the vertices of V'\ Q. We now discuss how to insert x in T}, (see Fig. 4.2).

— If ¢ satisfies condition 3.(b) of theorem 4, then S U {z} and (Q \ S) U {z} are modules of G'[Q U {z}].
From Claim 2, it follows that S and @ \ S are modules of G[Q] Thus, S and C(q) \ S are composed of
consecutive children in the order defined by g. Wlog., assume that S is the lower interval in this order.
Since S U {z} is a module of G', @\ S C NT(x) and since (Q \ S) U {z} is a module of G', S C N~ (z).
Therefore, inserting the leaf I, as a child of @ between S and C(g) \ S, we obtain the wished adjacencies
between x and the vertices of Q).

— If ¢ satisfies condition 3.(a) of theorem 4, then S U {z} is a module of G’[Q U {z}]. From Claim 2, it
follows that S is a module of G[Q]. Then, vertices of @ \ S have the same adjacency relationship with x
than the one they have with the vertices of S. For this reason, and because S is uniform, we can insert
x as follows.

o If |S| > 2, we make the nodes of S children of a new node p; without changing their relative order
if label(q) = order. p; is assigned the label of q. We create a new node po which is assigned the
label corresponding to the adjacency relationship between z and the vertices of S. Formally, the
correspondence relationship between labels and types of nodes will be denoted = and is defined by:
Series = InOut, Parallel = None, Order = In and Order = Out. Note that the label of p, is necessarily
different from the one of p;, otherwise S would not be unique as required by condition 3.(a). We
make [, and p; children of ps, in the right order if label(p2) = order. Finally, ps becomes a child of
q. If g is an order node, the nodes of S are an interval of the order defined by ¢ and ps has to be
inserted in the children of ¢ in the place of this interval.

o If |S| = 1, let py be its unique element. If the adjacency relationship between x and the vertices of
P, correspond to the label of p;, then we insert [, as a child of p1, at the right place if p; is an order
node. Otherwise, we create a new node py which is assigned the label corresponding to the adjacency
between x and the vertices of P;. And we make [, and p; children of this new node, in the right
order if label(ps) = order.

One can check that inserting x in 7" in this way, we did not change the adjacencies between the vertices
of V and we obtained the wished adjacencies between x and the vertices of V. As we used only parallel,
series and order nodes, we obtained a di-cotree which is the modular decomposition tree of G'. Thus, G’ is
a directed cograph. ]

The marking process. The first step of our algorithm colours nodes of the modular decomposition tree
T according to the neighbourhood of the vertex = to be inserted. This preliminary step is a straightforward
extension of the marking process of [4].

Initially each leaf [, = {y}, such that y € N(x), is coloured red. Depending on the adjacency relationship
between y and z, these leaves are given a type: type(ly) = In if yr € E and zy ¢ E; type(l,) = Out if
zy € E and yx € E; or type(ly) = InOut if 2y € E and yx € E. The process is a bottom-up search: each red
node p forwards its type to its parent node ¢ and depending on the different types received by ¢, a colour is
given to ¢. The first time an internal node receives a type, it is coloured black. A node ¢ becomes red if all
its children have the same type (ie. the corresponding set of vertices @ is uniformly linked to x). A red node
receives the type of its children. Once a red node has forwarded its type to its parent, it becomes grey. Note
that if it happens that the root of T" becomes red, then it is coloured grey straight after. In order to prepare
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Fig. 6. Modification of the di-cotree under vertex insertion. = denotes the correspondence relationship

between labels and types of nodes.

the possible insertion of z, a list of the grey children is maintained for each node handled by the marking
process. The process ends when there are no red nodes left.

For sake of simplicity, let us say that the default colour is white. Also notice that the absence of type can
be considered as a non-adjacency type, we will use the notation type(p) = None. It is important to note,
for complexity reasons, that all the nodes visited by the marking process will have a colour different from
white, and a type different from none at the end of this step. This follows from the fact that only the leaves
which are linked to = are parsed and coloured red at the beginning of the process.

It is worth to note that a marking technique similar to the one of [4] is used in [15] to update the modular
decomposition tree of a graph under vertex insertion. The main difference between the two processes is that
in the case of general graphs [15] the leaves which are not linked to 2 need to be typed and to forward their
type to their parent, as the linked leaves do. This results in an O(n) time complexity instead of O(d(z)) time
for the cograph recognition problem [4]. The marking step of [15] has been appplied in [6] to design a fully
dynamic algorithm for recognition of permutation graphs that runs in O(n) time per update.

