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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Introduction

Overview of This Presentation

Frameworks: the models we will talk about
• Thomas modeling (historically widespread)
• Asynchronous Automata Networks (generalization)

Exhaustive analyses: classical model-checking approaches with a high complexity
• Modal logic with an explicit fixed point: μ-calculus
• Logic programming: Answer Set Programming

Static analyses: approximations of the dynamics for lower complexity
• Classical results of static analysis
• Abstract interpretation: a finer approach
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Frameworks

Abstractions of the Representation
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Frameworks ◦ René Thomas Modeling

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}

• A set of discrete expression levels for each component a ∈ Fa = J0; 2K
• The set of global states F = Fa × Fb × Fz

• Signs on the edges a +−→ z

or signs + thresholds a 2,+−−→ z

• Discrete parameters / evolution functions f a : F→ Fa

a f b(a)
0 0
1 1
2 1

z b f a(z, b)
0 0 1
0 1 0
1 0 1
1 1 2

a b f z (a, b)
0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

z

a

b
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Frameworks ◦ Asynchronous Automata Networks

Asynchronous Automata Networks (AAN)
Enriched Process Hitting (PH)

Model from [François et al. in Molecular Systems Biology, 2007]
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Frameworks

State-graph

The state-graph depicts the whole dynamics
Computation: exponential in the size of the model

000 010 001 011

100 110 101 111

200 210 201 211

abz

Attractor = minimal set of states from which the dynamics cannot escape

• Stable state (state with no successors)
• Complex attractor (loop or composition of loops)
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Frameworks

Translations Between AAN and Thomas Modeling
[Folschette et al., Theoretical Computer Science, 2015a]

[Folschette et al., CS2Bio’13, 2013]
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• Asynchronous Automata Networks encompass Thomas modeling
• Mutual translations developed
• Results are also mutually applicable
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Frameworks

The Reachability Problem
[Paulevé et al., Mathematical Structures in Computer Science, 2012]
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• Initial state
〈a1, b0, c0, d0〉

• Objective
[ d2 ]

→ Concretization of the objective = scenario

a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Exhaustive Dynamic Analyses ◦ Analysis with μ-calculus

The Polyadic μ-caculus

Polyadic
μ-calculus

Multiple dynamical tokens

Modal
μ-calculus

Explicit fixed points

CTL*

CTL LTL
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Exhaustive Dynamic Analyses ◦ Analysis with μ-calculus

The Modal μ-calculus

LTL: Implicit fixed point of the “Until” operator
p U q ≡ “Either q, or p and the next state also verifies p U q”

(Modal) μ-calculus makes such fixed points explicit

ϕ = p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | �ϕ | µX .ϕ | νX .ϕ | X

• Basic property: p (“p is verified in this node”)
• Modal operators: � (“for all successors”), ♦ (“there exists a successor”)
• Fixed points: µ (least fixed point), ν (greatest fixed point)

Polyadic (modal) μ-calculus allows to manipulate several tokens in parallel

ϕ = pi | i ← j | i = j | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦iϕ | �iϕ | µX .ϕ | νX .ϕ | X

Token manipulations:
• i = j (“make tokens i and j point to the same node”)
• i ← j (“move token i to the position of token j”)
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Exhaustive Dynamic Analyses ◦ Analysis with μ-calculus

Applications of the Polyadic μ-calculus

c
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f

0 1

a

0

1

Objective: Unify formulas for many dynamical problems
Not always possible with classical temporal logics (LTL, CTL, CTL∗):

1) From the initial state (a, b, z) = (0, 0, 0), is it possible to reach z = 2?
(a = 0 ∧ b = 0 ∧ z = 0)⇒ EF(z = 2)

2) Does (0, 0, 0) belong to an attractor?
(a = 0 ∧ b = 0 ∧ z = 0)⇒ N⊥ ∨ AG(EF(a = 0 ∧ b = 0 ∧ z = 0))

3) What is the set of attractors of the model?
??? — Requires a quantification on the set of all states

Idea: Use polyadic μ-calculus with one token per automata
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Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Exhaustive Dynamic Analyses ◦ Analysis with μ-calculus

Search for Attractors with Polyadic μ-calculus

= belongs to
an attractor

ϕatt = {y ← x}νW .(µZ . (x = y) ∨ (♦xZ ))︸ ︷︷ ︸
ϕreach

∧ (�xW )

