
Asynchronous Session-Based Concurrency:

Deadlock-freedom in Cyclic Process Networks

Bas van den Heuvel and Jorge A. Pérez

University of Groningen, The Netherlands

March 25, 2024

Context Motivation

Formal verification for message-passing concurrency.

I Static approach, based on protocols expressed as session types.

I An important but elusive problem: deadlock-freedom.
Ensuring that message-passing programs that never “get stuck”.

I Deadlocks are central to many concurrency bugs in practice.

Case in point: Leesatapornwongsa et al.’s taxonomy of concurrency bugs in
cloud-scale distributed systems (ASPLOS’16).

I Bugs linger in concurrent executions of multiple protocols.
Many background protocols beyond user-facing foreground protocols.

I Bugs triggered by an untimely message delivery that commits order violation or
atomicity violation.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 2 / 50

https://doi.org/10.1145/2872362.2872374

Context Motivation

Formal verification for message-passing concurrency.

I Static approach, based on protocols expressed as session types.

I An important but elusive problem: deadlock-freedom.
Ensuring that message-passing programs that never “get stuck”.

I Deadlocks are central to many concurrency bugs in practice.

Case in point: Leesatapornwongsa et al.’s taxonomy of concurrency bugs in
cloud-scale distributed systems (ASPLOS’16).

I Bugs linger in concurrent executions of multiple protocols.
Many background protocols beyond user-facing foreground protocols.

I Bugs triggered by an untimely message delivery that commits order violation or
atomicity violation.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 2 / 50

https://doi.org/10.1145/2872362.2872374

Context Plan for Today

Here: A process calculi approach to correct, deadlock-free programs.

I Define a core language with concurrency, with a simple typing discipline;

I Compile programs into process calculi specifications; use this abstract level to
enforce deadlock-freedom using advanced types;

I Transfer deadlock-freedom guarantees, based on strong connections between the
core language and its process interpretation.

More concretely:

I LASTn : A core language with functions and asynchronous concurrency

I The expressivity of LASTn , by example

I A session type system for LASTn (and its limitations)

I APCP: A typed calculus of concurrency with deadlock-freedom by typing

I Transference of deadlock-freedom from APCP to LASTn

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 3 / 50

Context Plan for Today

Here: A process calculi approach to correct, deadlock-free programs.

I Define a core language with concurrency, with a simple typing discipline;

I Compile programs into process calculi specifications; use this abstract level to
enforce deadlock-freedom using advanced types;

I Transfer deadlock-freedom guarantees, based on strong connections between the
core language and its process interpretation.

More concretely:

I LASTn : A core language with functions and asynchronous concurrency

I The expressivity of LASTn , by example

I A session type system for LASTn (and its limitations)

I APCP: A typed calculus of concurrency with deadlock-freedom by typing

I Transference of deadlock-freedom from APCP to LASTn

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 3 / 50

Context Origin of the results

I The PhD thesis of Bas van den Heuvel (currently a postdoc in
Germany with Peter Thiemann and Martin Sulzmann).

I The thesis: “Correctly Communicating Software: Distributed,
Asynchronous, and Beyond”.
Available online; to be publicly defended on April 2nd.

I Preliminary results on ICE’21, EXPRESS/SOS’22, and SCP’22.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 4 / 50

https://doi.org/10.33612/diss.929078700
https://doi.org/10.4204/EPTCS.347.3
https://doi.org/10.4204/EPTCS.368.5
https://doi.org/10.1016/j.scico.2022.102840

LASTn Key Ideas

I A call-by-name variant of LAST (Linear Asynchronous Session Types) by Gay and
Vasconcelos (JFP, 2010)

I Explicit substitutions neatly “delay” substitutions within a term (runtime syntax)

I Explicit closing of sessions with dedicated garbage collection of buffers

I Sequential terms can communicate when organized within configurations

I Types ensure protocol fidelity and communication safety but not deadlock-freedom

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 5 / 50

LASTn Syntax

The syntax of terms (M,N) combines standard functional constructs (call-by-name)
with primitives for communication and concurrency:

M,N ::= x variable

| new create new channel

| () unit value

| λx.M abstraction

| M N application

| (M,N) construct pair

| let (x, y) = M inN deconstruct pair

| M⦃N/x⦄ explicit substitution

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 6 / 50

LASTn Syntax

The syntax of terms (M,N) combines standard functional constructs (call-by-name)
with primitives for communication and concurrency:

M,N ::= x | new create new channel

| () | spawnM ;N spawn M in parallel to N

| λx.M | sendM N send M along N

| M N | recvM receive along M

| (M,N) | select `M select label ` along M

| let (x, y) = M inN | caseM of {i : M}i∈I offer labels in I along M

| M⦃N/x⦄ | closeM ;N close M

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 6 / 50

LASTn Running Example: A Bookshop Scenario
A three-party protocol: a mother interacting with a bookshop to buy a book for her son.

I The shop receives a booktitle and then offers a choice between buying the book or
freely accessing its blurb.

I If the client decides to buy, the shop receives credit card information and sends the
book to the client. Otherwise, if the blurb is requested, the shop sends its text.

I Here the son delegates his session to her mother, who will complete the purchase
from the shop.