Type(G, T, R a set of typed red leaves)

1. While some red node p exists Do
colour(p) < grey

3 If p is not the root of T" Then

4 Let g be the parent node of p
5. Add p to the list greyChild(q)
6. Increase #type(q,type(p)) by one
7

8

9

1

o

If #type(q, type(p)) = #child(q) Then
colour(q) «— red and type(q) — type(p)
. Else colour(q) < black
0. End of while

Fig. 7. Marking process.

In our marking process, each node stores the list and the number of its grey children, and three counters
#type(q,t) for any type t € {In, Out, InOut} (eg. #type(q, In) indicates the number of children of ¢ whose
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type is In).
We claim without proofs the following basic properties of the coloured tree T¢ resulting from the marking
process. They are necessary for understanding the insertion algorithm and the production of a certificate.

Claim. The nodes of T¢ which are uniformly linked to = are exactly the grey nodes; the nodes of T'¢ which
are uniformly not linked to x are white; and the black nodes are mixed.

Remark. A white node can be mixed. And a white node is mixed iff it is linked.

It follows that the mixed nodes are white or black. The set of black nodes will be denoted B.

Lemma 2. After the marking process, a white node which is linked to x has a black descendant.

Proof of Lemma 2: Let w be a white node linked to x. Since w is white, it is not uniformly linked to x:
it is mixed. Let v be a minimal (for inclusion) mixed node of T,,. The children of v are all uniform and since
v is mixed, at least one of its children v, is uniformly linked to z. v, is grey and v is black. O

The running time of Routine Type (see Fig. 4.2) is O(d(z)), and the number of grey nodes and of black
nodes are both bounded by O(d(x)). The part of the di-cotree T parsed by Routine Type is made of the
black nodes, the grey nodes and the edges between them. First consider the tree restricted to grey nodes.
This is a forest in which the leaves are linked to x, and the internal nodes have at least two children. Since
the number of leaves is O(d(x)), so it is for the number of grey nodes. As a black node has at least one
grey child and a node has at most one parent, then the number of black nodes is also O(d(x)). Each edge of
the restriction of T to grey and black nodes is crossed at most once during Routine Type and each node is
treated in constant time. It follows that the running time of Routine Type is O(d(z)).

Testing the insertion. In order to test whether the insertion of x is possible or not, Theorem 5 expresses
the conditions of Theorem 4 in terms of coloured node. Our algorithm checks the conditions of Theorem 5
in T, considering only the colours of the nodes.

Theorem 5. Let G be a directed cograph and T its di-cotree. G + x is a directed cograph iff there exists a
black node q of T' such that:

. every black node belongs to Pj,
. any black node of P;arent(q) is a single mixed series or order node,
s a parallel node and

. any white node of P;Mem(q)

. q 1s a terminal mixed node.

Bl W DO ~

Clearly, the conditions of Theorem 5 are very close to the conditions of Theorem 4. Lemma 3 states
the correspondences, when G + z is a directed cograph, between the colour and the label of single mixed
nodes of T°. The main difference between the two theorems is that the conditions of Theorem 5 do not make
explicitly the white parallel nodes of P” to be single mixed. Lemma 4 shows that under conditions of

parent(q)

Theorem 5, the white parallel nodes of P;;arent( q) are single mixed. The fact that we do not have to check

this condition is crucial for the complexity of O(d(x)) time per insertion.

Lemma 3. Let p be a single mized node of T°. Node p is either a white parallel node, a black series node,
or a black order node.

Proof of Lemma 3: Let p be a series or order single mixed node, and f its unique mixed child. Then,
FU{z} is a module of G’[P]. It follows that any child h of p different from f is uniformly linked to x. Hence,
h is grey and p is black.

Let now p be a parallel single mixed node. Then, F'U{z} is a module of G’[P]. It follows that any child h of
p different from f is not linked to z. Hence, h is white. Since f is mixed, f is not grey, and then p is white.
O
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Lemma 4. If there exists a black node q such that any black node belongs to P, and any white node of

P;Mem(q) is parallel, then the white nodes of P, are single mized nodes.

Proof of Lemma 4: Let p be a white node of P;. Since p € Anc(q) \ {¢}, p is mixed and has a mixed child
p1 € Anc(q). Let h € C(p) \ {p1}. Assume h is linked to x, then, from Lemma 2, h has a black descendant f
which is not on the path P;": contradiction. Thus, h is not linked to x, as well as its descendants, which are
all white (see Claim 4.2). Moreover, since p is a white node of P7, pis a parallel node. Node p has a unique
mixed child p; and its other children are not linked to z. It follows that P; U{z} is a module of G'[P U {z}]:
p is single mixed. O

Thanks to the two lemmas above, we show the equivalence between the conditions of Theorem 4 and the
conditions of Theorem 5, which prove Theorem 5.

