From the cell to the organ: examples of Signal Processing tools for the analysis of the cardiac electrical activity

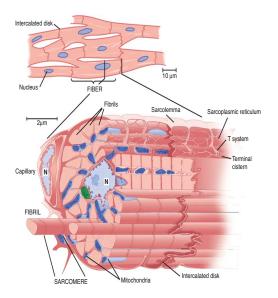
O. Meste

Signal/Biomed Team-I3S lab, University of Nice - Sophia Antipolis, France

May 2016

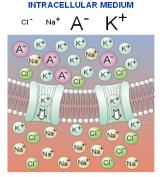
Domain of "Expertise" - Research driven by the physio/clinical needs

Applications :

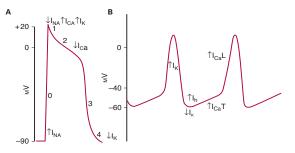

- EMG (exercise, fatigue, WBV, ...)
- Brain (EEG, ERP, Cilia)
- ECG (Cardio-respiratory coupling, Intervals analysis, HRV, Arrhythmias, ...)

Methods :

- Modeling
- Time-Frequency Analysis
- Time delay estimation
- Functional data analysis

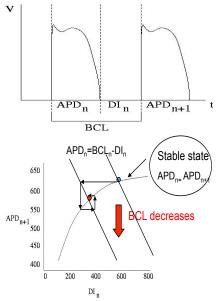

Publications : IEEE TBME, IEEE TSP, MBEC, NATURE Neuro, JEK, AJP, ...

Cardiac cells : cardiomyocytes and nodal tissues



- The cell type depends on the location in the heart
- Cardiac muscle and nodal tissue
- The cells are interconnected to a large extent (myocytes)
- The cells contract (myocytes) and spread electrical wavefront from one cell to another in any direction
- Different than skeletal myocytes (spindle)

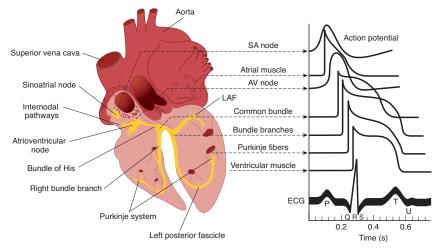
Focus on the electrical behavior of the cardiac cells



K⁺ CI⁻ Na⁺

- The transmembrane voltage (Vi Vo) changes with time : inflow (sodium) and ouflow (potassium) of ions
- Depolarize and repolarize : Action Potential (AP)
- Contract and propagate information to adjacent cells
- Different AP profiles for cardiomyocytes (left) and nodal tissue (right)
- Possible automaticity (nodal) → depolarizes interconnected cells
- "Blind" (refractory) during the repolarization

Dynamic of the AP & Restitution Curve

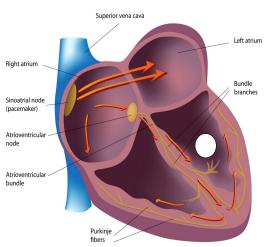


- The APD mostly represents the repolarization phase
- DI=diastole
- The BCL=APD+DI=ECG RR interval
- APD(n+1) is function of previous DI(n) : restitution curve for fast adaptation
- APD dynamically adapts

The restitution curve (fast adaptation)

- RR changes : straight line moves
- Instability may occur !
- Could explain the T-wave alternans phenomenon [MBEC16]

ECG and depolarization/repolarization sequence


- ECG is recorded on the surface of the Body (Easy)
- ECG is not at all simply explained by the Action Potentials
- ECG reflects the sequence of Depolarization/Repolarization (**R-R, P-R, Q-T**), the Electrical pathway geometry, the volume conductor (Forward problem). (**Difficult**)

From cell to the organ

Aim of this talk : Illustrate how the electrophysiological knowledge improves the modeling and the processing of the ECG signals :

- Cellular level : control vs diabetic mice Action Potential & ECG analysis
- Influence of ANS over the nodal cells (HRV)
- Cellular level → Organ level : QT (ventricular repolarization) and RR (ventricular depolarization) relationship ... next time

I-Focus on the Ventricular Cardiomyocytes (Mice)-Harvard Med. Sch.