We define two different sessions: one connects the son with the shop, another the
mother with her son. Using a different term per participant, we have the configuration:

Sys , � let (s, s′) = new in spawn Shops;
let (m,m′) = new in spawnMotherm;

Sons′,m′

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 7 / 50

LASTn Running Example: A Bookshop Scenario
A three-party protocol: a mother interacting with a bookshop to buy a book for her son.

I The shop receives a booktitle and then offers a choice between buying the book or
freely accessing its blurb.

I If the client decides to buy, the shop receives credit card information and sends the
book to the client. Otherwise, if the blurb is requested, the shop sends its text.

I Here the son delegates his session to her mother, who will complete the purchase
from the shop.

We define two different sessions: one connects the son with the shop, another the
mother with her son. Using a different term per participant, we have the configuration:

Sys , � let (s, s′) = new in spawn Shops;
let (m,m′) = new in spawnMotherm;

Sons′,m′

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 7 / 50

LASTn Running Example: A Bookshop Scenario
The code for the son, which returns the result:

Sons′,m′ , let s′1 = send “Dune” s′ in
let s′2 = select buy s′1 in
letm′1 = send s′2m

′ in

let (book,m′2) = recvm′1 in
closem′2; book

The code for the mother:

Motherm , let (x,m1) = recvm in

letx1 = send visax in
let (book, x2) = recvx1 in
letm2 = send bookm1 in

closem2; closex2; ()

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 8 / 50

LASTn Running Example: A Bookshop Scenario
The code for the son, which returns the result:

Sons′,m′ , let s′1 = send “Dune” s′ in
let s′2 = select buy s′1 in
letm′1 = send s′2m

′ in

let (book,m′2) = recvm′1 in
closem′2; book

The code for the mother:

Motherm , let (x,m1) = recvm in

letx1 = send visax in
let (book, x2) = recvx1 in
letm2 = send bookm1 in

closem2; closex2; ()

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 8 / 50

LASTn Running Example: A Bookshop Scenario
The code for the shop:

Shops , let (title, s1) = recv s in
case s1 of {buy : λs2.let (card, s3) = recv s2 in

let s4 = send book(title) s3 in
close s4; (),

blurb : λs2.let s3 = send blurb(title) s2 in
close s3; ()}

Again, the code for the son:

Sons′,m′ , let s′1 = send “Dune” s′ in
let s′2 = select buy s′1 in
letm′1 = send s′2m

′ in

let (book,m′2) = recvm′1 in
closem′2; book

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 9 / 50

LASTn Semantics

How to give semantics to our language? Our design is in two levels:

I Term reduction, noted −→M, handles functional operations.

I Communicating terms are organized in configurations, equipped with a dedicated
reduction relation, noted −→C.

I Hence, parallel threads and asynchronous (i.e., buffered) communication are
handled at the level of configurations.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 10 / 50

LASTn Semantics
I We define configurations (C,D,E) building upon terms, using markers (φ) and

messages (m,n):

φ ::= � | ♦
m,n ::= M | `

C,D,E ::= φM | C ‖ D | (νx[~m〉y)C | C⦃M/x⦄

I Reduction uses contexts for terms (R), threads (F), and configurations (G):

R ::= [·] |R M | sendM R | recvR | let (x, y) = R inM

| select `R | caseR of {i : M}i∈I | closeR;M |R⦃M/x⦄

F ::= φR

G ::= [·] | G ‖ C | (νx[~m〉y)G | G⦃M/x⦄

LASTn Semantics

Rules for term reduction (−→M) and structural congruence for terms (≡M):

[red-lam]

(λx.M) N −→M M⦃N/x⦄

[red-pair]

let (x, y) = (M1,M2) inN −→M N⦃M1/x,M2/y⦄

[red-name-sub]

x⦃M/x⦄−→M M

[red-lift]

M −→M N

R[M]−→M R[N]

[sc-sub-ext]

x /∈ fv(R)

(R[M])⦃N/x⦄ ≡M R [M⦃N/x⦄]

[red-lift-sc]

M ≡M M
′ M ′ −→M N

′ N ′ ≡M N
M −→M N

LASTn Semantics

Some rules for configuration reduction (−→C) use special thread contexts, denoted F̂ ,
which do not affect variables bound by explicit substitutions:

[red-new]

F [new]−→C (νx[ε〉y)(F [(x, y)])

[red-send]

(νx[~m〉y)(F̂ [sendM x] ‖ C)−→C (νx[M, ~m〉y)(F̂ [x] ‖ C)

[red-recv]

(νx[~m,M〉y)(F̂ [recv y] ‖ C)−→C (νx[~m〉y)(F̂ [(M, y)] ‖ C)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 13 / 50

LASTn Semantics

Additional rules for configuration reduction (−→C):

[red-select]

(νx[~m〉y)(F [select ` x] ‖ C)−→C (νx[`, ~m〉y)(F [x] ‖ C)

[red-case]

j ∈ I
(νx[~m, j〉y)(F [case y of {i : Mi}i∈I] ‖ C)−→C (νx[~m〉y)(F [Mj y] ‖ C)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 14 / 50

LASTn Semantics

Rules for configuration reduction (−→C) that enforce garbage-collection of closed
sessions:

[red-close]

(νx[~m〉y)(F [closex;M] ‖ C)−→C (ν�[~m〉y)(F [M] ‖ C)

[red-res-nil]

(ν�[ε〉�)C −→C C

[red-par-nil]

