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Analysis and Processing of the Heart signals

Domain of "Expertise" - Research driven by the physio/clinical needs

Applications :

EMG (exercise, fatigue, WBV, ...)

Brain (EEG, ERP, Cilia)

ECG (Cardio-respiratory coupling, Intervals analysis, HRV, Arrhythmias, ...)

Methods :

Modeling

Time-Frequency Analysis

Time delay estimation

Functional data analysis

Publications : IEEE TBME, IEEE TSP, MBEC, NATURE Neuro, JEK, AJP, ...
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Introduction-The Cell

Cardiac cells : cardiomyocytes and nodal tissues

CHAPTER  5 Excitable Tissue: Muscle 107

MECHANICAL PROPERTIES
CONTRACTILE RESPONSE

The contractile response of cardiac muscle begins just after the
start of depolarization and lasts about 1.5 times as long as the
action potential (Figure 5–16). The role of Ca2+ in excitation–
contraction coupling is similar to its role in skeletal muscle

(see above). However, it is the influx of extracellular Ca2+

through the voltage-sensitive DHPR in the T system that trig-
gers calcium-induced calcium release through the RyR at the
sarcoplasmic reticulum. Because there is a net influx of Ca2+

during activation, there is also a more prominent role for plas-
ma membrane Ca2+ ATPases and the Na+/Ca2+ exchanger in
recovery of intracellular Ca2+ concentrations. Specific effects

FIGURE 5–15 Cardiac muscle. A) Electron photomicrograph of cardiac muscle. Note the similarity of the A-I regions seen in the skeletal 
muscle EM of Figure 3-2. The fuzzy thick lines are intercalated disks and function similarly to the Z-lines but occur at cell membranes (× 12,000).  
(Reproduced with permission from Bloom W, Fawcett DW: A Textbook of Histology, 10th ed. Saunders, 1975.)  B) Artist interpretation of cardiac muscle as seen under 
the light microscope (top) and the electron microscope (bottom). Again, note the similarity to skeletal muscle structure. N, nucleus.  (Reproduced 

with permission from Braunwald E, Ross J, Sonnenblick EH: Mechanisms of contraction of the normal and failing heart. N Engl J Med 1967;277:794. Courtesy of Little, Brown.)
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Introduction-The Cell

Focus on the electrical behavior of the cardiac cells

 

CHAPTER  30

 

Origin of the Heartbeat & the Electrical Activity of the Heart 491

is characterized by rapid depolarization (phase 0), an initial
rapid repolarization (phase 1), a plateau (phase 2), and a slow
repolarization process (phase 3) that allows return to the rest-
ing membrane potential (phase 4). The initial depolarization is
due to Na

 

+

 

 influx through rapidly opening Na

 

+ 

 

channels (the
Na

 

+

 

 current, I

 

Na

 

). The inactivation of Na

 

+

 

 channels contrib-
utes to the rapid repolarization phase. Ca

 

2+

 

 influx through
more slowly opening Ca

 

2+

 

 channels (the Ca

 

2+

 

 current, I

 

Ca

 

)
produces the plateau phase, and repolarization is due to net K

 

+

 

efflux through multiple types of K

 

+

 

 channels. Recorded extra-
cellularly, the summed electrical activity of all the cardiac mus-
cle fibers is the electrocardiogram (ECG). The timing of the
discharge of the individual units relative to the ECG is shown
in Figure 30–1.

 

PACEMAKER POTENTIALS

 

Rhythmically discharging cells have a membrane potential
that, after each impulse, declines to the firing level. Thus, this

 

prepotential

 

 or 

 

pacemaker potential

 

 (Figure 30–2B) triggers
the next impulse. At the peak of each impulse, I

 

K

 

 begins and
brings about repolarization. I

 

K

 

 then declines, and a channel
that can pass both Na

 

+

 

 and K

 

+

 

 is activated. Because this chan-
nel is activated following hyperpolarization, it is referred to as
an “h” channel; however, because of its unusual (funny) acti-
vation this has also been dubbed an “f” channel. As I

 

h

 

 increas-
es, the membrane begins to depolarize, forming the first part
of the prepotential. Ca

 

2+

 

 channels then open. These are of two
types in the heart, the 

 

T

 

 (for transient) 

 

channels

 

 and the 

 

L

 

 (for
long-lasting) 

 

channels.

 

 The calcium current (I

 

Ca

 

) due to
opening of T channels completes the prepotential, and I

 

Ca

 

 due
to opening of L channels produces the impulse. Other ion
channels are also involved, and there is evidence that local
Ca

 

2+

 

 release from the sarcoplasmic reticulation 

 

(Ca

 

2+

 

 sparks)

 

occurs during the prepotential.

The action potentials in the SA and AV nodes are largely due
to Ca

 

2+

 

, with no contribution by Na

 

+

 

 influx. Consequently,
there is no sharp, rapid depolarizing spike before the plateau,
as there is in other parts of the conduction system and the
atrial and ventricular fibers. In addition, prepotentials are nor-
mally prominent only in the SA and AV nodes. However,
“latent pacemakers” are present in other portions of the con-
duction system that can take over when the SA and AV nodes
are depressed or conduction from them is blocked. Atrial and
ventricular muscle fibers do not have prepotentials, and they
discharge spontaneously only when injured or abnormal.

When the cholinergic vagal fibers to nodal tissue are stimu-
lated, the membrane becomes hyperpolarized and the slope of
the prepotentials is decreased (Figure 30–3) because the ace-
tylcholine released at the nerve endings increases the K

 

+

 

 con-
ductance of nodal tissue. This action is mediated by M

 

2

 

muscarinic receptors, which, via the 

 

βγ

 

 subunit of a G protein,
open a special set of K

 

+

 

 channels. The resulting I

 

KAch

 

 slows the
depolarizing effect of I

 

h

 

. In addition, activation of the M

 

2

 

FIGURE 30–2 

 

Comparison of action potentials in ventricular muscle and diagram of the membrane potential of pacemaker tissue. 
A)

 

 Phases of action potential in ventricular myocyte (0–4, see text for details) are superimposed with principal changes in current that contribute 
to changes in membrane potential. 

 

B) 

 

The principal current responsible for each part of the potential of pacemaker tissue is shown under or beside 
the component. L, long-lasting; T, transient. Other ion channels contribute to the electrical response. Note that the resting membrane potential of 
pacemaker tissue is somewhat lower than that of atrial and ventricular muscle.
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FIGURE 30–3 

 

Effect of sympathetic (noradrenergic) and 
vagal (cholinergic) and sympathetic (noradrenergic) stimulation 
on the membrane potential of the SA node. 

 

Note the reduced 
slope of the prepotential after vagal stimulation and the increased 
spontaneous discharge after sympathetic stimulation.
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stimulation
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The transmembrane voltage (Vi - Vo) changes with
time : inflow (sodium) and ouflow (potassium) of ions

Depolarize and repolarize : Action Potential (AP)

Contract and propagate information to adjacent cells

Different AP profiles for cardiomyocytes (left) and
nodal tissue (right)

Possible automaticity (nodal)→ depolarizes
interconnected cells

"Blind" (refractory) during the repolarization
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Introduction-The Cell

Dynamic of the AP & Restitution Curve

The APD mostly represents the repolarization
phase

DI=diastole

The BCL=APD+DI=ECG RR interval

APD(n+1) is function of previous DI(n) :
restitution curve for fast adaptation
APD dynamically adapts

APDn=BCLn-DIn Stable state 
APDn= APDn+1 

BCL decreases 

The restitution curve (fast adaptation)

RR changes : straight line moves

Instability may occur !
Could explain the T-wave alternans
phenomenon [MBEC16]

Olivier MESTE Nice-16 5



Introduction-The Cell

ECG and depolarization/repolarization sequence

 

490

 

SECTION VI

 

Cardiovascular Physiology

 

ORIGIN & SPREAD OF 
CARDIAC EXCITATION

 

ANATOMIC CONSIDERATIONS

 

In the human heart, the SA node is located at the junction of
the superior vena cava with the right atrium. The AV node is
located in the right posterior portion of the interatrial septum
(Figure 30–1). There are three bundles of atrial fibers that con-
tain Purkinje-type fibers and connect the SA node to the AV
node: the anterior internodal tract of Bachman, the middle in-
ternodal tract of Wenckebach, and the posterior internodal
tract of Thorel. Conduction also occurs through atrial myo-
cytes, but it is more rapid in these bundles. The AV node is
continuous with the bundle of His, which gives off a left bun-
dle branch at the top of the interventricular septum and con-
tinues as the right bundle branch. The left bundle branch
divides into an anterior fascicle and a posterior fascicle. The
branches and fascicles run subendocardially down either side
of the septum and come into contact with the Purkinje system,
whose fibers spread to all parts of the ventricular myocardium.

The histology of cardiac muscle is described in Chapter 5.
The conduction system is composed, for the most part, of
modified cardiac muscle that has fewer striations and indis-
tinct boundaries. The SA node and, to a lesser extent, the AV
node also contain small round cells with few organelles,
which are connected by gap junctions. These are probably the
actual pacemaker cells, and therefore they are called 

 

P cells.

 

The atrial muscle fibers are separated from those of the ven-

tricles by a fibrous tissue ring, and normally the only conduct-
ing tissue between the atria and ventricles is the bundle of His.

The SA node develops from structures on the right side of
the embryo and the AV node from structures on the left. This
is why in the adult the right vagus is distributed mainly to the
SA node and the left vagus mainly to the AV node. Similarly,
the sympathetic innervation on the right side is distributed
primarily to the SA node and the sympathetic innervation on
the left side primarily to the AV node. On each side, most sym-
pathetic fibers come from the stellate ganglion. Noradrenergic
fibers are epicardial, whereas the vagal fibers are endocardial.
However, connections exist for reciprocal inhibitory effects of
the sympathetic and parasympathetic innervation of the heart
on each other. Thus, acetylcholine acts presynaptically to
reduce norepinephrine release from the sympathetic nerves,
and conversely, neuropeptide Y released from noradrenergic
endings may inhibit the release of acetylcholine.

 

PROPERTIES OF CARDIAC MUSCLE

 

The electrical responses of cardiac muscle and nodal tissue and
the ionic fluxes that underlie them are discussed in detail in
Chapter 5 and are briefly reviewed here for comparison with
the pacemaker cells below. Myocardial fibers have a resting
membrane potential of approximately –90 mV (Figure 30–2A).
The individual fibers are separated by membranes, but depo-
larization spreads radially through them as if they were a syn-
cytium because of the presence of gap junctions. The
transmembrane action potential of single cardiac muscle cells

 

FIGURE 30–1 

 

Conducting system of the heart. Left:

 

 Anatomical depiction of the human heart with additional focus on areas of the con-
duction system. 

 

Right:

 

 Typical transmembrane action potentials for the SA and AV nodes, other parts of the conduction system, and the atrial and 
ventricular muscles are shown along with the correlation to the extracellularly recorded electrical activity, that is, the electrocardiogram (ECG). The 
action potentials and ECG are plotted on the same time axis but with different zero points on the vertical scale. LAF, left anterior fascicle.
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Signal Processing and modeling

From cell to the organ

Aim of this talk : Illustrate how the electrophysiological knowledge improves
the modeling and the processing of the ECG signals :

Cellular level : control vs diabetic mice Action Potential & ECG analysis

Influence of ANS over the nodal cells (HRV)

Cellular level→ Organ level : QT (ventricular repolarization) and RR
(ventricular depolarization) relationship ... next time
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Ventricular Cardiomyocites : AP

I-Focus on the Ventricular Cardiomyocytes (Mice)-Harvard Med. Sch.