The Cardiac Conduction System

Compare the control (40) and diabetic (40) cells (**part of a more global study [JAHA]**) :

- Explain what is observed at the organ level by cellular behavior
- Only repolarization periods
- Sequentially stimulated (2Hz)
- Automatic analysis
- Analyse the dynamics throughout the stimulations

 \Rightarrow Based on specific model of Repol. Phase

 \Rightarrow Needs the computation

of inverse functions

(relevant information is in the time variable)

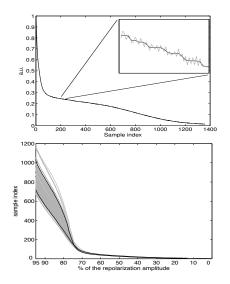
What is observed at the organ level (surface ECG)?

What is observed at the cellular level (AP) : Models and methods

It is observed APmagnitude(t) but we would like $t(APmagnitude) \rightarrow$ compute the inverse function

For the **following computations**, each stimulated repolarization phase *i* from one cell is considered strictly monotonic decreasing, if not use the model :

$$x_i(n) = f(n; \theta_i) + e_i(n) \quad n = 1, \dots, N$$


$$\tag{1}$$

 $f(n; \theta_i)$ is a piecewise linear parametric function ($v_l(n)$ are triangle shape functions) :

$$f(n;\boldsymbol{\theta}_i) = \sum_{l=1}^{L} \boldsymbol{\theta}_{i,l} v_l(n)$$
(2)

It is demonstrated [IEEE-TBME] that imposing $f(n; \theta_i)$ to be monotonic $\Leftrightarrow \forall l \in [1:L-1], \theta_{i,l} > \theta_{i,l+1} > 0$

Example

- A single AP (repolarization) and the transformed version (also smoothed)
- Monotonicity allows the computation of the inverse functions (70 APs)
 x axis → magnitude ; y axis → time

Mean and Std Repolarization duration : Diab. > Cont. (80%-0%)

What about the dynamic throughout the stimulation?

Model and methods

Simple dynamic- One global parameter [CinC15]

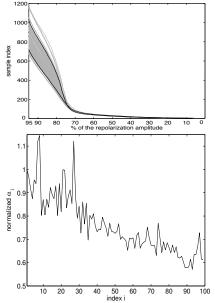
Each individual repolarization phase is modeled as (α shortens or prolongates the AP) :

$$x_i(t) = rep(\frac{t-d_i}{\alpha_i}) \tag{3}$$

Imposing monotonicity allows the derivation of the corresponding inverse function :

$$t_i = \alpha_i rep^{-1}(x_i(t_i)) + d_i = \alpha_i rep^{-1}(y) + d_i$$

$$\tag{4}$$


Combining all the possible values of t_i we get a vector formulation of relation (4) :

$$\mathbf{t}_i = \boldsymbol{\alpha}_i \mathbf{t} + d_i \mathbf{I} \tag{5}$$

Estimation of the α_i s, d_i s and $\mathbf{t} \rightarrow \text{SVD}$ of matrix $\mathbf{T} = [\mathbf{t}_1 \cdots \mathbf{t}_l]$ combining all the repolarizations.

Linear regression is computed over the $\alpha_i s \Rightarrow$ slope value (global dynamic shortening or prolongation)

Upper line : first stimulation Lower line : last stimulation & The normalized $\tilde{\alpha}_i = \alpha_i / \alpha_1$ (used for regression)

Diabetic group significantly shortens only the late (95% - 60%) repolarization phase

No significant differences between Cont. and Diab.

The variability is very large (Cont. and Diab.) : random behavior

Single parameter describes each cell \Rightarrow more ?

Model and methods

Complex dynamic- Characterize the dynamic for each repolarization % (not yet published !)

M1 : A linear regression is computed for each repolarization $\% \Rightarrow$ local behavior, % independent

M2 : Use SVD-like approach : $\% \Rightarrow$ local behavior, % are not independent, latent variables

Let's define the order 1 model for i = 1, ..., I stimulations and *n* the % index :

$$x_n(i) = p_n(i)v(i) + e_n(i) \tag{6}$$

The functions $p_n(i)$ are assumed to be decomposed over a set of K basis function $b_k(i)$ (e.g. polynomial) such that :

$$p_n(i) = \sum_{k=0}^{K-1} b_k(i)\theta_{n,k}$$
(7)

In vector form, the expressions are :