C ‖ ♦ ()−→C C

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 15 / 50

LASTn Semantics

Additional rules for configuration reduction (−→C):

[red-spawn]

F̂ [spawnM ;N]−→C F̂ [N] ‖ ♦M

[red-lift-C]

C −→C C
′

G[C]−→C G[C ′]

[red-lift-M]

M −→M M
′

F [M]−→C F [M ′]

[red-conf-lift-sc]

C ≡C C
′ C ′ −→C D

′ D′ ≡C D
C −→C D

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 16 / 50

LASTn A Simple Example

(
λx.x (λy.y)

) (
(λw.w) (λz.z)

)
−→M

(
x (λy.y)

)
⦃

(
(λw.w) (λz.z)

)
/x⦄

≡M (x⦃
(
(λw.w) (λz.z)

)
/x⦄) (λy.y)

−→M

(
(λw.w) (λz.z)

)
(λy.y)

−→M (w⦃(λz.z)/w⦄) (λy.y)

−→M (λz.z) (λy.y)

−→M z⦃(λy.y)/z⦄

−→M λy.y

Observe how β-reduction induces explicit substitutions, which are “pushed inside”
reduction contexts.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 17 / 50

LASTn The Bookshop Scenario, Revisited

The entire system:

Sys , � let (s, s′) = new in spawn Shops;
let (m,m′) = new in spawnMotherm;

Sons′,m′

The code for the shop:

Shops , let (title, s1) = recv s in
case s1 of {buy : λs2.let (card, s3) = recv s2 in

let s4 = send book(title) s3 in
close s4; (),

blurb : λs2.let s3 = send blurb(title) s2 in
close s3; ()}

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 18 / 50

Sys = � let (s, s′) = new in . . .

−→C (νy[ε〉y′)� let (s, s′) = (y, y′) in . . .

−→C (νy[ε〉y′)� spawnShops; . . .⦃y/s, y′/s′⦄
≡C (νy[ε〉y′)

(
(� spawnShops; . . .)⦃y/s, y

′/s′⦄
)

−→C (νy[ε〉y′)
(
(� let (m,m′) = new in . . . ‖ ♦ Shops)⦃y/s, y′/s′⦄

)
≡C (νy[ε〉y′)

(
(� let (m,m′) = new in . . . ‖

♦ let (title, s1) = recv (s⦃y/s⦄) in . . .)⦃y′/s′⦄
)

−→C (νy[ε〉y′)
(
(� let (m,m′) = new in . . . ‖ ♦ let (title, s1) = recv y in . . .)⦃y′/s′⦄

)
−→2

C (νy[ε〉y′)
(
(νz[ε〉z′)(� spawnMotherm;Sons′,m′)⦃z/m, z′/m′, y′/s′⦄ ‖ ♦Shopy

)
−→C (νy[ε〉y′)

(
(νz[ε〉z′)

(
� Sons′,m′⦃z′/m′, y′/s′⦄ ‖ ♦Motherm⦃z/m⦄

)
‖ ♦Shopy

)
≡C (νy[ε〉y′)

(
(νz[ε〉z′)

(
� Sons′,m′⦃z′/m′, y′/s′⦄ ‖ ♦ let (x,m1) = recv (m⦃z/m⦄) in . . .

)
‖ ♦Shopy

)
−→C (νy[ε〉y′)

(
(νz[ε〉z′)

(
� Sons′,m′⦃z′/m′, y′/s′⦄ ‖

♦ let (x,m1) = recv z in . . .
)
‖ ♦Shopy

)
= (νy[ε〉y′)

(
(νz[ε〉z′)

(
�Sons′,m′⦃z′/m′, y′/s′⦄ ‖ ♦Motherz

)
‖ ♦Shopy

)
=: Sys1

LASTn Type System

Types include functional types (T , U) and session types for communication (S):

T , U ::= T × U pair S ::= !T.S send

| T (U function | ?T.S receive

| 1 unit | ⊕{i : T}i∈I select

| S session | &{i : T}i∈I branch

| end

Aligned with our semantics, we use ‘�’ to denote the session type for endpoints that
have been already closed.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 20 / 50

LASTn Type System

Given a session type S, its dual type S characterizes compatible behaviors.
In defining duality, only the continuations of send and receive types are dualized.

!T.S = ?T.S ?T.S = !T.S

⊕{i : Si}i∈I = &{i : Si}i∈I &{i : Si}i∈I = ⊕{i : Si}i∈I end = end

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 21 / 50

LASTn Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

I Judgments for terms:
Γ `M M : T

where the typing context Γ is a list of variable-type assignments x : T .

I Judgments for buffered channels:

Γ `B [~m〉 : S ′ > S

where S denotes a sequence of sends and selections corresponding to the values
and labels in ~m, after which the type continues as S ′.

I Judgments for configurations:
Γ `φC C : T

where φ says whether C contains the main thread (φ = �) or child threads (φ = ♦).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 22 / 50

LASTn Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

I Judgments for terms:
Γ `M M : T

where the typing context Γ is a list of variable-type assignments x : T .

I Judgments for buffered channels:

Γ `B [~m〉 : S ′ > S

where S denotes a sequence of sends and selections corresponding to the values
and labels in ~m, after which the type continues as S ′.