Compare the control (40) and dia-
betic (40) cells (part of a more glo-
bal study [JAHA]) :

Explain what is observed at
the organ level by cellular
behavior

Only repolarization periods

Sequentially stimulated
(2Hz)

Automatic analysis

Analyse the dynamics
throughout the stimulations
⇒ Based on specific model
of Repol. Phase
⇒ Needs the computation
of inverse functions
(relevant information is in
the time variable)
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Ventricular Cardiomyocites : AP

What is observed at the organ level (surface ECG) ?
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Ventricular Cardiomyocites : AP

What is observed at the cellular level (AP) : Models and methods

It is observed APmagnitude(t) but we would like t(APmagnitude)→ compute the inverse function

For the following computations, each stimulated repolarization phase i from one cell is considered strictly
monotonic decreasing, if not use the model :

xi(n) = f (n;θ i)+ ei(n) n = 1, . . . ,N (1)

f (n;θ i) is a piecewise linear parametric function (vl(n) are triangle shape functions) :

f (n;θ i) =
L

∑
l=1

θi,lvl(n) (2)

It is demonstrated [IEEE-TBME] that imposing f (n;θ i) to be monotonic⇔ ∀l ∈ [1 : L−1],θi,l > θi,l+1 > 0
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Ventricular Cardiomyocites : AP

Example
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A single AP (repolarization) and the
transformed version (also smoothed)

Monotonicity allows the computation
of the inverse functions (70 APs)
x axis→ magnitude ; y axis→ time
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What about the dynamic throughout the stimulation ?
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Ventricular Cardiomyocites : AP

Model and methods

Simple dynamic- One global parameter [CinC15]
Each individual repolarization phase is modeled as (α shortens or prolongates the AP) :

xi(t) = rep(
t−di

αi
) (3)

Imposing monotonicity allows the derivation of the corresponding inverse function :

ti = αirep−1(xi(ti))+di = αirep−1(y)+di (4)

Combining all the possible values of ti we get a vector formulation of relation (4) :

ti = αit+di1I (5)

Estimation of the αis, dis and t→ SVD of matrix T = [t1 · · · tI ] combining all the repolarizations.

Linear regression is computed over the αis⇒ slope value (global dynamic shortening or prolongation)
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Ventricular Cardiomyocites : AP

Example and Results
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Ventricular Cardiomyocites : AP

Model and methods

Complex dynamic- Characterize the dynamic for each repolarization % (not yet published !)

M1 : A linear regression is computed for each repolarization %⇒ local behavior, % independent

M2 : Use SVD-like approach : %⇒ local behavior, % are not independent, latent variables

Let’s define the order 1 model for i = 1, . . . , I stimulations and n the % index :

xn(i) = pn(i)v(i)+ en(i) (6)

The functions pn(i) are assumed to be decomposed over a set of K basis function bk(i) (e.g. polynomial)
such that :

pn(i) =
K−1

∑
k=0

bk(i)θn,k (7)

In vector form, the expressions are :

xn = pn ◦v+ en = B◦ (v1IT )θ n + en = Mvθ n + en 6= α1,neigvec1 + en (8)
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Ventricular Cardiomyocites : AP

Model and methods

Considering a LMS criterion (similar to SVD), the stationary conditions give :

θ̂ i = (MT
v Mv)

−1MT
v xi (9)

v̂ = (
I

∑
i=1

diag(pi)
2)−1(

I

∑
i=1

(xi ◦pi)) (10)

Minimization is solved by using an alternated least square.

If the property ∑
N
n=1 xn = ṽ (similar to SVD), then apply :

p̃n(i) = pn(i)/(
N

∑
n=1

pn(i)); ṽ(i) = (
N

∑
n=1

pn(i)).v(i)⇒ xn = p̃n ◦ ṽ (11)

Each p̃n brings the dynamic evolution of the shape changes⇒ the derivative of p̃n function of i (the
stimulation index) is computed for each n (AP magnitude).
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Ventricular Cardiomyocites : AP

Example
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Ventricular Cardiomyocites : AP

Results

0 50 100 150 200 250 300 350 400 450 500
−800

−600

−400

−200

0

200

400

600

800

1000

 

 

diab

cont

Mean of all the repolarization phases

Derivatives of the mean of all the
repolarization phases

The median test (ranksum) for M2

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

P value
M1 fails to distinguish the two populations

M2 distinguishes the two populations at specific
% repolarization

What is the relationship with
a complex ionic current remodeling
(Hyperglycemia reduces Kv currents) ?
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Introduction-The organ

Heart electrical pathway and depolarization sequence

NEURAL influences 
Σ and pΣ 

NON NEURAL influences  
Hormones / Mechan. stretch 
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Origin of the Heartbeat & the Electrical Activity of the Heart 491

is characterized by rapid depolarization (phase 0), an initial
rapid repolarization (phase 1), a plateau (phase 2), and a slow
repolarization process (phase 3) that allows return to the rest-
ing membrane potential (phase 4). The initial depolarization is
due to Na

 

+

 

 influx through rapidly opening Na

 

+ 

 

channels (the
Na

 

+

 

 current, I

 

Na

 

). The inactivation of Na

 

+

 

 channels contrib-
utes to the rapid repolarization phase. Ca

 

2+

 

 influx through
more slowly opening Ca

 

2+

 

 channels (the Ca

 

2+

 

 current, I

 

Ca

 

)
produces the plateau phase, and repolarization is due to net K

 

+

 

efflux through multiple types of K

 

+

 

 channels. Recorded extra-
cellularly, the summed electrical activity of all the cardiac mus-
cle fibers is the electrocardiogram (ECG). The timing of the
discharge of the individual units relative to the ECG is shown
in Figure 30–1.

 

PACEMAKER POTENTIALS

 

Rhythmically discharging cells have a membrane potential
that, after each impulse, declines to the firing level. Thus, this

 

prepotential

 

 or 

 

pacemaker potential

 

 (Figure 30–2B) triggers
the next impulse. At the peak of each impulse, I

 

K

 

 begins and
brings about repolarization. I

 

K

 

 then declines, and a channel
that can pass both Na

 

+

 

 and K

 

+

 

 is activated. Because this chan-
nel is activated following hyperpolarization, it is referred to as
an “h” channel; however, because of its unusual (funny) acti-
vation this has also been dubbed an “f” channel. As I

 

h

 

 increas-
es, the membrane begins to depolarize, forming the first part
of the prepotential. Ca

 

2+

 

 channels then open. These are of two
types in the heart, the 

 

T

 

 (for transient) 

 

channels

 

 and the 

 

L

 

 (for
long-lasting) 

 

channels.

 

 The calcium current (I

 

Ca

 

) due to
opening of T channels completes the prepotential, and I

 

Ca

 

 due
to opening of L channels produces the impulse. Other ion
channels are also involved, and there is evidence that local
Ca

 

2+

 

 release from the sarcoplasmic reticulation 

 

(Ca

 

2+

 

 sparks)

 

occurs during the prepotential.

The action potentials in the SA and AV nodes are largely due
to Ca

 

2+

 

, with no contribution by Na

 

+

 

 influx. Consequently,
there is no sharp, rapid depolarizing spike before the plateau,
as there is in other parts of the conduction system and the
atrial and ventricular fibers. In addition, prepotentials are nor-
mally prominent only in the SA and AV nodes. However,
“latent pacemakers” are present in other portions of the con-
duction system that can take over when the SA and AV nodes
are depressed or conduction from them is blocked. Atrial and
ventricular muscle fibers do not have prepotentials, and they
discharge spontaneously only when injured or abnormal.

When the cholinergic vagal fibers to nodal tissue are stimu-
lated, the membrane becomes hyperpolarized and the slope of
the prepotentials is decreased (Figure 30–3) because the ace-
tylcholine released at the nerve endings increases the K

 

+

 

 con-
ductance of nodal tissue. This action is mediated by M

 

2

 

muscarinic receptors, which, via the 

 

βγ

 

 subunit of a G protein,
open a special set of K

 

+

 

 channels. The resulting I

 

KAch

 

 slows the
depolarizing effect of I

 

h

 

. In addition, activation of the M

 

2

 

FIGURE 30–2 

 

Comparison of action potentials in ventricular muscle and diagram of the membrane potential of pacemaker tissue. 
A)

 

 Phases of action potential in ventricular myocyte (0–4, see text for details) are superimposed with principal changes in current that contribute 
to changes in membrane potential. 

 

B) 

 

The principal current responsible for each part of the potential of pacemaker tissue is shown under or beside 
the component. L, long-lasting; T, transient. Other ion channels contribute to the electrical response. Note that the resting membrane potential of 
pacemaker tissue is somewhat lower than that of atrial and ventricular muscle.
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FIGURE 30–3 

 

Effect of sympathetic (noradrenergic) and 
vagal (cholinergic) and sympathetic (noradrenergic) stimulation 
on the membrane potential of the SA node. 

 

Note the reduced 
slope of the prepotential after vagal stimulation and the increased 
spontaneous discharge after sympathetic stimulation.
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Beating ignitiates at the SA node.

Nodes are subject to ANS influence

SA node affected by streching

ANS (Σ and PΣ) has a key role

Depolarizations follow a sequence

Use pathways and myocytes binding
geometry to propagate
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ANS affects the ECG intervals

Stress test example
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But also subtle variability of the
intervals : RSA, MSA, ...
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ANS affects the ECG intervals

Respiratory Sinus Arrhythmia (RSA)
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CLINICAL APPLICATIONS: 
CARDIAC ARRHYTHMIAS

 

NORMAL CARDIAC RATE

 

In the normal human heart, each beat originates in the SA node

 

(normal sinus rhythm, NSR).

 

 The heart beats about 70 times a
minute at rest. The rate is slowed 

 

(bradycardia)

 

 during sleep
and accelerated 

 

(tachycardia)

 

 by emotion, exercise, fever, and
many other stimuli. In healthy young individuals breathing at a
normal rate, the heart rate varies with the phases of respiration:
It accelerates during inspiration and decelerates during expira-
tion, especially if the depth of breathing is increased. This 

 

sinus
arrhythmia

 

 (Figure 30–10) is a normal phenomenon and is
due primarily to fluctuations in parasympathetic output to the
heart. During inspiration, impulses in the vagi from the stretch
receptors in the lungs inhibit the cardio-inhibitory area in the
medulla oblongata. The tonic vagal discharge that keeps the
heart rate slow decreases, and the heart rate rises.

Disease processes affecting the sinus node lead to marked
bradycardia accompanied by dizziness and syncope 

 

(sick
sinus syndrome).

 

ABNORMAL PACEMAKERS

 

The AV node and other portions of the conduction system can,
in abnormal situations, become the cardiac pacemaker. In addi-
tion, diseased atrial and ventricular muscle fibers can have their
membrane potentials reduced and discharge repetitively.