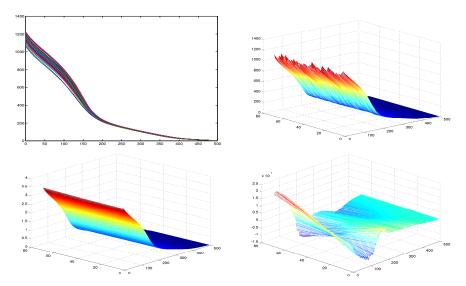
$$\mathbf{x}_n = \mathbf{p}_n \circ \mathbf{v} + \mathbf{e}_n = \mathbf{B} \circ (\mathbf{v} \mathbf{I}^T) \boldsymbol{\theta}_n + \mathbf{e}_n = \mathbf{M}_v \boldsymbol{\theta}_n + \mathbf{e}_n \neq \alpha_{1,n} \mathbf{eigvec}_1 + \mathbf{e}_n$$
(8)

Model and methods

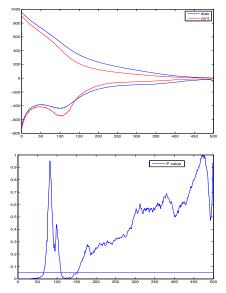
Considering a LMS criterion (similar to SVD), the stationary conditions give :

$$\hat{\boldsymbol{\theta}}_i = (\mathbf{M}_v^T \mathbf{M}_v)^{-1} \mathbf{M}_v^T \mathbf{x}_i \tag{9}$$

$$\hat{\mathbf{v}} = \left(\sum_{i=1}^{I} diag(\mathbf{p}_{i})^{2}\right)^{-1} \left(\sum_{i=1}^{I} (\mathbf{x}_{i} \circ \mathbf{p}_{i})\right)$$
(10)


Minimization is solved by using an alternated least square.

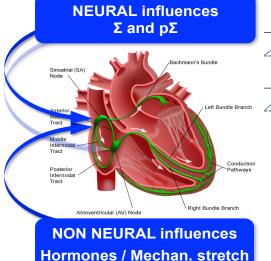
If the property $\sum_{n=1}^{N} \mathbf{x}_n = \tilde{\mathbf{v}}$ (similar to SVD), then apply :

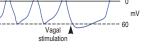

$$\tilde{p}_n(i) = p_n(i) / (\sum_{n=1}^N p_n(i)); \tilde{v}(i) = (\sum_{n=1}^N p_n(i)) . v(i) \Rightarrow \mathbf{x}_n = \tilde{\mathbf{p}}_n \circ \tilde{\mathbf{v}}$$
(11)

Each $\tilde{\mathbf{p}}_n$ brings the dynamic evolution of the shape changes \Rightarrow the derivative of $\tilde{\mathbf{p}}_n$ function of *i* (the stimulation index) is computed for each *n* (AP magnitude).

Example

Results

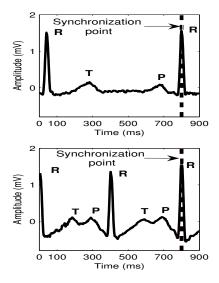

- Mean of all the repolarization phases
- Derivatives of the mean of all the repolarization phases
- The median test (ranksum) for M2


M1 fails to distinguish the two populations

M2 distinguishes the two populations at specific % repolarization

What is the relationship with a complex ionic current remodeling (Hyperglycemia reduces Kv currents)?

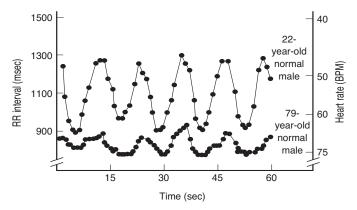
Heart electrical pathway and depolarization sequence


Sympathetic A

stimulation

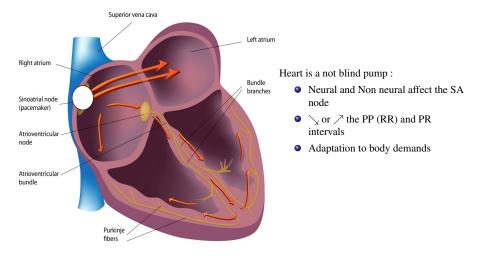
mV

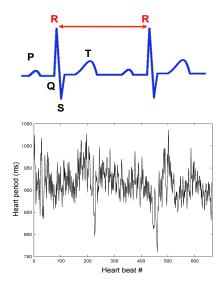
- Beating ignitiates at the SA node.
- Nodes are subject to ANS influence
- SA node affected by streching
- ANS (Σ and $P\Sigma$) has a key role
- Depolarizations follow a sequence
- Use pathways and myocytes binding geometry to propagate

