Asynchronous Session-Based Concurrency: Deadlock-freedom in Cyclic Process Networks

Bas van den Heuvel and Jorge A. Pérez

University of Groningen, The Netherlands

March 25, 2024

Context Motivation

Formal verification for message-passing concurrency.

- Static approach, based on protocols expressed as session types.
- An important but elusive problem: deadlock-freedom.
 Ensuring that message-passing programs that never "get stuck".
- Deadlocks are central to many concurrency bugs in practice.

Context Motivation

Formal verification for message-passing concurrency.

- Static approach, based on protocols expressed as session types.
- An important but elusive problem: deadlock-freedom.
 Ensuring that message-passing programs that never "get stuck".
- > Deadlocks are central to many concurrency bugs in practice.

Case in point: Leesatapornwongsa et al.'s taxonomy of concurrency bugs in cloud-scale distributed systems (ASPLOS'16).

- Bugs linger in concurrent executions of multiple protocols. Many background protocols beyond user-facing foreground protocols.
- Bugs triggered by an untimely message delivery that commits order violation or atomicity violation.

Context Plan for Today

Here: A process calculi approach to correct, deadlock-free programs.

- Define a core language with concurrency, with a simple typing discipline;
- Compile programs into process calculi specifications; use this abstract level to enforce deadlock-freedom using advanced types;
- Transfer deadlock-freedom guarantees, based on strong connections between the core language and its process interpretation.

Context Plan for Today

Here: A process calculi approach to correct, deadlock-free programs.

- Define a core language with concurrency, with a simple typing discipline;
- Compile programs into process calculi specifications; use this abstract level to enforce deadlock-freedom using advanced types;
- Transfer deadlock-freedom guarantees, based on strong connections between the core language and its process interpretation.

More concretely:

- ► LAST^{*n*}: A core language with functions and asynchronous concurrency
- ▶ The expressivity of LAST^{*n*}, by example
- ► A session type system for LASTⁿ (and its limitations)
- ► APCP: A typed calculus of concurrency with deadlock-freedom by typing
- ► Transference of deadlock-freedom from APCP to LAST^{*n*}

Context Origin of the results

- The PhD thesis of Bas van den Heuvel (currently a postdoc in Germany with Peter Thiemann and Martin Sulzmann).
- The thesis: "Correctly Communicating Software: Distributed, Asynchronous, and Beyond". Available online; to be publicly defended on April 2nd.
- Preliminary results on ICE'21, EXPRESS/SOS'22, and SCP'22.

- A call-by-name variant of LAST (Linear Asynchronous Session Types) by Gay and Vasconcelos (JFP, 2010)
- Explicit substitutions neatly "delay" substitutions within a term (runtime syntax)
- Explicit closing of sessions with dedicated garbage collection of buffers
- Sequential terms can communicate when organized within configurations
- Types ensure protocol fidelity and communication safety but not deadlock-freedom

$LAST^n$ Svntax

The syntax of terms (M, N) combines standard functional constructs (call-by-name) with primitives for communication and concurrency:

variable M, N ::= x $\begin{array}{c} .= \\ & () \\ & \lambda x.M \\ & M N \\ & (M,N) \\ & \text{let}(x,y) = M \text{ in } N \\ & \text{deconstruct pan} \\ & M\{[N/x]\} \\ \end{array}$

$LAST^n$ Syntax

The syntax of terms (M, N) combines standard functional constructs (call-by-name) with primitives for communication and concurrency:

M, N ::= x	new	create new channel
	$\mathtt{spawn}M;N$	spawn M in parallel to N
$\lambda x.M$	$\verb+sendMN$	send M along N
M N	$\verb"recv"M$	receive along M
(M,N)	$\texttt{select}\ellM$	select label ℓ along M
${\rm let}(x,y)=M{\rm in}N$	case M of $\{i:M\}_{i\in I}$	offer labels in I along M
$M\left\{ \left\lfloor N/x ight brace ight\}$	$\verb closeM;N $	close M

LASTⁿ Running Example: A Bookshop Scenario

A three-party protocol: a mother interacting with a bookshop to buy a book for her son.

- The shop receives a booktitle and then offers a choice between buying the book or freely accessing its blurb.
- If the client decides to buy, the shop receives credit card information and sends the book to the client. Otherwise, if the blurb is requested, the shop sends its text.
- Here the son delegates his session to her mother, who will complete the purchase from the shop.

LASTⁿ Running Example: A Bookshop Scenario

A three-party protocol: a mother interacting with a bookshop to buy a book for her son.

- The shop receives a booktitle and then offers a choice between buying the book or freely accessing its blurb.
- If the client decides to buy, the shop receives credit card information and sends the book to the client. Otherwise, if the blurb is requested, the shop sends its text.
- Here the son delegates his session to her mother, who will complete the purchase from the shop.