As noted above, the discharge rate of the SA node is more
rapid than that of the other parts of the conduction system, and
this is why the SA node normally controls the heart rate. When
conduction from the atria to the ventricles is completely inter-

rupted, 

 

complete (third-degree) heart block

 

 results, and the
ventricles beat at a low rate 

 

(idioventricular rhythm)

 

 indepen-
dently of the atria (Figure 30–11). The block may be due to dis-
ease in the AV node 

 

(AV nodal block)

 

 or in the conducting
system below the node 

 

(infranodal block).

 

 In patients with AV
nodal block, the remaining nodal tissue becomes the pace-
maker and the rate of the idioventricular rhythm is approxi-
mately 45 beats/min. In patients with infranodal block due to
disease in the bundle of His, the ventricular pacemaker is
located more peripherally in the conduction system and the
ventricular rate is lower; it averages 35 beats/min, but in indi-
vidual cases it can be as low as 15 beats/min. In such individu-
als, there may also be periods of asystole lasting a minute or
more. The resultant cerebral ischemia causes dizziness and
fainting 

 

(Stokes–Adams syndrome).

 

 Causes of third-degree
heart block include septal myocardial infarction and damage to
the bundle of His during surgical correction of congenital inter-
ventricular septal defects.

When conduction between the atria and ventricles is slowed
but not completely interrupted, 

 

incomplete heart block

 

 is
present. In the form called 

 

first-degree heart block,

 

 all the
atrial impulses reach the ventricles but the PR interval is abnor-
mally long. In the form called 

 

second-degree heart block,

 

 not
all atrial impulses are conducted to the ventricles. For example,
a ventricular beat may follow every second or every third atrial
beat (2:1 block, 3:1 block, etc). In another form of incomplete
heart block, there are repeated sequences of beats in which the
PR interval lengthens progressively until a ventricular beat is
dropped 

 

(Wenckebach phenomenon). The PR interval of the
cardiac cycle that follows each dropped beat is usually normal
or only slightly prolonged (Figure 30–11).

Sometimes one branch of the bundle of His is interrupted,
causing right or left bundle branch block. In bundle branch
block, excitation passes normally down the bundle on the
intact side and then sweeps back through the muscle to acti-
vate the ventricle on the blocked side. The ventricular rate is
therefore normal, but the QRS complexes are prolonged and
deformed (Figure 30–11). Block can also occur in the anterior
or posterior fascicle of the left bundle branch, producing the
condition called hemiblock or fascicular block. Left anterior
hemiblock produces abnormal left axis deviation in the ECG,
whereas left posterior hemiblock produces abnormal right axis
deviation. It is not uncommon to find combinations of fascicu-
lar and branch blocks (bifascicular or trifascicular block).
The His bundle electrogram permits detailed analysis of the
site of block when there is a defect in the conduction system.

IMPLANTED PACEMAKERS

When there is marked bradycardia in patients with sick sinus
syndrome or third-degree heart block, an electronic pacemak-
er is frequently implanted. These devices, which have become
sophisticated and reliable, are useful in patients with sinus
node dysfunction, AV block, and bifascicular or trifascicular
block. They are useful also in patients with severe neurogenic

FIGURE 30–10 Sinus arrhythmia in a young man and an old 
man. Each subject breathed five times per minute. With each inspira-
tion the RR interval (the interval between R waves) declined, indicating 
an increase in heart rate. Note the marked reduction in the magnitude 
of the arrhythmia in the older man. These records were obtained after 
β-adrenergic blockade, but would have been generally similar in its 
absence.  (Reproduced with permission from Pfeifer MA et al: Differential changes 

of autonomic nervous system function with age in man. Am J Med 1983;75:249.)
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Primarily due to the stretch receptors in the lungs connected to ANS

The ANS Vagal-(PΣ) slightly modulates the Heart rate to benefit from the full lungs (oxygen)

If the PΣ withdraws then the RSA is canceled
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Sinoatrial (SA) Node properties

II-Focus on the Modulation of the Heart Rhythm/Period- Zaragoza

Heart is a not blind pump :

Neural and Non neural affect the SA
node

↘ or↗ the PP (RR) and PR
intervals

Adaptation to body demands

Olivier MESTE Nice-16 21



Sinoatrial (SA) Node properties

HRV frequency analysis (steady)

NEURAL influences 
Σ and pΣ 

NON NEURAL influences  
Hormones / Mechan. stretch 

Heart period variability (HPV) 
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RR instead of PP

Σ (slow) and pΣ (fast)

HF mostly respiration (RSA)

baroreflex mechanism evidence
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Sinoatrial (SA) Node properties

HRV frequency analysis (two steady states : tilt table test)
Indices of autonomic nervous system  
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During tilt test table :

Supine⇒ Upright position

Blood pressure regulation

↗ heart rate or↘ heart period

pΣ (vagal)↘
quantification
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Introduction

A more complex example
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During stress test protocol (cycling) :

The mean heart rate↗
The variability (Low-High)↘
The RSA↘ ( ? ?)

Mechanical influences ?

Observation model ?
(self sampled signal !)

Non-stationnary ?
(frequencies & amplitudes)

Qualitative/Quantitative analysis ?
(local or global analysis)
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Time-frequency analysis

Spectrogram for the non-stationarity

0 100 200 300 400 500 600 700 800 900 1000
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Defined by

S(t, f ) = |
∫

m(s)h∗(s− t)e−i2πfsds|2

Quadratic TFR (Cohen’s class)

Bad TF resolution

But well located cross-terms !

Closely related to the STFT (linear)
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Time-frequency analysis

Spectrogram for the non-stationarity

Needs quantitative assessment : not so easy with real data (noisy, multicomponent, ...) !
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Quantitative Time-frequency analysis

Chirp signals : different modulation rates, same amplitudes
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Quantitative Time-frequency analysis

Magnitude extracted from the TF plane ?
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frequency

For a given t0 (white line) :

Different widths

Different amplitudes

Integrals are equal

⇒ OK for visual inspection but not for quantification !
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Processing

TF processing (not developed here)

I) Magnitude of the modulation directly computed from the TF plane

R(k) =

√√√√ 1
K

fobs(k)+δ

∑
f=fobs(k)−δ

|M(k, f )|2

with fobs(k) the time-varying frequency of interest. M(k, f ) is the STFT of the
R-R intervals variability.

M(k, f ) = ∑
u

m(u)h(u− k)e−j2π
`
K u

with −K/2≤ `≤ K/2−1 integer and f = `/K

The analysis window h(u) is energy normalized.

⇒ Integrate over the given frequency range (the two black lines) !
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Application

Simple example-ANS modulation of the SA node
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From the Heart periods series :
I the trend T(t)
I the variability (TF processed)

Clear vagal withdrawal

Strong vagal return

Tool for the cardiorespiratory
coupling assessment [AJP]
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Ventricular Cardiomyocites : QT adaptation

III-Focus on T waves duration-EPFL
→ Impact of the Restitution Curve properties (oscillation) over the Ventricular Repolarization

Explain the QT/RR adaptation based on the
AP restitution curve :

The macro level (organ) should
reflect the micro level (cell)

Assessment of repolarization
disturbances (Ischemia)
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Ventricular Cardiomyocites : QT adaptation

Approximation and modeling
The sum of all the Ventricular Cells
AP almost explains the QT duration.

The APD is mostly composed by the
repolarization

The BCL is similar to the Heart
period (R-R)

For a given BCL, the curve can be
approximated by an affine function
(a = slope)

APDn+1

DIn

a0
a1

a2
APDn=BCL''-DIn

APDn=BCL'-DIn

We get for the fast adaptation :

APD(n+1) =−aAPD(n)+aBCL(n)+b
(12)

or

QTF(n+1) =−aQTF(n)+aRR(n)+b
(13)

and for the slow (not explained by the Resti-
tution Curve)

QTS(n+1) = cQTS(n)+RR(n) (14)
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Ventricular Cardiomyocites : QT adaptation

QT(n) and (a,b,c) parameters Estimation
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We consider blocks of 10 waves for
shape adaptation

The QT(n) are estimated by using an
original and optimal method
[IEEE-SPL]

The observed QT(n) and RR(n) feed
the estimation process

The (a,b,c) are estimated by using
alternated Least Square algo.
[IEEE-TBME]

The modeled Q̂T(n) only uses
(â, b̂, ĉ) and RR(n)

Outperforms standard models with
only few parameters
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Ventricular Cardiomyocites : QT adaptation

Example : exercise test (variable R-R)

962 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 4, APRIL 2012

Fig. 7. Example of modeling of the QT adaptation to RR changes on a ECG
recorded under controlled respiration. NMSE = 3.21e−5 .

Fig. 8. Example of modeling of the QT adaptation to RR changes on a ECG
recorded at rest. NMSE = 1.40e−5 .

the normalized mean square error (NMSE) defined as follows:

NMSE =
sum((QT − Q̂T)2)

sum(QT2)
(11)

where QT and Q̂T represent, respectively, the observed and the
modeled QT intervals.

Then, the proposed modeling of the QT adaptation to heart
rate changes combining both a fast and a slow response was ap-
plied to real ECGs, the relative parameters a and c are estimated
and the average heart period determined:

1) ECG recorded under controlled respiration in supine posi-
tion (see Fig. 7). As in the rest recording, the trend is well
modeled, while the variability of the modeled QT tends to
the variability of the observed one (NMSE = 3.21e−5 and
average heart period = 1025 ms);

2) ECG recorded at rest (see Fig. 8, healthy subject of the
EUROBAVAR database in supine position [37]). The trend
of the QT intervals is well modeled, while the variability of
the modeled QT tends to the variability of the observed one
(NMSE = 1.40e−5 and average heart period = 845 ms);

3) ECG recorded during AF episodes (see Fig. 9). The trend
and the variability of the modeled QT are very close to
those of the observed ones (NMSE = 6.35e−5 and average
heart period = 705 ms);

4) ECG recorded during rest and exercise on a cycloergome-
ter (see Fig. 10). We observe a large modeling error when
the exercise begins. Indeed, the NMSE that is equal to

Fig. 9. Example of modeling of the QT adaptation to RR changes on a ECG
recorded during AF episodes. Note that the trend and the variability of the
modeled QT are very close to those of the observed ones. NMSE = 6.35e−5 .

Fig. 10. Example of modeling of the QT adaptation to RR changes on a ECG
recorded during exercise. We observe that the modeled QT can not really reach
the observed one when the RR drop is too large in the beginning of the exercise
for instance. NMSE = 1.49e−4 .

= 1.49e−4 is larger than the other cases (factor of 10).
This modeling error is due to the sudden and significant
drop of the RR intervals at the beginning of the exercise.
The average heart period is, respectively, equal to 742 and
529 ms for the rest and the exercise phases.

In case of weak changes of heart rate trend, such as during
rest or during AF, the heart rate is quite constant so the diagonal
line on the restitution curve does not move (see Fig. 3), and an
equilibrium point is reached. The parameter a relative to the
oscillating part in (8) is then constant and the QT intervals are
well modeled. In case of a sudden change in the heart rate such
as during exercise, the diagonal line and parameter a change, so
the proposed modeling based on a constant a is not suitable for
this kind of heart rate profile. In this case, a piecewise modeling
process is proposed. The ECG recorded in exercise is split into
two parts: rest (from the beginning of the record until the 420th
beat in this example) and exercise (after the 450th beat to the
end). The transient zone between the 420th and the 450th beat is
excluded. The result of this piecewise QT adaptation modeling
is presented in Fig. 11. The NMSE of the modeling which
was equal to 1.49e−4 considering the whole ECG, is reduced to
4.96e−5 . On this example, we observe, especially in the exercise
phase, that the variability of the QT is better preserved. Note
that the estimation of the parameter a is larger for the exercise

CABASSON et al.: ESTIMATION AND MODELING OF QT-INTERVAL ADAPTATION TO HEART RATE CHANGES 963

Fig. 11. Example of modeling of the QT adaptation to RR changes on a ECG
recorded during exercise. Piecewise modeling: rest part, and exercise. Exclusion
zone of model transition between the two vertical lines. NMSE = 4.96e−5 .

than for the resting phase. This observation has been checked
on other subjects (results not provided here).