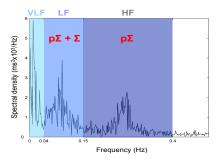

Stress test example

During exercise :

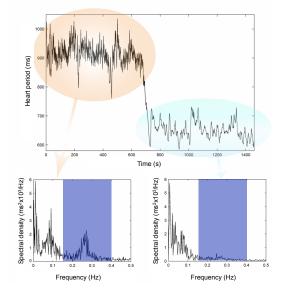
- Body demand changes
- ANS adapts to the demand
- (Symp.) $\Sigma \nearrow$ and (Vagal) $P\Sigma \searrow$
- RR, PR, RT (QT) \searrow (Adaptation)
- But also subtle **variability** of the intervals : RSA, MSA, ...


Respiratory Sinus Arrhythmia (RSA)

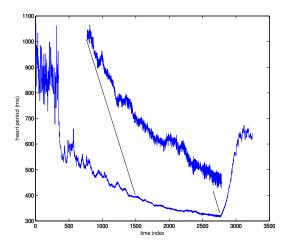

- Primarily due to the stretch receptors in the lungs connected to ANS
- The ANS Vagal-(PΣ) slightly modulates the Heart rate to benefit from the full lungs (oxygen)
- If the P Σ withdraws then the RSA is canceled


II-Focus on the Modulation of the Heart Rhythm/Period- Zaragoza

The Cardiac Conduction System

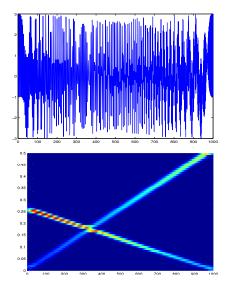

HRV frequency analysis (steady)

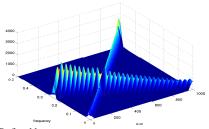
- RR instead of PP
- Σ (slow) and p Σ (fast)
- HF mostly respiration (RSA)
- baroreflex mechanism evidence


HRV frequency analysis (two steady states : tilt table test)

During tilt test table :

- Supine \Rightarrow Upright position
- Blood pressure regulation
- \nearrow heart rate or \searrow heart period
- $p\Sigma$ (vagal) \searrow
- quantification

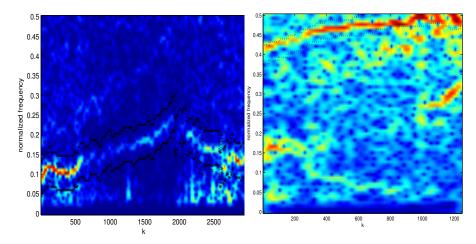

A more complex example



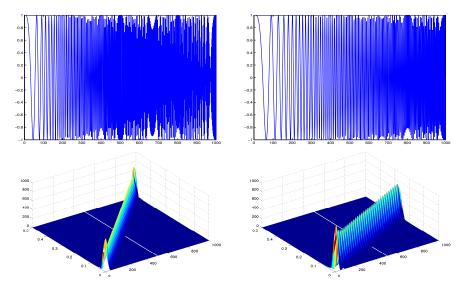
During stress test protocol (cycling) :

- The mean heart rate \nearrow
- The variability (Low-High) 📐
- The RSA \searrow (??)
- Mechanical influences ?
- Observation model ? (self sampled signal !)
- Non-stationnary ? (frequencies & amplitudes)
- Qualitative/Quantitative analysis ? (local or global analysis)

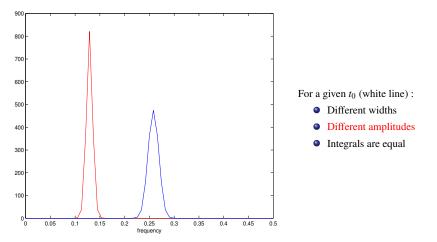
Spectrogram for the non-stationarity


Defined by

$$S(t,f) = |\int m(s)h^*(s-t)e^{-i2\pi fs}ds|^2$$


- Quadratic TFR (Cohen's class)
- Bad TF resolution
- But well located cross-terms !
- Closely related to the STFT (linear)

Spectrogram for the non-stationarity


Needs quantitative assessment : not so easy with real data (noisy, multicomponent, ...)!