Proof of Theorem 5: — . If G 4z is a directed cograph, then the conditions of Theorem 4 are satisfied.
From Corollary 1, the mixed nodes of T induce a path from the root to a certain mixed node ¢ which
is coloured black. Indeed, g is mixed and its children are uniform, thereby, at least one of its children is
uniformly linked to x. This child is coloured grey and ¢ is coloured black. Since the black nodes are mixed,
and since, from Corollary 1, the mixed nodes lie on the path PJ, then the black nodes all belong to P;.

Condition 1 is satisfied. The conditions of Theorem 4 imply that the nodes of P;Ment(q) are single mixgd
nodes. Lemma 3 implies that the black single mixed nodes are series or order nodes, and the white single
mixed nodes are parallel nodes. Conditions 2 and 3 are satisfied. Condition 4 is the same as condition 3 of
Theorem 4.

<— . We show that if the conditions of Theorem 5 are satisfied, then the conditions of Theorem 4 are
satisfied. Since ¢ is terminal mixed, by definition, it satisfies Condition 3 of Theorem 4. Its descendants are
uniform and satisfy Condition 1 of Theorem 4. From Condition 2 of Theorem 5, the black nodes of P;Ment(q)
are single mixed. From Conditions 1 and 3 of Theorem 5, and since node ¢ is black, Lemma 4 applies. Then

the white nodes of P7 ;. are single mixed. Since P] ) contains only black or white nodes (all the

a parent(q
nodes on Pprarem(q) are mixed), the nodes of Pprarem(q) satisfy Condition 2 of Theorem 4. It follows that the
nodes of T'\ (Anc(q) U Des(q)) are uniform, they satisfy Condition 1 of Theorem 4. |

Routine Check (see Fig. 4.2) tests whether the conditions of Theorem 5 are satisfied or not. If these
conditions are satisfied, the insertion of vertex x is handled by Routine Insert. If one of them is not satisfied,
then a call to Routine Find-Certificate enables us to find a set Z of 3 vertices such that G'[Z U {x}], with
G’ = G + x, contains one of the forbidden subgraphs of Fig. 2. Routines Insert and Find-Certificate are
described further.

Let p be the current node in Routine Check. If p has already been visited (test Line 6), Condition 1 of
Theorem 5 is not satisfied and G’ is not a directed cograph. The tests of Line 7 and 8 check whether p
satisfies Condition 2 or 3 of Theorem 5. Condition 4 is tested at Line 14.

Let us detail how to perform the test that a black series or order node is single mixed (Line 8), and the
test that ¢ is a terminal mixed node (Line 14).

Let p be a black series node or a black order node. For p to be a single mixed node, all but one of its children
have to be coloured grey. If p is a series node, the children distinct from the only non-grey child ¢ should be
typed InOut. If p is an order node, the children that occur before (resp. after) ¢ in the order defined by p
have to be typed In (resp. Out).

Let ¢ be the node tested by Routine Check at Line 14. There is no constraint on the label of ¢. For any
t € {In,Out, InOut}, we denote #type(t) the number of children of ¢ typed ¢, and we denote #grey the
number of children of ¢ coloured grey. We can test whether ¢ is terminal mixed as follows.

— if ¢ is a parallel node (see Fig. 4.2): check that #type(In) = #grey or #type(Out) = Fgrey or
#type(InOut) = #grey (since in that case, if ¢ is terminal mixed, any node of S is a grey node,
where § is the set defined in condition 3.a of Theorem 4);

— if ¢ is a series node (see Fig. 4.2): check that #type(In) + #type(InOut) = |C(q)| or #type(Out) +
#type(InOut) = |C(q)| or #type(In) = #type(Out) = 0;
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Check(G, T¢, B, x)

1. bottom < r, where r is the root of T°°
2. While some node ¢ in B exists Do
3. p < q and remove ¢ from B

4. ‘While p # bottom Do

5. p < parent(p)

6. If p has been visited Then Find-Certificate(p)

7. If p is a white non-parallel node Then Find-Certificate(p)

8. If p € B is not a single mixed node Then Find-Certificate(p)
9. If p € B Then Remove p from B

10. Mark p as visited

11. End of while

12. bottom «— q

13. End of while
14. If ¢ is a terminal mixed node Then Insert(z, q, T°)
15. Else Find-Certificate(q)

Fig. 8. Testing the insertion of vertex z. T is the coloured di-cotree of G and B the set of black nodes of
Te.