I Judgments for configurations:
Γ `φC C : T

where φ says whether C contains the main thread (φ = �) or child threads (φ = ♦).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 22 / 50

LASTn Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

I Judgments for terms:
Γ `M M : T

where the typing context Γ is a list of variable-type assignments x : T .

I Judgments for buffered channels:

Γ `B [~m〉 : S ′ > S

where S denotes a sequence of sends and selections corresponding to the values
and labels in ~m, after which the type continues as S ′.

I Judgments for configurations:
Γ `φC C : T

where φ says whether C contains the main thread (φ = �) or child threads (φ = ♦).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 22 / 50

LASTn Typing Rules (1/4)

[typ-var]

x : T `M x : T

[typ-abs]

Γ, x : T `M M : U

Γ `M λx.M : T (U

[typ-app]

Γ `M M : T (U ∆ `M N : T
Γ,∆ `M M N : U

[typ-pair]

Γ `M M : T ∆ `M N : U

Γ,∆ `M (M,N) : T × U

[typ-split]

Γ `M M : T × T ′ ∆, x : T , y : T ′ `M N : U

Γ,∆ `M let (x, y) = M inN : U

[typ-unit]

∅ `M () : 1

[typ-sub]

Γ, x : T `M M : U ∆ `M N : T

Γ,∆ `M M⦃N/x⦄ : U

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 23 / 50

LASTn Typing Rules (2/4)

[typ-new]

∅ `M new : S × S

[typ-send]

Γ `M M : T ∆ `M N : !T.S
Γ,∆ `M sendM N : S

[typ-sel]

Γ `M M : ⊕{i : Si}i∈I j ∈ I
Γ `M select j M : Sj

[typ-recv]

Γ `M M : ?T.S
Γ `M recvM : T × S

[typ-case]

Γ `M M : &{i : Si}i∈I ∀i ∈ I. ∆ `M Ni : Si(U

Γ,∆ `M caseM of {i : Ni}i∈I : U

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 24 / 50

LASTn Typing Rules (3/4)

[typ-close]

Γ `M M : end ∆ `M N : T
Γ,∆ `M closeM ;N : T

[typ-spawn]

Γ `M M : 1 ∆ `M N : T
Γ,∆ `M spawnM ;N : T

We need rules for buffers and “half-closed” sessions:

[typ-buf]

∅ `B [ε〉 : S ′ > S ′

[typ-buf-send]

Γ `M M : T ∆ `B [~m〉 : S ′ > S

Γ,∆ `B [~m,M〉 : S ′ > !T.S

[typ-buf-sel]

Γ `B [~m〉 : S ′ > Sj j ∈ I
Γ `B [~m, j〉 : S ′ > ⊕{i : Si}i∈I

[typ-buf-end-L]

∅ `B [ε〉 : end > �

[typ-buf-end-R]

∅ `B [ε〉 : � > end

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 25 / 50

LASTn Typing Rules (4/4)

Below, T̂ denotes a non-session type:

[typ-main]

Γ `M M : T̂

Γ `�
C �M : T̂

[typ-par]

Γ `φ1C C : T1 ∆ `φ2C D : T2

Γ,∆ `φ1+φ2C C ‖ D : T1 + T2

[typ-child]

Γ `M M : 1

Γ `♦
C ♦M : 1

[typ-res]

Γ `B [~m〉 : S ′ > S ∆, x : S ′ `φC C : T Γ′, y : S = Γ,∆

Γ′ `φC (νx[~m〉y)C : T

[typ-conf-sub]

Γ, x : T `φC C : U ∆ `M M : T

Γ,∆ `φC C⦃M/x⦄ : U

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 26 / 50

LASTn The Booking Scenario
Consider the system where all session interactions have taken place, and all three
threads are ready to close their sessions:

Sys−→∗C (νy[ε〉y′)
(
(νz′[ε〉z)

(
� close z′; book(“Dune”) ‖ ♦ close z; close y′

)
‖ ♦ close y

)
−→C � book(“Dune”) ‖ (νy[ε〉y′)

(
(ν�[ε〉z)♦ close z; close y′ ‖ ♦ close y

)
≡C � book(“Dune”) ‖ (νy[ε〉y′)

(
(νz[ε〉�)♦ close z; close y′ ‖ ♦ close y

)
−→C � book(“Dune”) ‖ (νy[ε〉y′)

(
(ν�[ε〉�)♦ close y′ ‖ ♦ close y

)
−→C � book(“Dune”) ‖ (νy[ε〉y′)

(
♦ close y′ ‖ ♦ close y

)
≡C � book(“Dune”) ‖ (νy′[ε〉y)

(
♦ close y′ ‖ ♦ close y

)
−→C � book(“Dune”) ‖ ♦ () ‖ (ν�[ε〉y)♦ close y
−→C � book(“Dune”) ‖ (ν�[ε〉y)♦ close y
≡C � book(“Dune”) ‖ (νy[ε〉�)♦ close y (∗)
−→C � book(“Dune”) ‖ (ν�[ε〉�)♦()−→C � book(“Dune”) ‖ ♦()−→C � book(“Dune”)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 27 / 50

LASTn Example of Typing

We illustrate the typing of half-closed sessions on the configuration

� book(“Dune”) ‖ (νy[ε〉�)♦ close y

We write B (book) to denote a primitive non-linear type that can be
weakened/contracted at will and is self-dual. We have:

∅ `M book(“Dune”) : B
[t-main]

∅ `�
C � book(“Dune”) : B

[t-var]
y : end `M y : end

[t-unit]
∅ `M () : 1

[t-close]
y : end `M close y; () : 1

[t-child]
y : end `♦

C ♦ close y; () : 1
[t-bl]

∅ `B [ε〉 : end > �
[t-res]

∅ `♦
C (νy[ε〉�)♦ close y; () : 1

[t-par]
∅ `�

C � book(“Dune”) ‖ (νy[ε〉�)♦ close y; () : B

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 28 / 50

LASTn Guarantees Derived From Typing

Theorem (Type Preservation for LASTn)
Given Γ `φC C : T , if C ≡C D or C −→C D, then Γ `φC D : T .