Chirp signals : different modulation rates, same amplitudes

Magnitude extracted from the TF plane?

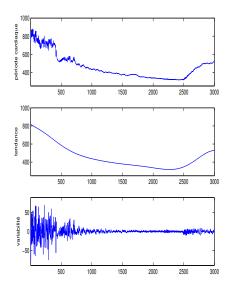
 \Rightarrow OK for visual inspection but not for quantification !

TF processing (not developed here)

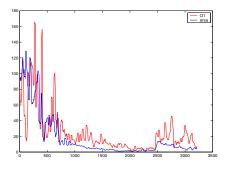
I) Magnitude of the modulation directly computed from the TF plane

$$R(k) = \sqrt{\frac{1}{K} \int_{f=f_{obs}(k)-\delta}^{f_{obs}(k)+\delta} |M(k,f)|^2}$$

with $f_{obs}(k)$ the time-varying frequency of interest. M(k,f) is the STFT of the R-R intervals variability.


$$M(k,f) = \sum_{u} m(u)h(u-k)e^{-j2\pi\frac{\ell}{K}u}$$

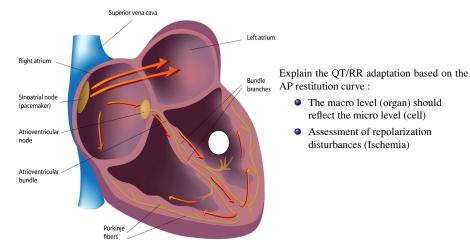
with $-K/2 \le \ell \le K/2 - 1$ integer and $f = \ell/K$


The analysis window h(u) is energy normalized.

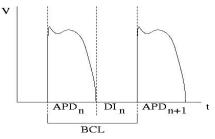
 \Rightarrow Integrate over the given frequency range (the two black lines)!

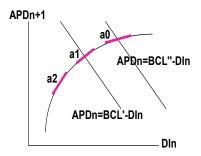
Application

Simple example-ANS modulation of the SA node



- From the Heart periods series :
 - the trend T(t)
 - the variability (TF processed)
- Clear vagal withdrawal
- Strong vagal return
- Tool for the cardiorespiratory coupling assessment [AJP]


III-Focus on T waves duration-EPFL

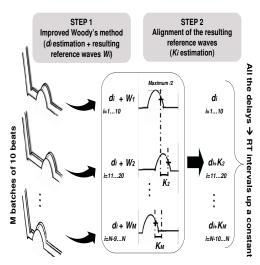

 \rightarrow Impact of the Restitution Curve properties (oscillation) over the Ventricular Repolarization

The Cardiac Conduction System

- The sum of all the Ventricular Cells AP almost explains the QT duration.
- The APD is mostly composed by the repolarization
- The BCL is similar to the Heart period (R-R)
- For a given BCL, the curve can be approximated by an affine function (*a* = slope)

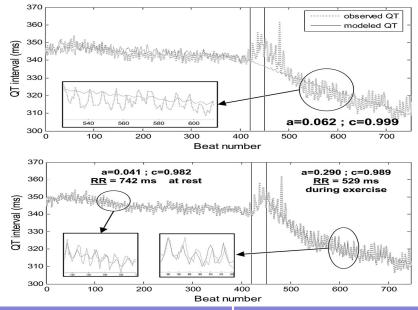
We get for the fast adaptation :

$$APD(n+1) = -aAPD(n) + aBCL(n) + b$$
(12)


or

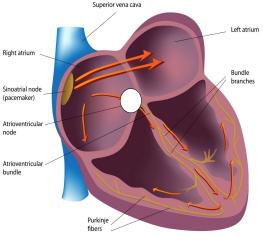
$$QT_F(n+1) = -aQT_F(n) + aRR(n) + b$$
(13)

and for the slow (not explained by the Restitution Curve)


$$QT_S(n+1) = cQT_S(n) + RR(n)$$
(14)

QT(n) and (a,b,c) parameters Estimation

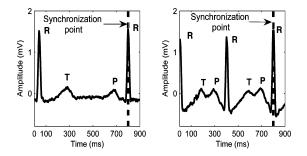
- We consider blocks of 10 waves for shape adaptation
- The *QT*(*n*) are estimated by using an original and optimal method [IEEE-SPL]
- The observed QT(n) and RR(n) feed the estimation process
- The (*a*,*b*,*c*) are estimated by using alternated Least Square algo. [IEEE-TBME]
- The modeled $\hat{QT}(n)$ only uses $(\hat{a}, \hat{b}, \hat{c})$ and RR(n)
- Outperforms standard models with only few parameters


Still many things to present

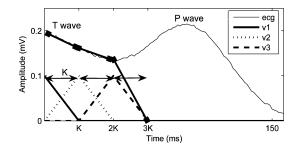
This type of topic :

- Needs strong collaborations with clinicians
- Needs large background knowledge
- Provides research topics for Computer Science (IBM very active in the simulation field), Biology (Pharmacological Companies), Engineering (Pacemakers, Defibrillators) etc ...
- Questions ?