︸ ︷︷ ︸
ϕexplore

• JϕreachK = {(s; t) | s →∗ t}
ϕreach ≡ “There exists a path from x to y”

• JϕexploreK = {(s; t) | ∀s′, s →∗ s′ ⇒ s′ →∗ t}
ϕexplore ≡ “All successors of x can reach y”

• JϕattK = {(s; s) | ∀s′, s →∗ s′ ⇒ s′ →∗ s}
ϕatt ≡ “x belongs to an attractor”

Maxime FOLSCHETTE 12/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Exhaustive Dynamic Analyses ◦ Analysis with μ-calculus

Search for Attractors with Polyadic μ-calculus

= belongs to
an attractor

ϕatt = {y ← x}νW .(µZ . (x = y) ∨ (♦xZ ))︸ ︷︷ ︸
ϕreach

∧ (�xW )

︸ ︷︷ ︸
ϕexplore

• JϕreachK = {(s; t) | s →∗ t}
ϕreach ≡ “There exists a path from x to y”

• JϕexploreK = {(s; t) | ∀s′, s →∗ s′ ⇒ s′ →∗ t}
ϕexplore ≡ “All successors of x can reach y”

• JϕattK = {(s; s) | ∀s′, s →∗ s′ ⇒ s′ →∗ s}
ϕatt ≡ “x belongs to an attractor”

Maxime FOLSCHETTE 12/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Exhaustive Dynamic Analyses ◦ Analysis with μ-calculus

Search for Attractors with Polyadic μ-calculus

= belongs to
an attractor

ϕatt = {y ← x}νW .(µZ . (x = y) ∨ (♦xZ ))︸ ︷︷ ︸
ϕreach

∧ (�xW )

︸ ︷︷ ︸
ϕexplore

• JϕreachK = {(s; t) | s →∗ t}
ϕreach ≡ “There exists a path from x to y”

• JϕexploreK = {(s; t) | ∀s′, s →∗ s′ ⇒ s′ →∗ t}
ϕexplore ≡ “All successors of x can reach y”

• JϕattK = {(s; s) | ∀s′, s →∗ s′ ⇒ s′ →∗ s}
ϕatt ≡ “x belongs to an attractor”

Maxime FOLSCHETTE 12/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Exhaustive Dynamic Analyses ◦ Analysis with μ-calculus

Search for Attractors with Polyadic μ-calculus

= belongs to
an attractor

ϕatt = {y ← x}νW .(µZ . (x = y) ∨ (♦xZ ))︸ ︷︷ ︸
ϕreach

∧ (�xW )

︸ ︷︷ ︸
ϕexplore

• JϕreachK = {(s; t) | s →∗ t}
ϕreach ≡ “There exists a path from x to y”

• JϕexploreK = {(s; t) | ∀s′, s →∗ s′ ⇒ s′ →∗ t}
ϕexplore ≡ “All successors of x can reach y”

• JϕattK = {(s; s) | ∀s′, s →∗ s′ ⇒ s′ →∗ s}
ϕatt ≡ “x belongs to an attractor”

Maxime FOLSCHETTE 12/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Exhaustive Dynamic Analyses ◦ Analysis with μ-calculus

Conclusion on Polyadic μ-calculus

Properties expressed so far:
• Enumeration of attractors
• Enumeration of switches
• Bisimulation between two models (regarding a set of observables)
• Highlighting Zeno behaviors

Aim: Unification of properties without quantifiers

Complexity: Exponential (equivalent to building the state graph)

Outlooks:
• New formulas
• Implementation
• Generate μ-calculus formulas? (More readable interface)
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Answer Set Programming

Answer Set Programming (ASP): Declarative & logic programming

Rule: head ← body .
“If body is true, then head must be true (usual logical consequence)”

Fact: head .
“head is always true”

Constraint: ⊥ ← body .
“If body is true, it invalidates the whole answer set”

Example:
node(a). node(b). node(c).
edge(a, b). edge(b, c). edge(a, c).
edge(X ,Y )← edge(Y ,X).

a

bc

Solving: Finding the minimal set of atoms satisfying the problem
node(a) node(c) node(b)
edge(a,b) edge(b,c) edge(a,c)
edge(b,a) edge(c,b) edge(c,a)
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Answer Set Programming

Cardinalities: min { atom : enum } max ← body .
• Enumerates all atoms of the form atom according to the variables of enum
• Keep between min and max possibilities
• Creates as many answer sets as there are combinations

General method:
1) Enumerate of all candidate combinations using cardinalities

color(red). color(green). color(blue).
1 { attrib(X ,C) : color(C) } 1← node(X).