This theorem entails protocol fidelity and communication safety, but not
deadlock-freedom.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 29 / 50

LASTn Typing Does Not Exclude Deadlocks
I Consider the term:

Ma,b := let a1 = send () a in
let (v, b1) = recv b in
close a1; close b1; v

I Ma,b sends on a, receives on b, and then closes both sessions.

Now consider C:

C := � let (x, x′) = new in

let (y, y′) = new in

spawnMx,y;My′,x′

I Intuitively, we would like the two threads to communicate. However, they get stuck:

Mx,y −→M

(
let (v, y1) = recv y in . . .

)
⦃send ()x/x1⦄ =: M ′

x,y 6−→M

My′,x′ −→M

(
let (v′, x′1) = recvx′ in . . .

)
⦃send () y′/y′1⦄ =: M ′

y′,x′ 6−→M

C −→9
C (νs[ε〉s′)(νt[ε〉t′)

(
♦M ′

x,t⦃s/x⦄ ‖ �M ′
y′,s′⦃t

′/y′⦄
)
6−→C

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 30 / 50

LASTn Typing Does Not Exclude Deadlocks
I Consider the term:

Ma,b := let a1 = send () a in
let (v, b1) = recv b in
close a1; close b1; v

I Ma,b sends on a, receives on b, and then closes both sessions. Now consider C:

C := � let (x, x′) = new in

let (y, y′) = new in

spawnMx,y;My′,x′

I Intuitively, we would like the two threads to communicate. However, they get stuck:

Mx,y −→M

(
let (v, y1) = recv y in . . .

)
⦃send ()x/x1⦄ =: M ′

x,y 6−→M

My′,x′ −→M

(
let (v′, x′1) = recvx′ in . . .

)
⦃send () y′/y′1⦄ =: M ′

y′,x′ 6−→M

C −→9
C (νs[ε〉s′)(νt[ε〉t′)

(
♦M ′

x,t⦃s/x⦄ ‖ �M ′
y′,s′⦃t

′/y′⦄
)
6−→C

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 30 / 50

LASTn Typing Does Not Exclude Deadlocks

Clearly, there are deadlock-free alternatives to Ma,b. For instance:

Na,b := let a1 = send () a in
close a1;

let (v, b1) = recv b in
close b1; v

We would like a general technique that excludes deadlocked configurations such as C.
We could either

1. Strengthen the type system of LASTn so as to exclude deadlocks

2. Transfer the deadlock-freedom guarantee from an external type system

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 31 / 50

APCP Asynchronous Priority-based Classical Processes

I In prior work, we developed APCP: a session type system for π-calculus processes.

I Key features: cyclic process networks, asynchronous communication, and recursion.

I Extends the Curry-Howard correspondences between linear logic and session types.

I Priorities on types are used to rule out circular dependencies in processes
(Kobayashi, 2006; Padovani, 2014; Dardha and Gay, 2018).

I Key properties: session fidelity, communication safety, and deadlock-freedom.

I APCP is expressive enough for a decentralized analysis of Multiparty Session Types
(cf. our journal paper at SCP’22).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 32 / 50

https://doi.org/10.1016/j.scico.2022.102840

APCP Syntax

Process syntax:

P,Q ::= x[a, b] send | x(y, z);P receive

| x[b] / ` selection | x(z) . {i : P}i∈I branch

| (νxy)P restriction | P |Q parallel

| 0 inaction | [x↔ y] forwarder

| µX(z̃);P recursive definition | X〈z̃〉 recursive call

Derivable constructs We use the following syntactic sugar:

x[y] · P := (νya)(νzb)(x[a, b] | P{z/x}) x / ` · P := (νzb)(x[b] / ` | P{z/x})
x(y);P := x(y, z);P{z/x} x . {i : Pi}i∈I := x(z) . {i : Pi{z/x}}i∈I

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 33 / 50

APCP Reduction Semantics

[red-send-recv]

(νxy)(x[a, b] | y(z, y′);Q)−→Q{a/z, b/y′}

[red-sel-bra]

j ∈ I
(νxy)(x[b] / j | y(y′) . {i : Qi}i∈I)−→Qj{b/y′}

[red-fwd]

y 6= z

(νxy)([x↔ z] | P)−→ P{z/y}

[red-cong]

P ≡ P ′ P ′ −→Q′ Q′ ≡ Q
P −→Q

[red-res]

P −→Q

(νxy)P −→ (νxy)Q

[red-par]

P −→Q

P |R−→Q |R
Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 34 / 50

APCP Reduction Semantics
Consider process P :

P , (νzu)
(
(νxy)

(
(νax′)(x[v1, a] | x′[v2, b])
| (νcz′)(z[v3, c] | y(w1, y

′); y′(w2, y
′′);Q)

)
| u(w3, u

′);R
)

Or, using the sugared syntax:

P = (νzu)((νxy)(x[v1] · x[v2] · 0 | z[v3] · y(w1); y(w2);Q
′) | u(w3);R

′)

where Q′ , Q{y/y′′} and R′ , R{u/u′}.