1& A L

None Out None InOut None

Fig. 9. The 3 cases where g is a parallel terminal mixed node.

M IL IL

None InOut InOut InOut

Fig. 10. The 3 cases where g is a series terminal mixed node.
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— if g is an order node (see Fig. 4.2): first, test if either #type(InOut) + #type(In) + #type(Out) = |C(q)|
or #type(InOut) = 0. Then check whether the first (wrt. the relative order of ¢) #type(In) children of
q are typed In and the last #type(Out) are typed Out.

1. 2.
q q
In None Out In InOut  Out

Fig. 11. The 2 cases where ¢ is an order terminal mixed node.

Testing if a black series node p is single mixed is performed in constant time. If p is an order node, we need
to parse its children only if [C(p)| = #grey + 1 (otherwise, p is not single mixed), then it takes O(d(x))
time. The test whether ¢ is terminal mixed is performed in constant time when ¢ is series or parallel. If
q is an order node, the test uses two searches in the list of children of ¢q. The first search checks whether
the first #type(In) children of ¢ are typed In and the second search checks whether the last #type(Out)
children of ¢ are typed Out. If a white node is encountered by any of the two searches, then the search stops.
Consequently, only the grey children of ¢ are visited plus eventually one white node. Since the number of
grey nodes is O(d(z)), Routine Check runs in O(d(x)) time.

Inserting a vertex. When Routine Check determines that G + z is a directed cograph, Routine Insert
has to perform the insertion of x in the di-cotree T of G in order to obtain the di-cotree T’ of G’ = G + x.
In this case, the conditions of Theorem 4 are satisfied. Let ¢ be the only terminal mixed node (the bottom
node in Routine Check). From Lemma 1, Q U {z} is a module of G’. Tt follows that the modifications occur
in the subtree T}, of T rooted at g. The update of T is made exactly as described in the proof of Theorem 4,
and depicted in Fig. 4.2. Note that when the insertion is possible, set S of Theorem 4 is determined by
Routine Check. As for the vertex deletion, to update the di-cotree in case 3.a when |S| > 2 (see Fig. 4.2),
we have to carefully handle the moving of non-neighbourhood of x. If the nodes of S have no type, then we
disconnect the nodes of C(p) \ S from p and reconnect them on a new node; otherwise, the disconnection-
reconnection manipulation is applied to the nodes of S.

At this point, we have to distinguish the di-cotree, which is a mathematical concept, from its represen-
tation in memory. The main difference between the two is that the list of children of a node p used in the
representation induced an order on the children of p which is not relevant when p is a parallel or series node.
In the previous paragraph, we described how to maintain the di-cotree (ie. the parent relationship) but we
do not precise how to maintain a representation of the di-cotree as it is straightforward to imagine a way
to do so. We will now show how to maintain a factorising permutation and the pointers from the nodes of
the di-cotree toward it. Doing so, we will also update the representation of the di-cotree (the representation
resulting from the update of the di-cotree described in the previous paragraph) so that we keep the property
that the factorising permutation is the order in which we encounter the leaves of T” in the depth first search
respecting the orders of the lists of children in the representation.

Updating the factorising permutation, the pointers from the node of the di-cotree toward it, and the
di-cotree representation can be done in O(d(z)) time. We show, as an example, how to deal with this update
in the case where the terminal mixed node ¢ satisfies condition 3.a of Theorem 4 and |S| > 2. The other
cases are simpler since, in those cases, there is no need to sort the children of ¢ before inserting x in the
factorising permutation. In the following, p; and ps denotes the nodes introduced in the proof of the converse
implication of Theorem 4 (page 9), and depicted in Fig. 4.2.

— ¢ is a parallel node (see example depicted in Fig. 4.2), we move node ps to the beginning of the list of
children of gq. Then, for each child u of p1, we cut its corresponding interval in the factorising permutation,
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1. Before updating the di-cotree. 2. After updating the di-cotree. 3. After updating the representation
of the di-cotree, the factorising
permutation and the pointers.