According to these results, we observe that the values of a,
the slope of the tangent to the restitution curve (see Fig. 3), are
consistent with the average heart rate values. This observation
is fully in agreement with the analysis of the restitution curve
at the cellular level in Fig. 3: the slope a of the tangent to the
equilibrium point in the restitution curve is higher when the RR
intervals decrease as during exercise. Ploting the a values in
function of average RR intervals highlights a decreasing expo-
nential relation which is consistent with the restitution curve.
Indeed, for little changes in RR intervals when average RR is
high, the slope a moves slightly. Only the data corresponding to
the AF case does not fit the decreasing exponential relation. This
could be explained by the large and repetitive changes in RR
variability during AF whereas our proposed modeling assumes
an almost stable RR-interval around the equilibrium point.

In parallel, we observe that the values of the parameter c,
defined in the slow adaption part in the (9), are representative
of the low-pass filtering, i.e., close to 1 and consistent with the
work of Franz et al. at the cellular level [9].

In order to assess the performance of our stationary model,
we compared our results with the characterization of QT-interval
adaptation to RR interval using a nondynamic model presented
in [19]. To minimize regression residuals, we used a linear re-
gression model such as QT = β + αRR (denoted LIN) or a hy-
perbolic regression model such as QT = β + α/RR (denoted
HYP), since they produced the best results in [19]. A length of
100 beats has been chosen as initialization values. As proposed
in [19], the criterion has been minimized by using an iterative
scheme until convergence. Table III presents the comparison of
this method and of our proposed method applied on the pre-
viously considered real ECGs in which heart rate profiles are
various. We observe that our method outperforms the method
presented in [19] in all cases, and more precisely, when trend
and variability are not weak at the same time. An example of
modeled QT using this method is presented in Fig. 12 on a ECG
recorded under controlled respiration, for which stationarity can
be assumed. We observe a large modeling error: the QT-trend
does not fit the observed one, and the variability of the signal is
overemphasized. Compared to our method, this result could be

TABLE III
COMPARISON BETWEEN OUR QT MODELING METHOD AND THE METHOD

PROPOSED IN [19] THROUGH NMSE VALUES ON DIFFERENT TYPES OF ECGS

Fig. 12. Example of modeling of the QT adaptation to RR changes on a ECG
recorded under controlled respiration using the method [19] (LIN). NMSE =
1.16e−4 .

explained by the criterion to be minimized in [19]. Indeed, the
weight sequence of the RR intervals cannot be adjusted to fit si-
multaneously the variability and the trend of the QT intervals. In
contrast to this approach, our method processes separately these
two characteristics, which leads to a more accurate modeling.

V. DISCUSSION AND CONCLUSION

In this paper, first we presented a new QT-interval estimation
method, a batch processing mode of the previous improved
Woody’s method developed in [31]. Performance evaluation
was performed on synthetic signals, and the proposed method in
its batch processing mode outperformed the other conventional
methods based on a segmentation of the T wave.

Second, we proposed a new QT–RR adaptation modeling
that provides a characterization of the QT-interval adaptation
dynamics in response to heart rate changes. Contrary to the pre-
vious studies, the modeling focuses both on the fast and slow
QT-intervals adaptations: at first, the oscillating part relative to
the QT and RR variabilities, and second, the slow adaptation
relative to the QT and RR trends, are modeled. The proposed
fast adaptation modeling is based on the electrical behavior at
the cellular level relative to the electrical restitution curve. In
parallel, the slow adaptation modeling is inspired by experimen-
tal works at the cellular level too. Note that the so-called QT/RR
hysteresis [19], [38] is explained by this slow adaptation. Indeed
it is not only the preceding cardiac cycle that influences the QT.
The history of heart rate variability contributes to QT variations.

The results on real ECG recordings in Section IV-B illustrate
the feasibility of the modeling of the QT adaptation to heart
rate changes. Excepted in case of an abrupt change of the heart
rate as in the beginning of exercise for instance, the modeling
of both trend and variability of QT intervals are satisfactory in
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Conclusions

Still many things to present

This type of topic :

Needs strong collaborations with clinicians

Needs large background knowledge

Provides research topics for Computer Science (IBM very active in the
simulation field), Biology (Pharmacological Companies), Engineering
(Pacemakers, Defibrillators) etc ...

Questions ?
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AtrioVentricular (AV) Node properties

V-Focus on the Effect of the ANS on the AV Velocity Conduction

Strong vagal return visible in the Heart Rate
Variability (SA node)

Visible in the PR (includes AV node
conduction) ?

Adapted to subject status
(elite/sedentary) ?
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AtrioVentricular (AV) Node properties

PR intervals analysis-Observations modeling
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Quantifying the PR Interval Pattern During
Dynamic Exercise and Recovery

Aline Cabasson∗, Student Member, IEEE, Olivier Meste, Member, IEEE, Grégory Blain, and Stéphane Bermon

Abstract—We present a novel analysis tool for time delay estima-
tion in electrocardiographic signal processing. This tool enhances
PR interval estimation (index of the atrioventricular conduction
time) by limiting the distortion effect of the T wave overlapping
the P wave at high heart rates. Our approach consists of modeling
the T wave, canceling its influence, and finally estimating the PR
intervals during exercise and recovery with the proposed general-
ized Woody method. Different models of the T wave are presented
and compared in a statistical summary that quantitatively justifies
the improvements introduced by this study. Among the different
models tested, we found that a piecewise linear function signifi-
cantly reduces the T wave-induced bias in the estimation process.
Combining this modeling with the proposed time delay estimation
method leads to accurate PR interval estimation. Using this method
on real ECGs recorded during exercise and its recovery, we found:
1) that the slopes of PR interval series in the early recovery phase
are dependent on the subjects’ training status (average of the slopes
for sedentary men = 0.11 ms/s, and for athlete men = 0.28 ms/s),
and 2) an hysteresis phenomenon exists in the relation PR/RR in-
tervals when data from exercise and recovery are compared.

Index Terms—Electrocardiography (ECG), exercise, maximum
likelihood estimation, PR interval, PR/RR hysteresis, time delay
estimation.

I. INTRODUCTION

E STIMATING variability of the heart period series during
exercise and recovery is a real challenge in biomedical

engineering. One reason is that the global understanding of the
interaction between the neural activity and the cardiac outputs is
relevant to improving performances of future pacemakers, and
to enriching knowledge for medical diagnosis. For instance, the
analysis of the PR interval pattern could be performed in order
to evaluate not only the sympathetic–parasympathetic balance,
but also to reveal the atrioventricular conduction properties [1].

The analysis of PR intervals during exercise and recovery has
been rarely addressed to date [2], [3]. The main reason is that the
estimation of these intervals is particularly difficult at high heart
rates because T wave tends to overlap the P one, which biases P
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Fig. 1. Example of (a) a real ECG where the T and P waves are disjointed at
rest and (b) overlapped during exercise.

wave occurrence detection (see Fig. 1). Consequently, new ad
hoc time delay estimators have to be designed. In this paper, we
focus on time delay estimation (TDE) in electrocardiographic
signals on healthy subjects.

Among the well-known time delay estimators, some tech-
niques have been proposed in different areas of biomedical pro-
cessing to solve TDE problems for noisy and unknown signals.
Cross-correlation approaches, which are based on the detection
of the maximum of the cross-correlation, are the most frequently
used for TDE [4], [5]. Similar problems are solved using the
generalized cross-correlation technique [6], [7]. In particular,
the maximum likelihood (ML) TDE has been shown to pro-
vide an unbiased time delay estimate under ideal conditions,
i.e., without shape or time scale changes of the signals of inter-
est [8]. When the signal under consideration is unknown, i.e.,
the P wave in our case, Woody’s method [9] is a good candi-
date that belongs to the cross-correlation family. Besides, the
Improved Woody method outperforms significantly Woody’s
technique [10]. Moreover, for TDE problems, several other
techniques have been used mainly working in the frequency
domain [11]–[13]. Unfortunately, the introduction of an a priori
concerning the overlapping T wave is tedious in the frequency
domain. Alternatively, the monophasic behavior can be well
described in the time domain. Also, the wavelet transform is
a good candidate for bioelectrical signal analysis and interval
estimation [14]. While it has been shown to be a promising tool,
these typical methods do not overcome the overlapping problem
because the T and the P waves share the same frequency band.
This drawback will be illustrated in the following. Even so,
the wavelet transform applied to ECG characterization could be
seen as a derivative function. The zero-crossing locations pro-
vide the maximum of the wave of interest. Instead of using this
transform, the derivative of the signal can be directly estimated,

0018-9294/$26.00 © 2009 IEEE
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ECG recorded during maximal exercise tests (cycling)

Segmentation of RR windows

P waves, delays, factors are unknown & T waves overlaps P waves

The model is xi(n) = αisdi(n)+ f (n;θi)+ ei(n) but i = 1 . . . I
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AtrioVentricular (AV) Node properties

PR intervals analysis-T wave modeling
CABASSON et al.: QUANTIFYING PR INTERVAL PATTERN DURING DYNAMIC EXERCISE 2677

Fig. 2. Example of a real T wave modeled as a decreasing piecewise linear
function based on three functions vl (MP−3 ). The piecewise function corre-
sponds to the estimated T wave by the proposed method using the vectors v1 ,
v2 , and v3 in a real case.

simple approach. Moreover, methods based on spline interpola-
tion can not be applied because the anchor points of the T wave
are hidden when the fusion occurs.

The outline of our PR intervals estimator algorithm is:
1) modeling of the decreasing part of the T wave imposing

additional constraints; these constraints will account for
the decreasing behavior of the ending part of the T wave
(see Fig. 2);

2) adaptation of the T wave model to our global observation
model presented in Section II;

3) estimation of the PR intervals using an iterative ML tech-
nique which includes Least Square solution with linear
inequality constraints.

We recall that we consider a model for the observations which
is defined by the equation (2) where the variable di is the ith
PR interval to be estimated up to a constant and the decreasing
part of the T wave is represented by a function f(θi) linearly
parameterized. Note that the function f(θi) is dependent to i in
order to allow the shape variation of the T wave.

A. Model Using Lth Order Polynomial Function (ML )

We assume that the decreasing part of the T wave is described
by a regular and smooth function, i.e., an Lth order polynomial
function characterized by its coefficients in the vector θi

f(n;θi) =

L∑

l=0

θi [l]n
l. (4)

In a previous work [21], we considered that L = 1, i.e., we
take into account the T wave modeled as a straight line (M1).
This method have been tested for a 2nd order but we will only
present in this work the model corresponding to a 3rd order
polynomial function (M3)

f(n;θi) = θi [3]n3 + θi [2]n2 + θi [1]n + θi [0]. (5)

The decreasing constraint is fulfilled introducing following
inequalities on θi :




θi [3] > 0,
θi [1] < 0,
3.θi [3]N 2 + 2.θi [2]N + θi [1] < 0

(6)

with N the length of our observation’s window.