We have:

P −→ (νzu)((νxy)(x[v2] · 0 | z[v3] · y(w2);Q
′{v1/w1}) | u(w3);R

′)

P −→ (νxy)(x[v1] · x[v2] · 0 | y(w1); y(w2);Q
′) |R′{v3/w3}

Note: There is no reduction involving from P the send on x′, since x′ is connected to
the continuation name of the send on x and is thus not (yet) paired with a dual receive.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 35 / 50

APCP Reduction Semantics
Consider process P :

P , (νzu)
(
(νxy)

(
(νax′)(x[v1, a] | x′[v2, b])
| (νcz′)(z[v3, c] | y(w1, y

′); y′(w2, y
′′);Q)

)
| u(w3, u

′);R
)

Or, using the sugared syntax:

P = (νzu)((νxy)(x[v1] · x[v2] · 0 | z[v3] · y(w1); y(w2);Q
′) | u(w3);R

′)

where Q′ , Q{y/y′′} and R′ , R{u/u′}.
We have:

P −→ (νzu)((νxy)(x[v2] · 0 | z[v3] · y(w2);Q
′{v1/w1}) | u(w3);R

′)

P −→ (νxy)(x[v1] · x[v2] · 0 | y(w1); y(w2);Q
′) |R′{v3/w3}

Note: There is no reduction involving from P the send on x′, since x′ is connected to
the continuation name of the send on x and is thus not (yet) paired with a dual receive.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 35 / 50

APCP Type System
APCP types processes by assigning binary session types to names.

I We write ◦, π, ρ, . . . to denote priorities.

I Also, we use ω to denote the ultimate priority that is greater than all other priorities
and cannot be increased further. That is, ∀◦ ∈ N. ω > ◦ and ∀◦ ∈ N. ω + ◦ = ω.

I Session types (linear logic propositions) include priorities:

A,B ::= A⊗◦ B | A &◦ B |⊕◦{i : A}i∈I |&◦{i : A}i∈I | • | µX.A |X

where • denotes the self-dual type for ‘end’.

I The dual of session type A, denoted A, is defined inductively as follows:

A⊗◦ B , A

&◦ B ⊕◦{i : Ai}i∈I , &◦{i : Ai}i∈I • , • µX.A , µX.A

A

&◦ B , A⊗◦ B &◦{i : Ai}i∈I , ⊕◦{i : Ai}i∈I X , X

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 36 / 50

APCP Type System

The typing rules ensure that prefixes with lower priority are not blocked by prefixes with
higher priority.

Essential laws:

1. Sends and selections with priority ◦ must have continuations/payloads with priority
strictly larger than ◦;

2. A prefix with priority ◦ must be prefixed only by receives and branches with priority
strictly smaller than ◦;

3. Dual prefixes leading to a synchronization must have equal priorities.

Judgments are of the form Ω ` P :: Γ, where:

I P is a process;

I Γ is a context that assigns types to channels (x : A);

I Ω is a context that assigns tuples of types to recursion variables (X : (A,B, . . .)).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 37 / 50

APCP Type System

The typing rules ensure that prefixes with lower priority are not blocked by prefixes with
higher priority.

Essential laws:

1. Sends and selections with priority ◦ must have continuations/payloads with priority
strictly larger than ◦;

2. A prefix with priority ◦ must be prefixed only by receives and branches with priority
strictly smaller than ◦;

3. Dual prefixes leading to a synchronization must have equal priorities.

Judgments are of the form Ω ` P :: Γ, where:

I P is a process;

I Γ is a context that assigns types to channels (x : A);

I Ω is a context that assigns tuples of types to recursion variables (X : (A,B, . . .)).

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 37 / 50

APCP Typing Rules (Selected)

[typ-send]

◦ < pr(A), pr(B)

Ω ` x[y, z] :: x : A⊗◦ B, y : A, z : B

[typ-recv]

Ω ` P :: Γ, y : A, z : B ◦ < pr(Γ)

Ω ` x(y, z);P :: Γ, x : A

&◦ B

[typ-end]

Ω ` P :: Γ
Ω ` P :: Γ, x : •

[typ-par]

Ω ` P :: Γ Ω ` Q :: ∆

Ω ` P |Q :: Γ,∆

[typ-res]

Ω ` P :: Γ, x : A, y : A

Ω ` (νxy)P :: Γ

...

[typ-send?]

Ω ` P :: Γ, y : A, x : B ◦ < pr(A), pr(B)

Ω ` x[y] · P :: Γ, x : A⊗◦ B

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 38 / 50

APCP Typing by Example

We give the typing of the two consecutive sends on x (omitting the context Ω):

◦ < pr(A1), π
[typ-send]

` x[v1, a] :: x : A1 ⊗◦ A2 ⊗π B,
v1 : A1, a : A2 ⊗π B

π < pr(A2), pr(B)
[typ-send]

` x′[v2, b] :: x′ : A2 ⊗π B,
v2 : A2, b : B

[typ-par]

` x[v1, a] | x′[v2, b] :: v1 : A1, v2 : A2, b : B, x : A1 ⊗◦ A2 ⊗π B,
a : A2 ⊗π B, x′ : A2 ⊗π B

[typ-res]

` (νax′)(x[v1, a] | x′[v2, b]) :: v1 : A1, v2 : A2, b : B, x : A1 ⊗◦ A2 ⊗π B

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 39 / 50

APCP Typing by Example

Let us type the consecutive inputs on y, i.e., the subprocess y(w1, y
′); y′(w2, y

′′);Q.