Answer set 1: attrib(b,red) attrib(c,red) attrib(a,red)
Answer set 2: attrib(b,red) attrib(c,red) attrib(a,blue)
Answer set 3: attrib(b,red) attrib(c,green) attrib(a,blue)

... (27 answer sets)

2) Filter out the undesired candidates using constraints
⊥ ← attrib(X ,C), attrib(Y ,C), edge(X ,Y ).

Answer set 1: attrib(b,green) attrib(c,blue) attrib(a,red)
Answer set 2: attrib(b,green) attrib(c,red) attrib(a,blue)
Answer set 3: attrib(b,blue) attrib(c,green) attrib(a,red)

... (6 answer sets)
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ASP for Model-checking
[Ben Abdallah, Folschette, Roux, Magnin, BIBM’15, 2015]

Usage: Describe the problem instead of its resolution

Stable states enumeration
1) Describe the model with facts (automata, actions)
2) Describe what a playable action is with rules
3) Enumerate all states with cardinalities
4) Filter out states with a playable action

Reachability analysis (reaching a given state)
1) Describe the model with facts (automata, actions, initial & target states)
2) Create the dynamics:

• describe playability with rules
• enumerate potential futures with cardinalities and constraints

3) Filter out paths that don’t end in the target state
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Conclusion on ASP for Model-checking
[Ben Abdallah, Folschette, Roux, Magnin, BIBM’15, 2015]

Complexity: Exponential (exhaustive computation of the dynamics)
But strong heuristics that give good results

Models Stable states Reachability analysis
Name States ASP libddd1 GINsim2 ASP
egfr20 264 0.017s 1min 55s 2min 32s 12s

tcrsig40 273 0.021s ∞ ∞ 4min 28s

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]
2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]
egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]

Pros: Very flexible (programming language),
The complexity taken care of by the solver

Outlooks:
• New properties to check (reverse reachability, Eden gardens)
• Optimizations (exclude cycles)
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Static Analysis of Thomas Modeling
[Thomas, Numerical Methods in the Study of Critical Phenomena, 1981]

Conjectures of René Thomas:

• Multiple stable states ⇒ positive cycle in the graph
• Sustained oscillations (complex attractor) ⇒ negative cycle in the graph
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Proofs: [Remy, Ruet & Thieffry, Advances in Applied Mathematics, 2008]
[Richard, Advances in Applied Mathematics, 2010]
[Richard & Comet, Discrete Applied Mathematics, 2007]
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Static Analysis of Thomas Modeling
[Thomas, Numerical Methods in the Study of Critical Phenomena, 1981]

[Paulevé & Richard, Electronic Notes in Theoretical Computer Science, 2012]

Contrapositives:
• No positive cycle in the graph ⇒ The stable state (if any) is unique
• No negative cycle in the graph ⇒ No complex attractor (only stable states)

Other results:
• Lower & upper bounds of the number of attractors
• Functionality of the cycles
• Sufficient condition for no stable state
• Topological stable states

Complexity: Usually very low (searching for all cycles)

Limitations: Very broad results on the dynamics
(cannot predict the evolution of one particular component)

→ Need for more precise methods

Maxime FOLSCHETTE 19/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Static Analyses ◦ Static Analysis by Abstract Interpretation

Over- and Under-approximations
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

→ Directly checking R is hard (exponential)
→ Rather check approximations P and Q so that: P ⇒ R ⇒ Q

Computing P or Q is much simpler (roughly polynomial)

Exact solution

R
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]
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0

1

f

0 1
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0

1

• No conflict
• All leaves are ∅

a1 a0 �∗ a1 {c0, f1}

f1

c0

f1 �∗ f1 ∅

c0 �∗ c0 ∅

{c0, f1} → a0 � a1
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]
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Implementation of the Abstract Interpretation
Complexity:

• Computation of the local causality graph:
• Polynomial in the number of automata
• Exponential in the number of local states of each automata (usually very low, max. 4)

• Analysis of the graph (sufficient condition):
• Polynomial in the size of the abstract graph

• Enumeration of the subsets of solutions (if needed):
• Exponential in the size of the abstract graph

→ Very efficient on biological networks: many components with few local states

Model Automata Actions States libddd1 GINsim2 PINT3

egfr20 35 670 264 <1s 0.02s
tcrsig40 54 301 273 ∞ 0.02s
tcrsig94 133 1124 2194 [>1min – ∞] 0.03s
egfr104 193 2356 2320 [>1min – ∞] 0.16s

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]
2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]
3 Loïc Paulevé [http://loicpauleve.name/pint/]
egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tcrsig40 : T-Cell Receptor (40 components) [Klamt et al., 2006]
tcrsig94 : T-Cell Receptor (94 components) [Saez-Rodriguez et al., 2007]
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Summary & Conclusion

• Discrete modeling = coherent abstraction of real biochemical phenomena
→ Discrete Networks / Thomas modeling
→ Asynchronous Automata Networks
→ ...And other extensions related to Asynchronous Automata Networks

• Polyadic μ-calculus
→ More generic than CTL*
→ Examples: enumeration of attractors, switches, bisimulation...
→ Ongoing implementation

• Answer Set Programming
→ Logic programming works!
→ Powerful heuristics giving good performances

• Static analysis by abstract interpretation
→ (Only) reachability properties (CTL operator EF)
→ Very efficient (polynomial complexity)
→ Broad range of models (translations of Thomas models)

Maxime FOLSCHETTE 25/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Summary & Conclusion

Summary & Conclusion

• Discrete modeling = coherent abstraction of real biochemical phenomena
→ Discrete Networks / Thomas modeling
→ Asynchronous Automata Networks
→ ...And other extensions related to Asynchronous Automata Networks

• Polyadic μ-calculus
→ More generic than CTL*
→ Examples: enumeration of attractors, switches, bisimulation...
→ Ongoing implementation

• Answer Set Programming
→ Logic programming works!
→ Powerful heuristics giving good performances

• Static analysis by abstract interpretation
→ (Only) reachability properties (CTL operator EF)
→ Very efficient (polynomial complexity)
→ Broad range of models (translations of Thomas models)

Maxime FOLSCHETTE 25/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Summary & Conclusion

Summary & Conclusion

• Discrete modeling = coherent abstraction of real biochemical phenomena
→ Discrete Networks / Thomas modeling
→ Asynchronous Automata Networks
→ ...And other extensions related to Asynchronous Automata Networks

• Polyadic μ-calculus
→ More generic than CTL*
→ Examples: enumeration of attractors, switches, bisimulation...
→ Ongoing implementation

• Answer Set Programming
→ Logic programming works!
→ Powerful heuristics giving good performances

• Static analysis by abstract interpretation
→ (Only) reachability properties (CTL operator EF)
→ Very efficient (polynomial complexity)
→ Broad range of models (translations of Thomas models)

Maxime FOLSCHETTE 25/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Summary & Conclusion

Summary & Conclusion

• Discrete modeling = coherent abstraction of real biochemical phenomena
→ Discrete Networks / Thomas modeling
→ Asynchronous Automata Networks
→ ...And other extensions related to Asynchronous Automata Networks

• Polyadic μ-calculus
→ More generic than CTL*
→ Examples: enumeration of attractors, switches, bisimulation...
→ Ongoing implementation

• Answer Set Programming
→ Logic programming works!
→ Powerful heuristics giving good performances

• Static analysis by abstract interpretation
→ (Only) reachability properties (CTL operator EF)
→ Very efficient (polynomial complexity)
→ Broad range of models (translations of Thomas models)