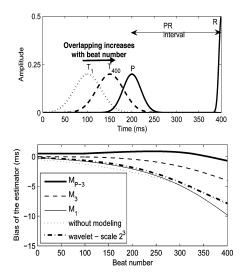
V-Focus on the Effect of the ANS on the AV Velocity Conduction


The Cardiac Conduction System

Strong vagal return visible in the Heart Rate Variability (SA node)

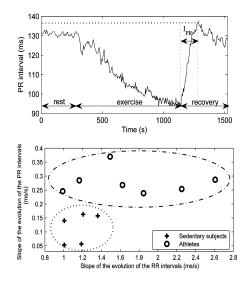

- Visible in the PR (includes AV node conduction)?
- Adapted to subject status (elite/sedentary)?

PR intervals analysis-Observations modeling


- ECG recorded during maximal exercise tests (cycling)
- Segmentation of RR windows
- P waves, delays, factors are unknown & T waves overlaps P waves
- The model is $x_i(n) = \alpha_i s_{d_i}(n) + f(n; \theta_i) + e_i(n)$ but $i = 1 \dots I$

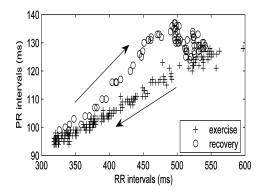
PR intervals analysis-T wave modeling

- T waves are modeled with sum of piecewise affine functions
- Monotonicity is imposed
- MLE : iterative LS problem with linear inequality constraint (LSI problem)


PR intervals analysis- Simulations

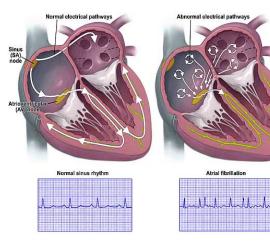
- Constant PR
- 400 overlapping T waves

- Small bias
- Bias almost removed
- Justified by weak PR variations (real)

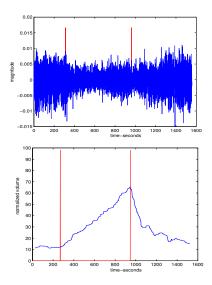

PR intervals analysis- Results slopes

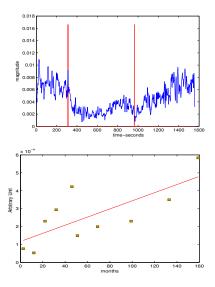
- Clear variation
- Overshoot during recovery
- focus on the slopes

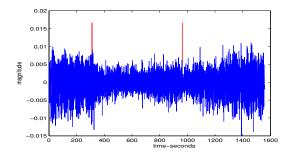
- Athletes (professionals) & sedentaries
- Better clustering with PR slope


PR intervals analysis- Results hysteresis

- Similar to overshoot
- Computed Hysteresis Area
- Original results
- Strong return of the vagal


T-wave model	SED	ATH
M_{P-3}	7.84 ± 2.52	13.49 ± 3.64
M_3	6.33 ± 4.32	13.35 ± 2.58
M_1	7.05 ± 3.12	9.70 ± 8.74


Assess the complexity of the AF


- Similar to overshoot
- Computed Hysteresis Area
- Original results
- Strong return of the vagal

Transplanted heart subjects

Transplanted hearts

	(rest)	(max)	(rest)-(max)
stand	R=0.25, p=0.48	R=0.27, p=0.45	R=0.11, p=0.76
mag	R=0.43, p=0.22	R=-0.21, p=0.56	R=0.29, p=0.40
mag_{tv}	R=0.61, p=0.06	R=-0.14, p=0.69	R=0.67, p=0.03
$mag_{tv,resp}$	R=0.74, p=0.01	R=0.09, p=0.80	R=0.82, p=0.003