Because x and y are dual names in P , the type of y should be dual to the type of x:

` Q :: Γ, w1 : A1, w2 : A2, y
′′ : B π < pr(Γ, w1 : A1)

[typ-recv]

` y′(w2, y
′′);Q :: Γ, w1 : A1, y

′ : A2

&π B ◦ < pr(Γ)
[typ-recv]

` y(w1, y
′); y′(w2, y

′′);Q :: Γ, y : A1

&◦ A2

&π B

These two derivations tell us that

◦ < π < pr(A1), pr(A2), pr(B), pr(Γ)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 40 / 50

APCP Properties Derived From Typing

In APCP, type preservation corresponds to the elimination of (top-level) applications of
Rule [type-res].

Theorem (Subject Reduction, Simplified)
If Ω ` P :: Γ and P −→Q, then there exists Γ′ such that Ω ` Q :: Γ′.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 41 / 50

APCP Properties Derived From Typing

I We say a process is deadlocked if it is not the inactive process and cannot reduce.

I Following Dardha and Gay, we target the elimination of [type-res].

I In APCP, Rule [type-res] is key in our sugared notation to bind asynchronous
sends/selections and their continuations.
These occurrences of [type-res] cannot be eliminated via reduction.

To formulate deadlock-freedom, we use two auxiliary notions:

I The active names of P , denoted an(P):
the set of (free) names that are used for non-blocked communications (send,
receive, selection, branch)

I Evaluation contexts, denoted E .

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 42 / 50

APCP Properties Derived From Typing

I We say a process is deadlocked if it is not the inactive process and cannot reduce.

I Following Dardha and Gay, we target the elimination of [type-res].

I In APCP, Rule [type-res] is key in our sugared notation to bind asynchronous
sends/selections and their continuations.
These occurrences of [type-res] cannot be eliminated via reduction.

To formulate deadlock-freedom, we use two auxiliary notions:

I The active names of P , denoted an(P):
the set of (free) names that are used for non-blocked communications (send,
receive, selection, branch)

I Evaluation contexts, denoted E .

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 42 / 50

APCP Properties Derived From Typing

Definition (Live Process)
A process P is live, denoted live(P), if

1. there are names x, y and process P ′ such that P ≡ (νxy)P ′ with x, y ∈ an(P ′), or

2. there are names x, y, z and process P ′ such that P ≡ E
[
(νyz)([x↔ y] | P ′)

]
and

z 6= x (i.e., the forwarder is independent).

Lemma
If ∅ ` P :: ∅ and P is not live, then P must be 0.

Theorem (Progress)
If ∅ ` P :: Γ and live(P), then there is a process Q such that P −→Q.

Theorem (Deadlock-freedom)
If ∅ ` P :: ∅, then either P ≡ 0 or P −→Q for some Q.

Translating LASTn into APCP Key Ideas

To translate LASTn into APCP, we follow Milner’s translation of the lazy λ-calculus.

I In LASTn , variables are (i) placeholders for future substitutions and (ii) access
points to buffered channels.

I Accordingly, we translate variables as APCP endpoints that (i) enable the translation
of explicit substitutions and (ii) enable interaction with the translation of buffers

Given a configuration C, we define an APCP process JCKz, where z is a fresh name. We
also define translations of types and buffers.

We establish correctness for our translation following Gorla’s correctness criteria:

Completeness Given Γ `φC C : T , if C −→C D, then JCKz −→∗ JDKz.

Soundness Given Γ `φC C : T , if JCKz −→∗ Q, then there exists D such that C −→∗CD
and Q−→∗ JDKz.

Soundness is critical to transfer deadlock-freedom from APCP to LASTn

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 44 / 50

Translating LASTn into APCP Key Ideas

To translate LASTn into APCP, we follow Milner’s translation of the lazy λ-calculus.

I In LASTn , variables are (i) placeholders for future substitutions and (ii) access
points to buffered channels.

I Accordingly, we translate variables as APCP endpoints that (i) enable the translation
of explicit substitutions and (ii) enable interaction with the translation of buffers

Given a configuration C, we define an APCP process JCKz, where z is a fresh name. We
also define translations of types and buffers.

We establish correctness for our translation following Gorla’s correctness criteria:

Completeness Given Γ `φC C : T , if C −→C D, then JCKz −→∗ JDKz.

Soundness Given Γ `φC C : T , if JCKz −→∗ Q, then there exists D such that C −→∗CD
and Q−→∗ JDKz.

Soundness is critical to transfer deadlock-freedom from APCP to LASTn

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 44 / 50

Translating LASTn into APCP Key Ideas

To translate LASTn into APCP, we follow Milner’s translation of the lazy λ-calculus.

I In LASTn , variables are (i) placeholders for future substitutions and (ii) access
points to buffered channels.