Factorising permutations

Fig. 12. Modification of the data structure under vertex insertion. ¢ is the terminal mixed node and
S = {s1, s2,83}. The pointers are depicted as lines (dash lines for leaf  and nodes p; and p2) from the
nodes to the factorising permutation.

and move it to the beginning of the interval of ¢, and we move u to the beginning of the list of children
of py. This guarantee the desired complexity since, in that case (¢ parallel), the children of p; are grey
and thus, their number is O(d(x)). p; is assigned the first pointer of its last moved child and the second
pointer of its first moved child.

e If py is labelled order and x is its first child, then z is inserted in the factorising permutation before
the first vertex of P, and py is assigned pointers toward x and the last vertex of P;. Vertex z is
moved to the beginning of the list of children of p,.

e Otherwise, z is inserted, in the factorising permutation, after the last vertex of P;, and po is assigned
pointers toward the first vertex of P; and x. Vertex x is moved to the end of the list of children of
p2.

— If ¢ is a series node, we proceed similarly. We move node ps to the beginning of the list of children of
q. To guarantee the complexity, we cannot handle the children of p; which may be white. Instead, for
each child of ¢ different from ps, we cut its corresponding interval in the factorising permutation, and
move it to the end of the interval of q. The placement of z and the pointers of ps are the same as in the
previous case.

— If g is an order node, the order of the children of ¢ does not need to be changed. Node p; is assigned
the first pointer of the first node of S, and the second pointer of the last node of S. Vertex z is inserted
after the last vertex of P;, and p, is assigned the first pointer of p; and a pointer toward z. Vertex x is
moved to the end of the list of children of pa.

Updating the number of children of the nodes of the di-cotree takes constant time. In case 3.a when
|S] > 2, if the nodes of S are linked to z, we know their number thanks to the counters used in the marking
process. If the nodes of S are not linked to z, the nodes of C(q) \ S are linked and their number is known. In
both cases, by difference, we deduce both |S| and |C(q) \ S|. Thus we can set the number of children of g, p;
and po to their right values. The other cases are even simpler.

Finding a certificate. To avoid a heavy case by case analysis, we present a version of Routine Find-Certificate(p)
which does not provide an exact certificate, but a set of 4 vertices which contains a forbidden graph of Fig. 2.

Lemma 5. If G' = G+ x is not a directed cograph, a set Z = {a,b,c} of 3 vertices can be found in O(d(x))
time such that G'[Z U {z}] contains one of the graphs of Fig. 2.

For each call to Find-Certificate, we show on 2 examples how to find a minimal certificate from the
set Z returned. One can complete the case analysis and ensure that it is always possible to find a minimal
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forbidden subgraph within the same complexity.

Assume Routine Find-Certificate(p) is also given the parameters Pj ;.. and PP where bottom and ¢
are the nodes respectively defined at Line 12 and 2 of Routine Check. Thanks to the lists of grey children
for each node of T° and the factorising permutation, the search is processed in O(d(z)) time. The call to
Find-Certificate occurs: at Line 6, if the current node p has already been visited before; at Lines 7 and 8,
if node p is not a single mixed node; at Line 15, if the last visited node ¢ is not terminal mixed. For each
call, we show how to find the 3 vertices a, b, c of Z.

The black nodes do not induce a path from the root (Line 6). In that case, p has to be a parallel node,
otherwise, Check would have found out that p is not a single mixed node, since p has at least two mixed
children. These two mixed children have already been visited by Routine Check. They are the child A of p
on the path Py, ., and the child A’ of p on the path P}. Nodes h and h’ are black, otherwise, Check would
have stopped before since they are not parallel. Thus, they both received a type from a grey child, say k and
k' respectively. Let a be a vertex of K and b be a vertex of K’. Finally, since i’ is mixed and &’ is uniform,
a vertex ¢ € H' \ K’ such that type(c) # type(b) exists. See examples on Fig. 4.2.

/p parallel / \parallel
k/ K k/ k'/\
n bAvc A AR
\ el o A

Fig. 13. Since p is a parallel node, k' is either a series or an order node. Assume that h’ is a series node,
therefore bc and cb exist. In the first example, the certificate is induced by {b,c,z}, in the second by
{a,b,c,x}.

The current node is not single mized (Line 7 or 8). Let p be the node currently visited by Algorithm Check.