Note that if we consider the function f(θi) in the model
(2) as an unconstrained straight line (i.e., L = 1), the residual
influence of the baseline can be modeled and canceled on the
ECG.

B. Model Using Piecewise Linear Function (MP )

The decreasing part of the T wave is considered as a piecewise
linear function f(θi), defined as a weighted sum of a collection
of functions vl (see Fig. 2)

f(n;θi) =

L∑

l=1

θi [l]vl [n]. (7)

We build a collection of L functions vl which defines L intervals
of width K. We note this model as MP −L . L and K are chosen
arbitrarily such as the length L × K corresponds to the expected
maximal width of the segmented decreasing part of the T wave.
The accuracy of this knowledge is not crucial. But it has to
be chosen in accordance with the trade-off between the good
approximation of the T wave and the variance of the estimated
parameters of f (7). Given the estimation process, increasing
the number of functions will reduce the approximation error
while the variance of the estimated weights increases. For all
subjects, empirical values of L and K have been chosen equal
to 3(MP−3) and 20, respectively. The selection of these values
have not been considered as the part of the global optimization.

As it will be shown in the sequel, this modeling will provide
us a tractable solution that accounts for our a priori information
concerning the T wave. So, it is expected that this knowledge
reduces the bias avoiding the nonexistence of an unique solution.

In the Fig. 2, functions vl are chosen as piecewise linear
functions. In order to be consistent with the observations, some
constraints are added:

1) in each interval, a negative slope is imposed for any func-
tions combination;

2) in order to keep the continuity of the modeled T wave,
the joining points between two consecutive intervals must
respect the following constraint: the last point of the lth
interval must be identical to the first point of the (l + 1)th
interval.

The aim is to build a collection of L functions vl . We choose
arbitrarily L = 3 and K = 20 as in the Fig. 2, for a sampling
frequency equal to 1000 Hz (Note that L does not influence a
lot the bias of the estimator on simulated data). Therefore, three
intervals are considered.

Choosing functions as in Fig. 2, on each interval, for n ∈ [k ×
K : (k + 1) × K] (with k = 0, . . . , 2), the T wave is modeled
by a linear function that is a weighted sum of two non-zero
functions





f [n] = θ1 .v1 [n] + θ2 .v2 [n]; n ∈ [0 : K],
f [n] = θ2 .v2 [n] + θ3 .v3 [n]; n ∈ [K : 2K],
f [n] = θ3 .v3 [n]; n ∈ [2K : 3K].

Moreover, the T wave has to be modeled by a decreasing
linear function, so the following conditions on each interval
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must be imposed:




f ′[n] = θ1 .v
′
1 [n] + θ2 .v

′
2 [n] ≤ 0; n ∈ [0 : K],

f ′[n] = θ2 .v
′
2 [n] + θ3 .v

′
3 [n] ≤ 0; n ∈ [K : 2K],

f ′[n] = θ3 .v
′
3 [n] ≤ 0; n ∈ [2K : 3K]

where f ′ stands for the temporal derivative of f .
In order to obtain a tractable relation linking the coefficients

θi , the 3 functions vl are chosen arbitrarily as




v′
1 [n] < 0; n ∈ [0 : K],

v′
1 [n] = −v′

2 [n]; n ∈ [0 : K],
v′

2 [n] = −v′
3 [n]; n ∈ [K : 2K].

(8)

These relations imply that v1 and v3 are decreasing respec-
tively on the intervals [0 : K] and [2K : 3K].

Imposing these properties to the functions, the conditions of
continuity at the joining points (n = K and n = 2K) between
two consecutive intervals need to be checked. Thus, for example
when n = K, we get

θ1v1 [K] + θ2v2 [K] = θ2v2 [K] + θ3v3 [K]. (9)

However, using (8), on each interval we obtain the relations
{

v1 [n] = −v2 [n] + C1 ; n ∈ [0 : K],
v2 [n] = −v3 [n] + C2 ; n ∈ [K : 2K]

(10)

where C1 and C2 are constant values.
By replacing in (9) the results (10) with n = K, we get

(θ2 − θ1)v2 [K] + θ1C1 = (θ3 − θ2)v3 [K] + θ2C2 . (11)

We impose that v1 [K] = v3 [K] = 0 which implies, given the
relations (10), that C1 = C2 . So, the continuity for n = K is
ensured.

Finally, when building a collection of L functions vl such as
in Fig. 2, these rules are applied:

1) the first function is decreasing on the interval [0 : K] and
is null after;

2) the last function is null for n ∈ [0 : (L − 2)K] and is de-
creasing on the interval [(L − 1)K : LK].

This implies that θL must be positive in order to keep the
decreasing property of the modeled T wave. Besides, thanks to
the hypotheses (8) and (10), the constraints on the θis are

∀ l ∈ [1 : L − 1], θi [l] > θi [l + 1] > 0. (12)

Note that the previous development has been given without
lack of generality since it is valid for any number L of functions
vl .

IV. RESULTS

A. Simulation Study

The synthesized ECG during exercise using Gaussian func-
tions is presented in Fig. 3. This ECG has constant PR intervals,
and a time-varying T-P duration. This duration decreases lin-
early as the beat number increases. In Fig. 3, the extreme left-
hand side and the extreme right-hand side T waves correspond
respectively to the 1st and the 400th beat.

Theoretically, the estimated delays, i.e., the PR intervals,
should be constant. It is expected that the T wave introduces

Fig. 3. Synthetic data of ECG during exercise. This ECG has constant PR
intervals, and a time-varying T-P duration. This duration decreases linearly as
the beat number increases. The extreme left-hand side and the extreme right-
hand side T waves correspond, respectively, to the 1st and the 400th beat.

Fig. 4. Bias of the time delay estimator for the three considered models and
with the wavelet technique at scale 23 [14].

bias with a value depending on the overlapping ratio. Fig. 4
shows the time course of the bias between the real PR intervals
and the estimated ones (in function of the beat number) obtained
with our piecewise solution (MP ) represented with a thick solid
curve. This figure also shows the bias obtained with two other
models: the dashed line and the solid one correspond to a model
based on a constrained third-order polynomial function (M3) or
a decreasing single straight line (M1), respectively. The dotted
curve corresponds to an estimation of the PR intervals without
T wave accounting.

Whatever the chosen model, the bias is low when the T-P
fusion occurs weakly. When the beat number increases, the
model MP outperforms the others. This result shows that, at
least in simulation, our piecewise T wave model (MP ) is more
accurate than the others when the overlapping appears.

Besides, Fig. 4 exhibits the bias of the estimator computed
with the wavelet tool. The used wavelet is the first derivative of
a Gaussian smoothing function, and the zero-crossing computa-
tion of the wavelet transform provides the location of the signal
shape variation points [14]. It is known that the power spectrum
of the P and T waves lie in the same range [22]. In order to
avoid errors due to artifacts, the scale 23 is chosen to detect the
onset and the offset of the P and T waves as proposed in [14].
From Fig. 4, it is clear that the fusion of the two waves bias the
zero-crossing location.

B. Results on Real Data

Using the proposed method of TDE, we estimate PR intervals
from real ECG recorded in healthy humans during exercise and
recovery.
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must be imposed:




f ′[n] = θ1 .v
′
1 [n] + θ2 .v

′
2 [n] ≤ 0; n ∈ [0 : K],

f ′[n] = θ2 .v
′
2 [n] + θ3 .v

′
3 [n] ≤ 0; n ∈ [K : 2K],

f ′[n] = θ3 .v
′
3 [n] ≤ 0; n ∈ [2K : 3K]

where f ′ stands for the temporal derivative of f .
In order to obtain a tractable relation linking the coefficients

θi , the 3 functions vl are chosen arbitrarily as




v′
1 [n] < 0; n ∈ [0 : K],

v′
1 [n] = −v′

2 [n]; n ∈ [0 : K],
v′

2 [n] = −v′
3 [n]; n ∈ [K : 2K].

(8)

These relations imply that v1 and v3 are decreasing respec-
tively on the intervals [0 : K] and [2K : 3K].

Imposing these properties to the functions, the conditions of
continuity at the joining points (n = K and n = 2K) between
two consecutive intervals need to be checked. Thus, for example
when n = K, we get

θ1v1 [K] + θ2v2 [K] = θ2v2 [K] + θ3v3 [K]. (9)

However, using (8), on each interval we obtain the relations
{

v1 [n] = −v2 [n] + C1 ; n ∈ [0 : K],
v2 [n] = −v3 [n] + C2 ; n ∈ [K : 2K]

(10)

where C1 and C2 are constant values.
By replacing in (9) the results (10) with n = K, we get

(θ2 − θ1)v2 [K] + θ1C1 = (θ3 − θ2)v3 [K] + θ2C2 . (11)

We impose that v1 [K] = v3 [K] = 0 which implies, given the
relations (10), that C1 = C2 . So, the continuity for n = K is
ensured.

Finally, when building a collection of L functions vl such as
in Fig. 2, these rules are applied:

1) the first function is decreasing on the interval [0 : K] and
is null after;

2) the last function is null for n ∈ [0 : (L − 2)K] and is de-
creasing on the interval [(L − 1)K : LK].

This implies that θL must be positive in order to keep the
decreasing property of the modeled T wave. Besides, thanks to
the hypotheses (8) and (10), the constraints on the θis are

∀ l ∈ [1 : L − 1], θi [l] > θi [l + 1] > 0. (12)

Note that the previous development has been given without
lack of generality since it is valid for any number L of functions
vl .

IV. RESULTS

A. Simulation Study

The synthesized ECG during exercise using Gaussian func-
tions is presented in Fig. 3. This ECG has constant PR intervals,
and a time-varying T-P duration. This duration decreases lin-
early as the beat number increases. In Fig. 3, the extreme left-
hand side and the extreme right-hand side T waves correspond
respectively to the 1st and the 400th beat.

Theoretically, the estimated delays, i.e., the PR intervals,
should be constant. It is expected that the T wave introduces

Fig. 3. Synthetic data of ECG during exercise. This ECG has constant PR
intervals, and a time-varying T-P duration. This duration decreases linearly as
the beat number increases. The extreme left-hand side and the extreme right-
hand side T waves correspond, respectively, to the 1st and the 400th beat.

Fig. 4. Bias of the time delay estimator for the three considered models and
with the wavelet technique at scale 23 [14].

bias with a value depending on the overlapping ratio. Fig. 4
shows the time course of the bias between the real PR intervals
and the estimated ones (in function of the beat number) obtained
with our piecewise solution (MP ) represented with a thick solid
curve. This figure also shows the bias obtained with two other
models: the dashed line and the solid one correspond to a model
based on a constrained third-order polynomial function (M3) or
a decreasing single straight line (M1), respectively. The dotted
curve corresponds to an estimation of the PR intervals without
T wave accounting.

Whatever the chosen model, the bias is low when the T-P
fusion occurs weakly. When the beat number increases, the
model MP outperforms the others. This result shows that, at
least in simulation, our piecewise T wave model (MP ) is more
accurate than the others when the overlapping appears.