Maxime FOLSCHETTE 25/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods

Bibliography
• René Thomas. On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple
Steady States or Sustained Oscillations. In Jean Della Dora, Jacques Demongeot and Bernard Lacolle, editors:
Numerical Methods in the Study of Critical Phenomena, Synergies 9, 180–193. Springer Berlin Heidelberg, 1981.
• Loïc Paulevé, Morgan Magnin, Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic
π-calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors: Transactions on
Computational Systems Biology XIII, Lecture Notes in Computer Science, 171–191. Springer Berlin Heidelberg,
2011.
• Loïc Paulevé, Morgan Magnin, Olivier Roux. Static analysis of biological regulatory networks dynamics using
abstract interpretation. Mathematical Structures in Computer Science. 2012.
• Loïc Paulevé, Adrien Richard. Static Analysis of Boolean Networks Based on Interaction Graphs: A Survey,
Electronic Notes in Theoretical Computer Science 284, 93–104. Elsevier, 2012.
• Adrien Richard and Jean-Paul Comet. Necessary conditions for multistationarity in discrete dynamical systems.
Discrete Applied Mathematics 155(18), 2403–2413. 2007.
• Adrien Richard. Negative circuits and sustained oscillations in asynchronous automata networks, Advances in
Applied Mathematics 44(4), 378–392. Elsevier, 2010.
• Élisabeth Remy, Paul Ruet and Denis Thieffry. Graphic requirements for multistability and attractive cycles in a
boolean dynamical framework, Advances in Applied Mathematics 41(3), 335–350. Elsevier, 2008.
• Maxime Folschette, Loïc Paulevé, Kastumi Inoue, Morgan Magnin and Olivier Roux. Identification of Biological
Regulatory Networks from Process Hitting models, Theoretical Computer Science 568, 49–71. Elsevier, 2015a.
• Maxime Folschette, Loïc Paulevé, Morgan Magnin and Olivier Roux. Sufficient Conditions for Reachability in
Automata Networks with Priorities, Theoretical Computer Science. Elsevier, 2015b.
• Maxime Folschette, Loïc Paulevé, Morgan Magnin, Olivier Roux. Under-approximation of Reachability in
Multivalued Asynchronous Networks. In E. Merelli and A. Troina, editors, 4th International Workshop on
Interactions between Computer Science and Biology (CS2Bio’13), Electronic Notes in Theoretical Computer
Science, Volume 299, 33–51. June 2013.
• Emna Ben Abdallah, Maxime Folschette, Olivier Roux, Morgan Magnin. Exhaustive analysis of dynamical
properties of Biological Regulatory Networks with Answer Set Programming. IEEE International Conference on
Bioinformatics and Biomedicine (BIBM’15), 281–285, IEEE. November 2015.

Maxime FOLSCHETTE 26/26 Journée MDSC — 2016/05/24



Analysing Biological Networks with Exhaustive and Abstract Methods ◦ Static Analysis on the Process Hitting
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Examples with Modal μ-calculus

p

q

r

No tokens: only one evolution is studied

Atomic property (p, q, r)
JpK = {p}

Jq ∨ rK = {q; r}
Possible future (“may”)

J♦ qK = {p}
Necessary future (“must”)

J� qK = ∅
J� pK = {q; r}
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Examples with Polyadic μ-calculus

p

q

r

Atomic property (p, q, r)
Jp1 ∧ r2K = {(p, r)}
Jp1K = {(p, p); (p, q); (p, r)}

Token affectation (i ← j)
J{2← 1} p1 ∧ p2K = {(p, p); (p, q); (p, r)}

Token comparison (i = j)
J1 = 2K = {(p, p); (q, q); (r , r)}

Possible future (“may”)
J♦1 qK = {(p, p); (p, q); (p, r)}

Necessary future (“must”)
J�1 qK = ∅
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Examples with Polyadic μ-calculus

a1 b1

a2 b2

... ...

an bm Least fixed point (µ)
φ = µX .(�1⊥ ∧�2⊥) ∨ ♦1♦2X

Iterations:
JφK0 = ∅
JφK1 = {(a1, b1)}
JφK2 = {(a1, b1); (a2, b2)}
JφK3 = {(a1, b1); (a2, b2); (a3, b3)}
...

Generalization:
JφK = {(ai , bi) | i ∈ [1;min(m, n)]}

Idea: use one (or n) token per automata
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Iterations:
JφK0 = ∅
JφK1 = {(a1, b1)}
JφK2 = {(a1, b1); (a2, b2)}
JφK3 = {(a1, b1); (a2, b2); (a3, b3)}
...

Generalization:
JφK = {(ai , bi) | i ∈ [1;min(m, n)]}

Idea: use one (or n) token per automata
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