If we are in the first occurrence of the internal loop (Lines 4 - 11), then p is the parent of the node ¢ we
chose among the black nodes remaining in B, at Line 2. Thus, p has a black child. If we are not in the first
occurrence of the internal loop then, during the previous occurrence of the loop, a node h has been visited.
If h is not black, then it is a white parallel node, otherwise the algorithm would have stopped while visiting
h. It follows that h has a black child. Indeed, if h has a visited child h’, h’ is series, since h is parallel, and
h' is black, since the algorithm did not stop while visiting h’. Otherwise, h has been visited during the first
occurrence of the internal loop and has a black child which is the node ¢ chosen among the nodes of B at
Line 2 to initialise the internal loop. We proved that p either has a black child or a black grand-child, denoted
h. Let b be a vertex of a grey child of h. And let ¢ be a vertex of H such that type(c) # type(b).
If p is not single mixed, then there exists k € C(p) \ {¢} such that type(k) does not correspond to the label
of p. More precisely, if p is a parallel node, type(k) # None; if p is a series node, type(k) # InOut; and if p
is an order node, type(k) # In (resp. type(k) # Out) and k is before (resp. after) ¢ in the relative order of
C(p). Let a be a vertex of K whose type does not correspond to the label of p. Note that if p is a parallel
node, k is uniformly linked to x and any vertex a € K suits. See examples on Fig. 4.2.

The bottom node is not terminal mized (Line 15). At this stage of the algorithm, we checked that the
black nodes are on a path PJ" from a node ¢, the bottom node, to the root r of T'. Since g is the lowest black
node, its children are grey or white. Lemma 2 implies that the white children of ¢ are uniform. The call to
Find — certi ficate occurs when ¢ is not terminal mixed.

— If q is a parallel or series node
Then ¢ has two children k¥ and k" of different types, such that their types are different from the one
corresponding to label(q).
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Fig.14. In Case A., since type(c) # Out, G'[{a,c,x}] is a certificate. In Case B. G'[{a,b,c,z}] is a
certificate.

— If ¢ is an order node
If ¢ has a grey child typed InOut and a white child, let k¥ and k" respectively be these children. Otherwise,
¢ has two children k and k&’ with k£ < &’ and one of the following conditions is true:
e type(k) = Out and type(k’) = In
o type(k) = Out and type(k’) = none or InOut
o type(k) = none or InOut and type(k') = In

We choose a € K and b € K'. For this call to find certificate, ¢ is not necessary, since G'[{a, b, x}] is an exact
forbidden graph of Fig. 2. See examples on Fig. 4.2.

A. a Series B. q Order
k k' p k'

a*+—>»p

™~

X X

Fig.15. In Case A., since type(k) = In and type(k’) = None, G'[{a,b,z}] is a certificate. In Case B.,
since type(k) = Out, type(k’) = InOut and k < k' in the order defined by ¢, then G'[{a,b,z}] is a
certificate.

For each call to Find-Certificate, the set Z described above can be found in O(d(x)) time. We parse
the tree from the node p on which the call occurs, and we consider a constant number of nodes which are
children or grand-children of p. For each node considered, we make at most one search in its grey children,
and at most one search in its corresponding segment in the factorising permutation. This latter search could
threaten the required complexity of O(d(z)). Fortunately, for any search in the factorising permutation, we
look for a vertex whose type is different from a specified type which can be I'n, Out or InOut, but not None.
It follows that all the nodes visited by this search, but eventually the last one, are linked to z. Note that
the pointers from the nodes to the factorising permutation are useful to grant access to the set of vertices

represented by any node in constant time. As announced, the complexity of Routine Find-Certificate is
O(d(z)) time.

5 Dynamic arc operations

In this section, we show how to handle arc modifications in O(1) time. We only present how to handle arc
deletion. Completing and adapting the argument of [16], we obtain, from the deletion algorithm, an insertion
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algorithm having the same complexity. Since the family of directed cographs is closed under complementation,
the graph G + zy is a directed cograph iff the graph G — xy is. Similarly, a certificate that G — xy is not
a directed cograph, is a certificate for G 4+ xy. The di-cotree of the complement of a directed cograph G is
obtained from the di-cotree of G by changing parallel nodes into series nodes, and conversely, and reversing
the order of the children of each order node. The data structure we use allows to make these changes in
constant time for each node of the di-cotree. Since our arc deletion algorithm is based only on the di-cotree,
it can be adapted to handle arc insertion within the same complexity.

5.1 Deleting an arc.

Two types of arc based modifications should be distinguished. The first one concerns the simultaneous
removal of two symmetric arcs, say xy and yz. This modification can be compared to the deletion of an edge
in an undirected cograph, see [16]. The proof of Theorem 4 in [16] is perfectly adaptable to the more general
case of directed cographs (and to the case of deletion thanks to the discussion above). Let g, (resp. ¢,) be
the child of ps, containing x (resp. y). Recall that pg, is defined as the lca of z and y in T.