Besides, Fig. 4 exhibits the bias of the estimator computed
with the wavelet tool. The used wavelet is the first derivative of
a Gaussian smoothing function, and the zero-crossing computa-
tion of the wavelet transform provides the location of the signal
shape variation points [14]. It is known that the power spectrum
of the P and T waves lie in the same range [22]. In order to
avoid errors due to artifacts, the scale 23 is chosen to detect the
onset and the offset of the P and T waves as proposed in [14].
From Fig. 4, it is clear that the fusion of the two waves bias the
zero-crossing location.

B. Results on Real Data

Using the proposed method of TDE, we estimate PR intervals
from real ECG recorded in healthy humans during exercise and
recovery.
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TABLE I
TRAINING STATUS AND MAXIMAL OXYGEN UPTAKE (VO 2

MAX) OF STUDIED
POPULATION. SED: SEDENTARY SUBJECTS; ATH: ATHLETES

1) Experimental Design:
a) Subjects: Five sedentary men (SED) and seven athlete

men (ATH), whose physical characteristics are shown in Table I,
participated in the present study. All subjects were non-smokers,
and none was taking any medication. Physical activity and al-
cohol and caffeinated beverages consumption were prohibited
24 h before any exercise testing session.

b) Protocol: All subjects performed a maximal graded
exercise test. The initial load was fixed at 75 W for sedentary
subjects or 150 W for athletes and increased by 37.5 W every 2
min until exhaustion. The pedaling rate was kept constant at 75
and 90 r/min for the SED and ATH group, respectively. During
the exercise test and the preceding 5 min (rest), a one-lead ECG
was recorded and digitized on-line by a 12-bit analog-to-digital
converter at a sampling rate of 1000 Hz on a personal computer.
The lead is placed collinearly to the standard DII derivation
directly on the chest in order to avoid limbs motion artifacts.
The DII lead is chosen because it exhibits the highest amplitude
of the P wave. Besides, it assures the T wave of being positive
and monophasic, and it minimizes the presence of the U wave.
All subjects completed the exercise test without any clinical
abnormalities or discomfort.

2) Estimation of PR Intervals: Two pre-processing methods
provide us the position of the R waves [5]. First, a threshold
technique applied on the high-pass filtered and demodulated
ECG, refines the estimation of the time occurrences tk of the
R waves, that are roughly the R peaks locations. The high-pass
filtering is a 500th order FIR filter designed with a hamming
window and a cutoff frequency equal to 5 Hz. Segments
including each expected P wave and its corresponding R wave
in sequence are formed time locked with the tk . The length of
the segments is fixed for all beats and depends of the subject. For
each heart rate, the left boundary of the segment is adjusted in
order to get only the decreasing part of the T wave, and to ensure
that the whole P wave is encompassed (see Fig. 2). In a real
case, this condition is readily achieved and the T wave should
not be present in our observation window for low heart rates.

While the PR intervals estimator provides reliable results
regarding the T wave overlapping, it is biased by the presence
of a baseline corresponding to the respiration and other artifacts.
We use the baseline removal approach proposed in [5], based
on an order one polynomial substraction. Finally, we consider
in the model (2) the segments xi including each expected P
wave and the decreasing part of the T wave (when both waves
overlapped).

The instantaneous, or time course, of PR interval is not in the
scope of this paper. Then, in order to reduce the effect of noise
at the maximum exercise intensity, each set of 10 PR interval
segments was replaced by the corresponding average [23], [24].

Fig. 5. Representative example of PR interval pattern in an athlete subject.
The T wave was modeled by a constrained piecewise linear function (MP ).
The interval IPR is used for the calculation of the slope SPR , indicative of the
“recovery rate”; the interval IPR is defined between the end of the exercise and
the abrupt change of slope, and is delimited by the two dotted vertical lines.

Fig. 6. Scatter diagram of the observations for the 12 subjects. Relation be-
tween the time of abrupt change of slope for PR (IPR ) and RR (IRR ) intervals
(r = 0.784; p-value < 0.001).

By computing our generalized Woody method presented in
Section II, the coefficients of the model (M1 , M3 , or MP−3)
and the obtained d̂is corresponding to the PR intervals up to
a constant are estimated. The convergence of the algorithm is
achieved after 10 iterations.

Fig. 5 shows a representative example of the PR interval
pattern using the MP−3 model. The constant of the di has been
evaluated on the maximum of the P wave average, s, provided
by the algorithm.

3) Observations During Early Recovery Phase: Consistent
with our previous observations [21], [25], we show an abrupt
change of PR interval slope on the early recovery phase, which
is significantly correlated with the RR interval slope. This result
is valid for all the models of the T wave proposed in Section III.

Fig. 6 shows the scatter diagram which characterizes the rela-
tionship between the PR and RR duration of the early recovery
phase (IPR and IRR ). The estimated PR intervals presented
in this scatter diagram correspond to a piecewise linear func-
tion model (MP−3). The correlation coefficients of the relation
between IPR and IRR with different models are presented in
Table II. The time occurrence of abrupt change of slope on PR
and RR for all subjects are computed as follows. We consider
two phases in the beginning of the recovery, each one being
modeled as a straight line. The total time interval is divided into
two corresponding segments. The index that splits the whole
segment in two, i.e., IPR in Fig. 5 in the case of PR intervals,
minimizes the sum of mean error of the least square modeling
of the two lines.
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TABLE II
CORRELATION COEFFICIENTS OF SCATTER DIAGRAMS (IPR , IRR ) FOR

DIFFERENT T WAVE MODELS; p-VALUE < 0.001

Fig. 7. Relationship between the slope of the evolutions of the PR and RR
intervals for the 12 subjects. The two groups can be clustered according the PR
slopes.

The time locations of these changes of slope referenced to the
end of exercise, on PR and RR are related to each subject, with-
out any effect of the training level. Additionally, the slope SRR

and SPR of the RR and PR intervals respectively, are computed
for all subjects on the time interval IRR and IPR bounded by the
two dotted vertical lines in Fig. 5. These two bounds correspond
to the end of the exercise and the time location of the change
of slope respectively. This slope should convey informations
relative to the “recovery rate” of the subject.

Fig. 7 relates the slopes SPR in function of SRR for the 12
subjects using the MP−3 model. The values of the slopes of PR
are higher in ATH than in SED subjects. A k-means clustering
algorithm has been applied on our data set assuming a cluster for
the SED and an other one for the ATH. While exploiting data of
both PR and RR intervals, we obtain 33% of misclassification,
60% considering the data of the RR intervals only and 0%
considering the data of the PR intervals only.

Similar results (with less resolution however) are obtained
using the single straight line (M1) or the third-order polynomial
function (M3) models. To compare the different models with
a number of cluster equal to 2, we compute the statistic of the
Welch’s test, t, and a k-means criterion, C, defined as

C =
distance between the two centroids

sum of the two radius
. (13)

Raw PR intervals indexes (without modeling improvement)
are not reported because of the 25% of misclassification of the
k-means algorithm. For the three models, the Welch’s test is
positive with a p-value < 0.001. The criterion C for the three
models is presented in Table III. The highest value is provided
by the MP model meaning that the best clustering is reached for
this model.

4) PR/RR Hysteresis Phenomenon: Previous studies on
ECG recordings under exercise conditions show that there

TABLE III
CRITERION C OF K-MEANS ALGORITHM DEFINED ON (13)

FOR DIFFERENT MODELS

Fig. 8. Evolutionof PR intervals (MP−3 model) in function of RR intervals
during exercise (+) and recovery (◦). We note a clockwise hysteresis phe-
nomenon.

TABLE IV
MEAN AND STANDARD DEVIATION OF HYSTERESIS CRITERION

FOR DIFFERENTLY TRAINED ATHLETES GROUPS AND DIFFERENT T-WAVE
MODELS

exists a nonlinear relationship between PR and RR intervals
which exhibits an hysteresis shape, [4], [5].

Fig. 8 shows a representative example of the PR versus RR
interval relationship in one athlete. PR intervals were estimated
with the piecewise linear function model (MP−3). Note that for
a same value of RR interval in exercise and recovery, the PR
interval is increased during the recovery.

To quantify the presence of an hysteresis phenomenon, we
calculated an hysteresis criterion defined as the difference of
areas between the recovery curve and the exercise curve, nor-
malized by the range of RR intervals of each subject. The study
of this criterion reveals the existence of the hysteresis phe-
nomenon for all subjects. The mean and the standard deviation
of this criterion for all T-wave models are presented in Table IV
for the two groups of subjects. As in the previous Section IV-B3,
the two groups of subjects are identified according the mean of
the hysteresis criterion: the SED and the ATH. Using a Welch’s
test, we find that the averaged hysteresis criterion is significantly
different between groups (p-value < 0.001). We also note that
subjects with the more pronounced early recovery PR slope have
a substantially greater hysteresis.

V. DISCUSSION

Our findings based on real ECG data showed that: 1) the
PR/RR interval relationship during exercise and its recov-
ery demonstrates an hysteresis pattern; 2) this hysteresis phe-
nomenon tends to be more pronounced in athletes versus
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TABLE II
CORRELATION COEFFICIENTS OF SCATTER DIAGRAMS (IPR , IRR ) FOR

DIFFERENT T WAVE MODELS; p-VALUE < 0.001

Fig. 7. Relationship between the slope of the evolutions of the PR and RR
intervals for the 12 subjects. The two groups can be clustered according the PR
slopes.

The time locations of these changes of slope referenced to the
end of exercise, on PR and RR are related to each subject, with-
out any effect of the training level. Additionally, the slope SRR

and SPR of the RR and PR intervals respectively, are computed
for all subjects on the time interval IRR and IPR bounded by the
two dotted vertical lines in Fig. 5. These two bounds correspond
to the end of the exercise and the time location of the change
of slope respectively. This slope should convey informations
relative to the “recovery rate” of the subject.

Fig. 7 relates the slopes SPR in function of SRR for the 12
subjects using the MP−3 model. The values of the slopes of PR
are higher in ATH than in SED subjects. A k-means clustering
algorithm has been applied on our data set assuming a cluster for
the SED and an other one for the ATH. While exploiting data of
both PR and RR intervals, we obtain 33% of misclassification,
60% considering the data of the RR intervals only and 0%
considering the data of the PR intervals only.

Similar results (with less resolution however) are obtained
using the single straight line (M1) or the third-order polynomial
function (M3) models. To compare the different models with
a number of cluster equal to 2, we compute the statistic of the
Welch’s test, t, and a k-means criterion, C, defined as

C =
distance between the two centroids

sum of the two radius
. (13)

Raw PR intervals indexes (without modeling improvement)
are not reported because of the 25% of misclassification of the
k-means algorithm. For the three models, the Welch’s test is
positive with a p-value < 0.001. The criterion C for the three
models is presented in Table III. The highest value is provided
by the MP model meaning that the best clustering is reached for
this model.

4) PR/RR Hysteresis Phenomenon: Previous studies on
ECG recordings under exercise conditions show that there

TABLE III
CRITERION C OF K-MEANS ALGORITHM DEFINED ON (13)

FOR DIFFERENT MODELS

Fig. 8. Evolutionof PR intervals (MP−3 model) in function of RR intervals
during exercise (+) and recovery (◦). We note a clockwise hysteresis phe-
nomenon.