I Accordingly, we translate variables as APCP endpoints that (i) enable the translation
of explicit substitutions and (ii) enable interaction with the translation of buffers

Given a configuration C, we define an APCP process JCKz, where z is a fresh name. We
also define translations of types and buffers.

We establish correctness for our translation following Gorla’s correctness criteria:

Completeness Given Γ `φC C : T , if C −→C D, then JCKz −→∗ JDKz.

Soundness Given Γ `φC C : T , if JCKz −→∗ Q, then there exists D such that C −→∗CD
and Q−→∗ JDKz.

Soundness is critical to transfer deadlock-freedom from APCP to LASTn

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 44 / 50

Translating LASTn into APCP Translating Types

Our typed translation takes a typed term Γ `M M : T and returns a typed process

∗̀ JMKz :: LΓM, z : JT K.

where ∗̀ indicates typability in APCP ignoring priorities and priority checks.
Translation of types:

LT M , • ⊗ JT K (if T 6= �)

JT × UK , LT M⊗ LUM JT (UK , LT M

&

JUK J1K , •
J!T.SK , • ⊗ LT M

&

LSM J⊕{i : Si}i∈IK , • ⊗&{i : LSiM}i∈I JendK , • ⊗ •
J?T.SK , LT M⊗ LSM J&{i : Si}i∈IK , ⊕{i : LSiM}i∈I J�K , L�M , •

Intuitively, session types such as ‘• ⊗ . . .’ codify the enabling of an interaction (with an
explicit substitution or with a buffer). A kind of “announcement” for interacting parties.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 45 / 50

Translating LASTn into APCP Translating Terms (Selection)

Below, we write ‘ ’ to denote a fresh name of type • ; when sending names denoted ‘ ’,
we omit binders ‘(ν)’.

[typ-var] JxKz , x[, z]

[typ-abs] Jλx.MKz , z(x, a); JMKa receive x, then run body

[typ-app] JM NKz , (νab)(νcd)(JMKa run abstraction

| b[c, z] trigger function body

| d(, e); JNKe) parameter as future substitution

[typ-sub] JM⦃N/x⦄Kz , (νxa)(JMKz run body

a(, b); JNKb) block until body is variable

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 46 / 50

Translating LASTn into APCP Translating Terms (Selection)

[typ-new] JnewKz , (νab)(a[, z] activate buffer

| b(, c); (νdx)(νey)(block until activated

J[ε〉Kd〉e prepare buffer

| J(x, y)Kc)) return pair of endpoints

[typ-send] JsendM NKz , (νab)(νcd)(a(, e); JMKe block payload until received

| JNKc run channel term to activate buffer

| d(, f); (νgh)(wait for buffer to activate

f [b, g] send to buffer

| h[, z])) prepare returned endpoint variable

[typ-recv] JrecvMKz , (νab)(JMKa run channel term to activate buffer

| b(c, d); receive from buffer

(νef)(z[c, e] | f(, g); d[, g])) returned pair

Translating LASTn into APCP Deadlock-Free LASTn

I Well-typed APCP processes that are typable under empty contexts (` P :: ∅) are
deadlock-free.

I We transfer this result to LASTn configurations by appealing to the operational
correctness of our translation (completeness and soundness properties).

Each deadlock-free configuration in LASTn thus obtained satisfies two requirements:

I The configuration is typable ∅ `�
C C : 1, i.e., it needs no external resources and has

no external behavior.

I The typed translation of the configuration satisfies priority requirements in APCP.

Theorem (Deadlock-freedom for LASTn)
Given ∅ `�

C C : 1, if ` JCKz :: Γ for some Γ, then C ≡ � () or C −→C D for some D.

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 48 / 50

Conclusion

Summary:

I Two different formal systems (LASTn and APCP) that express asynchronous
message-passing concurrency

I They are defined at different levels of abstraction, and are connected via a correct
translation

I The design of LASTn builds upon the best features of APCP

I Transference of deadlock-freedom allows us to exploit already developed machinery
(for APCP) and also keep the formulation of LASTn within ”familiar territory”

Future work:

I Recursive types in LASTn

I Behavioral theory for LASTn (by leveraging APCP)

Pérez (Groningen, NL) Deadlock-free Asynchronous Functional Sessions 49 / 50

Asynchronous Session-Based Concurrency:

Deadlock-freedom in Cyclic Process Networks

Bas van den Heuvel and Jorge A. Pérez

University of Groningen, The Netherlands

March 25, 2024

	Context
	Motivation
	Plan for Today
	Origin of the results

	LASTn
	Key Ideas
	Syntax
	Running Example: A Bookshop Scenario
	Semantics
	A Simple Example
	The Bookshop Scenario, Revisited
	Type System
	Typing Judgments
	Typing Rules (1/4)
	Typing Rules (2/4)
	Typing Rules (3/4)
	Typing Rules (4/4)
	The Booking Scenario
	Example of Typing
	Guarantees Derived From Typing
	Typing Does Not Exclude Deadlocks

	APCP
	Asynchronous Priority-based Classical Processes
	Syntax
	Reduction Semantics
	Type System
	Typing Rules (Selected)
	Typing by Example
	Properties Derived From Typing

	Translating LASTn into APCP
	Key Ideas
	Translating Types
	Translating Terms (Selection)
	Deadlock-Free LASTn

	Conclusion