Theorem 6. The graph G' = G — {zy,yx} is a directed cograph iff |Q| = 1 and Q, \ {y} C N(y) or
|Qyl =1 and Q; \ {z} C N().

Theorem 7 extends Theorem 6 so that any valid arc modification of a directed cograph can be charac-
terised. Recall that My, is the minimum module of G containing x and y (M, C P.,).

Theorem 7. The graph G' = G — zy is a directed cograph iff

1. pay is an order node, Myy = Q2 U Qy, and:
(a) either |Qz| =1 and Qy \ {y} € N(y),
(b) or |Qy] = 1 and Q. \ {z} C N(x).

2. pxy 1S a series node and:

(a) either |Qu| =1 and Q, \ {y} S Nt (y)\ N~ (y),
(b) or|Qy =1 and Q, \{z} SN~ (z) \N*(x

~—

Proof of Theorem 7: We consider only the subgraph G[M,,] of G induced by M,,. Indeed, since My,
contains both = and y, then M,, is also a module in G’ = (V, E’), where E' = E \ {zy}. It follows that
G' = (V,E') is a directed cograph iff G'[My,] is.

= . Since the modules of G’ containing both z and y are exactly the modules of G containing both x and
y, then M, is also the minimum module of G’ containing both = and y. It follows that the maximal strong
module @}, of G'[My,] containing z and the maximal strong module @;, containing y are distinct. We denote
Pl for the root of the modular decomposition tree of G'[M,,].

If pyy is an order node, My, = qughgqy H where < denotes the order on the children of p,,. After the
deletion of the arc zy,  and y are not linked. Since @/, and @, are distinct strong modules of G'[M,,], from
Theorem 3, it follows that @}, and @ are connected components of G'[M,,]. Then, p, is a parallel node
and its children are exactly ¢; and g, since My, is the minimal module of G'[M,] containing = and y. We
now show that, in fact, ¢, and ¢, are the only children of p,,. Assume for contradiction that 3k € C(pay)
such that ¢, < h < gy. Let u € H, both zu and uy belong to E, and so to E’, which refutes that @/, and
Q;, are distinct connected components of G'[My,]. Thus, M., = Q. U Q. Let u € Q, \ {z}. uy belongs to
E, and so to E', then u belongs to the connected component Q;, of y in G'[My,]. It follows that u € N(z).
Similarly, any v € Q, \ {y} belongs to Q, and v € N(y). Finally, assume there exist both u € Q, \ {z}
and v € @y \ {y}. As we showed above, in G'[M,,], u is in the connected component @ of y and v in
the connected component Q! of x, which are distinct. But uv belongs to E, then wv belongs to E’. This
refutes that @), and @, are distinct connected components of G'[M,,]. Thus, if G’ is a directed cograph,
Qu\ o} =D or @\ {y} = 0.

If pay is a series node, then My, = Q. U Qy. After the deletion of the arc zy, = and y are linked by the arc
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yz. Since @, and @, are distinct strong modules of G'[M,], from Theorem 3, it follows that @/, and Q, are
order components of G'[M,]. @y is the first, and @', the last, in the order induced by p;,,. Let u € Q. \ {z},
since both uy and yu belong to F, and so to E’, then u is in the order component Q; of y. It follows that
uw € N~ (x). Similarly, any v € Q, \ {y} belongs to Q’, and then v € NT(y). Finally, assume there exist both
u € Qz\{z} and v € @, \ {y}. As we showed above, in G'[My,], u is in the order component Q;, of y and v
in the order component @/, of x, which are distinct. But uv and vu belong to E, then uv and vu belongs to
E'. This refutes that @, and @, are distinct order components of G'[My,]. Then, if G' is a directed cograph,
Qu\ {x} =D or @, \ {3} = 0.

<= . We show that under conditions of Theorem 7, G'[M,,] is a directed cograph (see Fig. 5.1).

If psy is an order node and |Q,| = 1, {x} is an order component of G[M,,]. Since Q, \ {y} C N(y), after
the deletion of zy, y is disconnected from z and {y} becomes a connected component of G'[M,,]. The
other connected component is {z} U (Q, \ {y}) = @, and {z} is in order composition with @, \ {y}. Since
G' QL \{z}] = G]Qy\{y}] is a directed cograph, then G'[M,,] is a directed cograph. The case where |Q,| =1
is similar.