TABLE IV
MEAN AND STANDARD DEVIATION OF HYSTERESIS CRITERION

FOR DIFFERENTLY TRAINED ATHLETES GROUPS AND DIFFERENT T-WAVE
MODELS

exists a nonlinear relationship between PR and RR intervals
which exhibits an hysteresis shape, [4], [5].

Fig. 8 shows a representative example of the PR versus RR
interval relationship in one athlete. PR intervals were estimated
with the piecewise linear function model (MP−3). Note that for
a same value of RR interval in exercise and recovery, the PR
interval is increased during the recovery.

To quantify the presence of an hysteresis phenomenon, we
calculated an hysteresis criterion defined as the difference of
areas between the recovery curve and the exercise curve, nor-
malized by the range of RR intervals of each subject. The study
of this criterion reveals the existence of the hysteresis phe-
nomenon for all subjects. The mean and the standard deviation
of this criterion for all T-wave models are presented in Table IV
for the two groups of subjects. As in the previous Section IV-B3,
the two groups of subjects are identified according the mean of
the hysteresis criterion: the SED and the ATH. Using a Welch’s
test, we find that the averaged hysteresis criterion is significantly
different between groups (p-value < 0.001). We also note that
subjects with the more pronounced early recovery PR slope have
a substantially greater hysteresis.

V. DISCUSSION

Our findings based on real ECG data showed that: 1) the
PR/RR interval relationship during exercise and its recov-
ery demonstrates an hysteresis pattern; 2) this hysteresis phe-
nomenon tends to be more pronounced in athletes versus
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TABLE II
CORRELATION COEFFICIENTS OF SCATTER DIAGRAMS (IPR , IRR ) FOR

DIFFERENT T WAVE MODELS; p-VALUE < 0.001

Fig. 7. Relationship between the slope of the evolutions of the PR and RR
intervals for the 12 subjects. The two groups can be clustered according the PR
slopes.

The time locations of these changes of slope referenced to the
end of exercise, on PR and RR are related to each subject, with-
out any effect of the training level. Additionally, the slope SRR

and SPR of the RR and PR intervals respectively, are computed
for all subjects on the time interval IRR and IPR bounded by the
two dotted vertical lines in Fig. 5. These two bounds correspond
to the end of the exercise and the time location of the change
of slope respectively. This slope should convey informations
relative to the “recovery rate” of the subject.

Fig. 7 relates the slopes SPR in function of SRR for the 12
subjects using the MP−3 model. The values of the slopes of PR
are higher in ATH than in SED subjects. A k-means clustering
algorithm has been applied on our data set assuming a cluster for
the SED and an other one for the ATH. While exploiting data of
both PR and RR intervals, we obtain 33% of misclassification,
60% considering the data of the RR intervals only and 0%
considering the data of the PR intervals only.

Similar results (with less resolution however) are obtained
using the single straight line (M1) or the third-order polynomial
function (M3) models. To compare the different models with
a number of cluster equal to 2, we compute the statistic of the
Welch’s test, t, and a k-means criterion, C, defined as

C =
distance between the two centroids

sum of the two radius
. (13)

Raw PR intervals indexes (without modeling improvement)
are not reported because of the 25% of misclassification of the
k-means algorithm. For the three models, the Welch’s test is
positive with a p-value < 0.001. The criterion C for the three
models is presented in Table III. The highest value is provided
by the MP model meaning that the best clustering is reached for
this model.

4) PR/RR Hysteresis Phenomenon: Previous studies on
ECG recordings under exercise conditions show that there

TABLE III
CRITERION C OF K-MEANS ALGORITHM DEFINED ON (13)

FOR DIFFERENT MODELS

Fig. 8. Evolutionof PR intervals (MP−3 model) in function of RR intervals
during exercise (+) and recovery (◦). We note a clockwise hysteresis phe-
nomenon.

TABLE IV
MEAN AND STANDARD DEVIATION OF HYSTERESIS CRITERION

FOR DIFFERENTLY TRAINED ATHLETES GROUPS AND DIFFERENT T-WAVE
MODELS

exists a nonlinear relationship between PR and RR intervals
which exhibits an hysteresis shape, [4], [5].

Fig. 8 shows a representative example of the PR versus RR
interval relationship in one athlete. PR intervals were estimated
with the piecewise linear function model (MP−3). Note that for
a same value of RR interval in exercise and recovery, the PR
interval is increased during the recovery.

To quantify the presence of an hysteresis phenomenon, we
calculated an hysteresis criterion defined as the difference of
areas between the recovery curve and the exercise curve, nor-
malized by the range of RR intervals of each subject. The study
of this criterion reveals the existence of the hysteresis phe-
nomenon for all subjects. The mean and the standard deviation
of this criterion for all T-wave models are presented in Table IV
for the two groups of subjects. As in the previous Section IV-B3,
the two groups of subjects are identified according the mean of
the hysteresis criterion: the SED and the ATH. Using a Welch’s
test, we find that the averaged hysteresis criterion is significantly
different between groups (p-value < 0.001). We also note that
subjects with the more pronounced early recovery PR slope have
a substantially greater hysteresis.

V. DISCUSSION

Our findings based on real ECG data showed that: 1) the
PR/RR interval relationship during exercise and its recov-
ery demonstrates an hysteresis pattern; 2) this hysteresis phe-
nomenon tends to be more pronounced in athletes versus

Authorized licensed use limited to: Universite de Nice Sophia Antipolis. Downloaded on November 5, 2009 at 05:47 from IEEE Xplore.  Restrictions apply. 

Olivier MESTE Nice-16 41



Atrial Fibrillation and Flutter

Assess the complexity of the AF

Similar to overshoot

Computed Hysteresis Area

Original results

Strong return of the vagal

Olivier MESTE Nice-16 42



Pathological case

Transplanted heart subjects
III. MATERIALS AND RESULTS

Recorded signals have been obtained from surface elec-
trodes that produce interferences such as noise and baseline
wander. So, to exploit all signals we must cancel the distur-
bances caused by breathing. First we filter the signal using
500-th order high-pass finite impulse response filter in order
to remove the baseline generated by the respiration. After
using a threshold technique we demodulate the filtered signal
to detect all the time occurrences of R-waves, namely the tk.
The differences of consecutive tk provide the heart period.
Finally, the HRV is computed by removing the trend of the
heart period. In addition to the ECG, the respiration signal is
recorded to extract the frequency and the volume. Ten heart
transplant subjects with different ages of transplantation [4-
160] months are analyzed by using different parameters. The
parameter introduced in [11] is indeed a standard deviation
(stand) evaluated on the HRV at rest. It will be compared
to the quantity mag(t) corresponding to the magnitude of
the time-varying filtered respiration component extracted
from the HRV. When corrected by the TVIPFM model the
subscript will be tv. Because the respiration volume has
not been controlled during the protocol, the time-varying
quantities will be normalized by the respiration volume
computed from the respiration signal. This normalization
denoted by the subscript resp will be exclusively applied to
mag because it contains only the respiration influence. All
these quantities are computed at rest and at the maximum
of the exercise. An interval of 100 seconds will be used
to compute parameter stand and to average the quantities
mag(t). In summary, the analysis will provide the parameters
stand, mag, magtv and magtv,resp.
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Fig. 1. The spectrogram of the heart rate variability with the template
G(t, f) boundaries (in black) defined by the respiratory frequency band

Figure (1), reveals that the RSA modulation is high at the
beginning of exercise, then the magnitude of this modulation
decreases abruptly after the beginning of exercise due to
the exercise pressor reflex causing ventilatory responses to
exercise. Then period from second 1400 to 1800 corresponds
to the increasing exercise. The intensity of the RSA is at
lower values during this interval. During the recovery, there

is an abrupt increase which gradually decreases as the heart
rate decreases reaching values close to those observed at the
beginning of the test.
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Fig. 2. The corrected variability with the TVIPFM model (top), the
magnitude of the envelop filtered around the respiration frequency (middle)
and the breathing volume (bottom), the red vertical lines correspond to
the begining and the maximum of the exercise, respectively. Note that the
magnitude unit is meaningless because of the correction procedure, the
volume has been normalized by the greater value within all the subjects

Figure (2) shows first the HRV corrected with the TVIPFM
model (upper). This variability is then filtered in the time-
frequency domain, producing an estimation of the RSA
magnitude (middle). If needed, the volume of the respiration
is computed from the respiration signal (bottom). From this
function of time (middle) an average over 100 seconds is
computed in the resting period and at the maximum of the
exercise.

III. MATERIALS AND RESULTS

Recorded signals have been obtained from surface elec-
trodes that produce interferences such as noise and baseline
wander. So, to exploit all signals we must cancel the distur-
bances caused by breathing. First we filter the signal using
500-th order high-pass finite impulse response filter in order
to remove the baseline generated by the respiration. After
using a threshold technique we demodulate the filtered signal
to detect all the time occurrences of R-waves, namely the tk.
The differences of consecutive tk provide the heart period.
Finally, the HRV is computed by removing the trend of the
heart period. In addition to the ECG, the respiration signal is
recorded to extract the frequency and the volume. Ten heart
transplant subjects with different ages of transplantation [4-
160] months are analyzed by using different parameters. The
parameter introduced in [11] is indeed a standard deviation
(stand) evaluated on the HRV at rest. It will be compared
to the quantity mag(t) corresponding to the magnitude of
the time-varying filtered respiration component extracted
from the HRV. When corrected by the TVIPFM model the
subscript will be tv. Because the respiration volume has
not been controlled during the protocol, the time-varying
quantities will be normalized by the respiration volume
computed from the respiration signal. This normalization
denoted by the subscript resp will be exclusively applied to
mag because it contains only the respiration influence. All
these quantities are computed at rest and at the maximum
of the exercise. An interval of 100 seconds will be used
to compute parameter stand and to average the quantities
mag(t). In summary, the analysis will provide the parameters
stand, mag, magtv and magtv,resp.
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Fig. 1. The spectrogram of the heart rate variability with the template
G(t, f) boundaries (in black) defined by the respiratory frequency band

Figure (1), reveals that the RSA modulation is high at the
beginning of exercise, then the magnitude of this modulation
decreases abruptly after the beginning of exercise due to
the exercise pressor reflex causing ventilatory responses to
exercise. Then period from second 1400 to 1800 corresponds
to the increasing exercise. The intensity of the RSA is at
lower values during this interval. During the recovery, there

is an abrupt increase which gradually decreases as the heart
rate decreases reaching values close to those observed at the
beginning of the test.

0 200 400 600 800 1000 1200 1400 1600
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

time−seconds 

m
ag

ni
tu

de

0 200 400 600 800 1000 1200 1400 1600
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time−seconds

m
ag

ni
tu

de

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

70

80

90

100

time−seconds

n
o
rm

a
liz

e
d
 v

o
lu

m
e

Fig. 2. The corrected variability with the TVIPFM model (top), the
magnitude of the envelop filtered around the respiration frequency (middle)
and the breathing volume (bottom), the red vertical lines correspond to
the begining and the maximum of the exercise, respectively. Note that the
magnitude unit is meaningless because of the correction procedure, the
volume has been normalized by the greater value within all the subjects

Figure (2) shows first the HRV corrected with the TVIPFM
model (upper). This variability is then filtered in the time-
frequency domain, producing an estimation of the RSA
magnitude (middle). If needed, the volume of the respiration
is computed from the respiration signal (bottom). From this
function of time (middle) an average over 100 seconds is
computed in the resting period and at the maximum of the
exercise.