If p,y is a series node and |Q;| = 1, {z} is a co-connected component of G[M,,]. Since @, \ {y} C
N7T(y)\ N~ (y), after the deletion of xy, = belongs to NT(y)\ N~ (y) and {y} becomes an order component
of G'[M,,]. The other order component is {z} U (Qy \ {y}) = Q) and {z} is in series composition with
Qy \ {y}. Since G'[Q} \ {z}] = G[Qy \ {y}] is a directed cograph, then G’'[M,,] is a directed cograph. The

case where |Q,| = 1 is similar. ]
Series Order Series
X, parallel X paralel X Order
gy KBy R
Casea Caseb. Casec.
Series Order Series
‘\paralle! parLlld\ Order
y  Series y Order y  Series
X pardlel X  paralel x  Order

Fig. 16. Case a. illustrates the modification implied by the simultaneous removal of two symmetric arcs
(see Theorem 6); cases b. and c. illustrate the removal of the arc zy described in Theorem 7. Depending
on the number of siblings of y, the resulting di-cotrees may contain fewer nodes than depicted above.

It is straightforward from Theorem 6 and 7 that the deletion test can be done in O(1). Indeed, x and y
have to be either the child and the grand-child of p,,, or two children of p,,. Then, it suffices to check the
label of p;, and eventually of its child g, which is the parent of y. At last, if p,, is an order node, its children
¢z and g, have to be consecutive in the order defined by p.,. If the deletion is possible, the modifications of
the di-cotree are carried out in constant time, as depicted in Fig. 5.1.

5.2 Finding a certificate.

Assume the test of the zy deletion (or the deletion of symmetric arcs zy and yz) fails. As done for the vertex
certificate, our algorithm returns a small subgraph containing one of the graphs of Fig. 2. Thanks to the
factorising permutation, the vertices of this subgraph can be found in constant time. If an exact certificate
is wished, it can be found in O(Maz(d(x),d(y))) time.
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Lemma 6. If G' = G —xy is not a directed cograph, a set Z of at most 6 vertices can be found in O(1) such
that G'[Z U {x,y}] contains one of the graphs of Fig. 2.

The same set Z of vertices, described bellow, also provides a certificate in the case where the deletion of
symmetric arcs zy and yz fails. In the following, we do not detail this case which is very similar to the case
of deletion of a single arc zy.

Fig.17. A possible configuration for Z.

Let us describe how the set Z is defined. Let p, (resp. p,) be the parent of = (resp. y) in T If p, # r
(vesp. py # 1), let g5 (resp. q,) be the parent of p, (resp. py) in T. If ¢, # r (resp. q, # ), let ky (resp.
ky) be the parent of ¢, (resp. gy) in 7. Let us define 6 vertices, namely az, by, ¢, and ay, by, ¢,. Vertex a,
belongs to P, \ {z} and if p, is an order node and if [, is not the last order component, then choose for a, a
vertex in the order component immediately following [, in the order defined by p,. Vertices b, and ¢, belong
respectively to @, \ Py and K \ Q, if these sets exist. The last 3 vertices ay, by, ¢, are similarly defined wrt.
y. If possible, a, should be picked in the order component immediately preceding y in the order defined by
py. Note that, even if they exist, these vertices may not be all distinct (e.g. it may happen that a, = ¢,).

The table in Fig. 5.2 synthesis the case by case analysis to find out a forbidden graph of Fig. 2, in the
case where lca(x,y) is a series node. The case where lca(x,y) is an order node is similar. Let us examine in
details, as an example, the case where lca(x,y) is a series node, where neither x nor y is a child of lca(z,y),
and where p, is a parallel node (first line of the table). In this case, since p, is parallel, there are no arcs
between z and a,. There are arcs in both directions between a, and y, because lca(ay,y) = lca(z,y) is
labelled series. And after the deletion of arc xy, = and y are linked by an arc from y to x. Thus, vertices

az,x,y induced the following forbidden graph: & y x

Obviously, vertices ag, by, €z, ay, by, ¢y, can be found in constant time. If an exact certificate is wished, we
need to find the lca of  and y. Since it may happen that this node is not among pg, ¢z, kz, Py, Gy, ky (cf.
Fig 5.2), it may take O(Maz(d(x),d(y))) time to find it. Once lca(z, y) has been found, examining the labels
of Pz, Gz, Kz, Py, qy, ky and lea(x,y), it is possible to determine in constant time a subset 7 of Z such that
G'[Z U {x,y}] is a minimal forbidden subgraph.
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