III. MATERIALS AND RESULTS

Recorded signals have been obtained from surface elec-
trodes that produce interferences such as noise and baseline
wander. So, to exploit all signals we must cancel the distur-
bances caused by breathing. First we filter the signal using
500-th order high-pass finite impulse response filter in order
to remove the baseline generated by the respiration. After
using a threshold technique we demodulate the filtered signal
to detect all the time occurrences of R-waves, namely the tk.
The differences of consecutive tk provide the heart period.
Finally, the HRV is computed by removing the trend of the
heart period. In addition to the ECG, the respiration signal is
recorded to extract the frequency and the volume. Ten heart
transplant subjects with different ages of transplantation [4-
160] months are analyzed by using different parameters. The
parameter introduced in [11] is indeed a standard deviation
(stand) evaluated on the HRV at rest. It will be compared
to the quantity mag(t) corresponding to the magnitude of
the time-varying filtered respiration component extracted
from the HRV. When corrected by the TVIPFM model the
subscript will be tv. Because the respiration volume has
not been controlled during the protocol, the time-varying
quantities will be normalized by the respiration volume
computed from the respiration signal. This normalization
denoted by the subscript resp will be exclusively applied to
mag because it contains only the respiration influence. All
these quantities are computed at rest and at the maximum
of the exercise. An interval of 100 seconds will be used
to compute parameter stand and to average the quantities
mag(t). In summary, the analysis will provide the parameters
stand, mag, magtv and magtv,resp.
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Fig. 1. The spectrogram of the heart rate variability with the template
G(t, f) boundaries (in black) defined by the respiratory frequency band

Figure (1), reveals that the RSA modulation is high at the
beginning of exercise, then the magnitude of this modulation
decreases abruptly after the beginning of exercise due to
the exercise pressor reflex causing ventilatory responses to
exercise. Then period from second 1400 to 1800 corresponds
to the increasing exercise. The intensity of the RSA is at
lower values during this interval. During the recovery, there

is an abrupt increase which gradually decreases as the heart
rate decreases reaching values close to those observed at the
beginning of the test.
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Fig. 2. The corrected variability with the TVIPFM model (top), the
magnitude of the envelop filtered around the respiration frequency (middle)
and the breathing volume (bottom), the red vertical lines correspond to
the begining and the maximum of the exercise, respectively. Note that the
magnitude unit is meaningless because of the correction procedure, the
volume has been normalized by the greater value within all the subjects

Figure (2) shows first the HRV corrected with the TVIPFM
model (upper). This variability is then filtered in the time-
frequency domain, producing an estimation of the RSA
magnitude (middle). If needed, the volume of the respiration
is computed from the respiration signal (bottom). From this
function of time (middle) an average over 100 seconds is
computed in the resting period and at the maximum of the
exercise.

TABLE I
THE CORRELATION OF PARAMETERS WITH THE AGE OF TRANSPLANTATION

(rest) (max) (rest)-(max)
stand R=0.25, p=0.48 R=0.27 , p=0.45 R=0.11 , p=0.76
mag R=0.43, p=0.22 R=-0.21, p=0.56 R=0.29 , p=0.40

magtv R=0.61, p=0.06 R=-0.14, p=0.69 R=0.67 , p=0.03
magtv,resp R=0.74, p=0.01 R=0.09 , p=0.80 R=0.82, p=0.003
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Fig. 3. At rest. The magnitude of the heart rate variability corrected with
TVIPFM model filtered around the frequency band of respiration and nor-
malized with the respiratory volume, function of the age of transplantations

Table I, displays all the parameters extracted from the
ten patients. Its clear that magtv,resp outperforms the other
parameters whereas the stand parameter fails in exhibiting
a linear correlation. The difference (rest)-(max) is provided
in order to investigate a dynamic behavior. Once again,
magtv,resp shows a clear correlation. Figure (3), represents
the magnitude of the heart rate variability magtv,resp(rest),
filtered around the frequency band of respiration and nor-
malized with the respiratory volume, function of the age
of transplantation. It shows the high correlation (R=0.74,
P=0.01), between the age of the transplantation and the RSA
with TVIPFM correction and respiration normalization.

One of the important results in this paper is that from the
parameters obtained from the HRV, only the variability cor-
rected by the TVIPFM and normalized is highly correlated
with the age of the transplantation. The result was expected
from the literature but with a parameter that fails in that
case (stand). However, since a higher variability is related
to a reinnervation, our result is in line with the physiology
knowledge.

IV. DISCUSSION

In this paper, a method of time-varying filtering is pro-
posed, centering the filter around the respiration frequency
band. The relevance of using the Spectrogram for this aim is
proven. In combination with this filter we use the TVIPFM
model which has a time-varying mean heart period adapted
to non stationary conditions. The time-varying mean heart
rate is estimated by low-pass filtering dHR(t). Thus, the
modulating signal is filtered in the time-frequency domain

and the instantaneous power is then calculated by integrating
over frequencies to obtain the magtv .

Probably because no respiration profiles have been im-
posed in the protocol, the normalization with the respiration
volume has increased the correlation. In contrast to standard
parameter, namely the standard deviation stand, the pro-
posed one corroborates the physiologic expectation on our
data set. The reinnervation should be higher as the age of
the transplantation is longer, inducing a higher variability.
Note that the global variability addressed by the parameter
stand didn’t convey any positive result. The high correlation
between the RSA and the age of transplantation is due to
the TVIPFM correction and the time-varying filtering. This
significant correlation is revealed at rest and not during
exercise. The dynamic behavior corresponding to (rest)-
(max) is even more correlated. This result is of great interest
because it highlights the gain of the HRV dynamics due to
the innervation process.
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Pathological case

Transplanted hearts
III. MATERIALS AND RESULTS

Recorded signals have been obtained from surface elec-
trodes that produce interferences such as noise and baseline
wander. So, to exploit all signals we must cancel the distur-
bances caused by breathing. First we filter the signal using
500-th order high-pass finite impulse response filter in order
to remove the baseline generated by the respiration. After
using a threshold technique we demodulate the filtered signal
to detect all the time occurrences of R-waves, namely the tk.
The differences of consecutive tk provide the heart period.
Finally, the HRV is computed by removing the trend of the
heart period. In addition to the ECG, the respiration signal is
recorded to extract the frequency and the volume. Ten heart
transplant subjects with different ages of transplantation [4-
160] months are analyzed by using different parameters. The
parameter introduced in [11] is indeed a standard deviation
(stand) evaluated on the HRV at rest. It will be compared
to the quantity mag(t) corresponding to the magnitude of
the time-varying filtered respiration component extracted
from the HRV. When corrected by the TVIPFM model the
subscript will be tv. Because the respiration volume has
not been controlled during the protocol, the time-varying
quantities will be normalized by the respiration volume
computed from the respiration signal. This normalization
denoted by the subscript resp will be exclusively applied to
mag because it contains only the respiration influence. All
these quantities are computed at rest and at the maximum
of the exercise. An interval of 100 seconds will be used
to compute parameter stand and to average the quantities
mag(t). In summary, the analysis will provide the parameters
stand, mag, magtv and magtv,resp.
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Fig. 1. The spectrogram of the heart rate variability with the template
G(t, f) boundaries (in black) defined by the respiratory frequency band

Figure (1), reveals that the RSA modulation is high at the
beginning of exercise, then the magnitude of this modulation
decreases abruptly after the beginning of exercise due to
the exercise pressor reflex causing ventilatory responses to
exercise. Then period from second 1400 to 1800 corresponds
to the increasing exercise. The intensity of the RSA is at
lower values during this interval. During the recovery, there

is an abrupt increase which gradually decreases as the heart
rate decreases reaching values close to those observed at the
beginning of the test.
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Fig. 2. The corrected variability with the TVIPFM model (top), the
magnitude of the envelop filtered around the respiration frequency (middle)
and the breathing volume (bottom), the red vertical lines correspond to
the begining and the maximum of the exercise, respectively. Note that the
magnitude unit is meaningless because of the correction procedure, the
volume has been normalized by the greater value within all the subjects

Figure (2) shows first the HRV corrected with the TVIPFM
model (upper). This variability is then filtered in the time-
frequency domain, producing an estimation of the RSA
magnitude (middle). If needed, the volume of the respiration
is computed from the respiration signal (bottom). From this
function of time (middle) an average over 100 seconds is
computed in the resting period and at the maximum of the
exercise.

TABLE I
THE CORRELATION OF PARAMETERS WITH THE AGE OF TRANSPLANTATION

(rest) (max) (rest)-(max)
stand R=0.25, p=0.48 R=0.27 , p=0.45 R=0.11 , p=0.76
mag R=0.43, p=0.22 R=-0.21, p=0.56 R=0.29 , p=0.40

magtv R=0.61, p=0.06 R=-0.14, p=0.69 R=0.67 , p=0.03
magtv,resp R=0.74, p=0.01 R=0.09 , p=0.80 R=0.82, p=0.003
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Fig. 3. At rest. The magnitude of the heart rate variability corrected with
TVIPFM model filtered around the frequency band of respiration and nor-
malized with the respiratory volume, function of the age of transplantations

Table I, displays all the parameters extracted from the
ten patients. Its clear that magtv,resp outperforms the other
parameters whereas the stand parameter fails in exhibiting
a linear correlation. The difference (rest)-(max) is provided
in order to investigate a dynamic behavior. Once again,
magtv,resp shows a clear correlation. Figure (3), represents
the magnitude of the heart rate variability magtv,resp(rest),
filtered around the frequency band of respiration and nor-
malized with the respiratory volume, function of the age
of transplantation. It shows the high correlation (R=0.74,
P=0.01), between the age of the transplantation and the RSA
with TVIPFM correction and respiration normalization.

One of the important results in this paper is that from the
parameters obtained from the HRV, only the variability cor-
rected by the TVIPFM and normalized is highly correlated
with the age of the transplantation. The result was expected
from the literature but with a parameter that fails in that
case (stand). However, since a higher variability is related
to a reinnervation, our result is in line with the physiology
knowledge.

IV. DISCUSSION

In this paper, a method of time-varying filtering is pro-
posed, centering the filter around the respiration frequency
band. The relevance of using the Spectrogram for this aim is
proven. In combination with this filter we use the TVIPFM
model which has a time-varying mean heart period adapted
to non stationary conditions. The time-varying mean heart
rate is estimated by low-pass filtering dHR(t). Thus, the
modulating signal is filtered in the time-frequency domain

and the instantaneous power is then calculated by integrating
over frequencies to obtain the magtv .

Probably because no respiration profiles have been im-
posed in the protocol, the normalization with the respiration
volume has increased the correlation. In contrast to standard
parameter, namely the standard deviation stand, the pro-
posed one corroborates the physiologic expectation on our
data set. The reinnervation should be higher as the age of
the transplantation is longer, inducing a higher variability.
Note that the global variability addressed by the parameter
stand didn’t convey any positive result. The high correlation
between the RSA and the age of transplantation is due to
the TVIPFM correction and the time-varying filtering. This
significant correlation is revealed at rest and not during
exercise. The dynamic behavior corresponding to (rest)-
(max) is even more correlated. This result is of great interest
because it highlights the gain of the HRV dynamics due to
the innervation process.
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