We define two different sessions: one connects the son with the shop, another the mother with her son. Using a different term per participant, we have the configuration:

$$\begin{split} \mathsf{Sys} &\triangleq \blacklozenge \mathsf{let}\,(s,s') = \mathsf{new}\,\mathsf{in}\,\mathsf{spawn}\,\mathsf{Shop}_s;\\ \mathsf{let}\,(m,m') = \mathsf{new}\,\mathsf{in}\,\mathsf{spawn}\,\mathsf{Mother}_m;\\ \mathsf{Son}_{s',m'} \end{split}$$

$LAST^n$ Running Example: A Bookshop Scenario

The code for the son, which returns the result:

$$\begin{array}{l} \mathsf{Son}_{s',m'} \triangleq \mathsf{let}\, s_1' = \mathsf{send} \; ``\mathsf{Dune''}\; s' \, \mathsf{in} \\ \mathsf{let}\, s_2' = \mathsf{select}\, \mathsf{buy}\, s_1' \, \mathsf{in} \\ \mathsf{let}\, m_1' = \mathsf{send}\, s_2' \, m' \, \mathsf{in} \\ \mathsf{let}\, (\mathsf{book}, m_2') = \mathsf{recv}\, m_1' \, \mathsf{in} \\ \mathsf{close}\, m_2'; \, \mathsf{book} \end{array}$$

LASTⁿ Running Example: A Bookshop Scenario

The code for the son, which returns the result:

$$\begin{split} \mathsf{Son}_{s',m'} &\triangleq \mathsf{let}\,s_1' = \mathsf{send} \text{``Dune''}\,s'\,\mathsf{in} \\ \mathsf{let}\,s_2' = \mathsf{select}\,\mathsf{buy}\,s_1'\,\mathsf{in} \\ \mathsf{let}\,m_1' = \mathsf{send}\,s_2'\,m'\,\mathsf{in} \\ \mathsf{let}\,(\mathit{book},m_2') = \mathsf{recv}\,m_1'\,\mathsf{in} \\ \mathsf{close}\,m_2';\,\mathit{book} \end{split}$$

The code for the mother:

$$\begin{aligned} \mathsf{Mother}_m &\triangleq \mathsf{let}\,(x,m_1) = \mathsf{recv}\,m\,\mathsf{in} \\ &\quad \mathsf{let}\,x_1 = \mathsf{send}\,\mathsf{visa}\,x\,\mathsf{in} \\ &\quad \mathsf{let}\,(book,x_2) = \mathsf{recv}\,x_1\,\mathsf{in} \\ &\quad \mathsf{let}\,m_2 = \mathsf{send}\,book\,m_1\,\mathsf{in} \\ &\quad \mathsf{close}\,m_2; \mathsf{close}\,x_2;() \end{aligned}$$

Pérez (Groningen, NL)

LASTⁿ Running Example: A Bookshop Scenario

The code for the shop:

$$\begin{split} \mathsf{Shop}_s &\triangleq \mathsf{let}\,(\mathit{title}, s_1) = \mathsf{recv}\,s\,\mathsf{in}\\ \mathsf{case}\,s_1\,\mathsf{of}\,\{\mathsf{buy}:\lambda s_2.\mathsf{let}\,(\mathit{card}, s_3) = \mathsf{recv}\,s_2\,\mathsf{in}\\ \mathsf{let}\,s_4 &= \mathsf{send}\,\mathsf{book}(\mathit{title})\,s_3\,\mathsf{in}\\ \mathsf{close}\,s_4;(),\\ \mathsf{blurb}:\lambda s_2.\mathsf{let}\,s_3 &= \mathsf{send}\,\mathsf{blurb}(\mathit{title})\,s_2\,\mathsf{in}\\ \mathsf{close}\,s_3;()\} \end{split}$$

Again, the code for the son:

$$\begin{array}{l} \mathsf{Son}_{s',m'} \triangleq \mathsf{let}\, s_1' = \mathsf{send} \ ``\mathsf{Dune''} \ s' \, \mathsf{in} \\ \mathsf{let}\, s_2' = \mathsf{select}\, \mathsf{buy}\, s_1' \, \mathsf{in} \\ \mathsf{let}\, m_1' = \mathsf{send}\, s_2' \, m' \, \mathsf{in} \\ \mathsf{let}\, (\mathit{book}, m_2') = \mathsf{recv}\, m_1' \, \mathsf{in} \\ \mathsf{close}\, m_2'; \, \mathit{book} \end{array}$$

Pérez (Groningen, NL)

Deadlock-free Asynchronous Functional Sessions

How to give semantics to our language? Our design is in two levels:

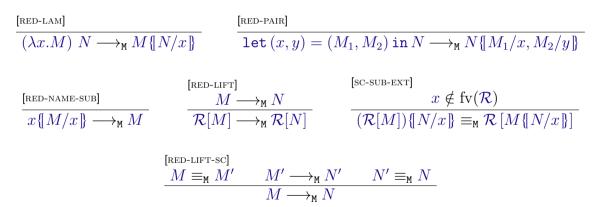
- ▶ Term reduction, noted \longrightarrow_{M} , handles functional operations.
- ► Communicating terms are organized in configurations, equipped with a dedicated reduction relation, noted →_c.
- Hence, parallel threads and asynchronous (i.e., buffered) communication are handled at the level of configurations.

We define configurations (C, D, E) building upon terms, using markers (φ) and messages (m, n):

 $\phi ::= \blacklozenge | \diamond$ $m, n ::= M | \ell$ $C, D, E ::= \phi M | C || D | (\boldsymbol{\nu} x[\vec{m}\rangle y)C | C\{[M/x]\}$

- Reduction uses contexts for terms (\mathcal{R}) , threads (\mathcal{F}) , and configurations (\mathcal{G}) :
 - $$\begin{split} \mathcal{R} &::= \left[\cdot \right] \left| \begin{array}{c} \mathcal{R} \ M \end{array} \right| \operatorname{send} M \mathcal{R} \left| \operatorname{recv} \mathcal{R} \right| \operatorname{let} (x, y) = \mathcal{R} \operatorname{in} M \\ \left| \begin{array}{c} \operatorname{select} \ell \mathcal{R} \end{array} \right| \operatorname{case} \mathcal{R} \operatorname{of} \left\{ i : M \right\}_{i \in I} \left| \operatorname{close} \mathcal{R}; M \right| \mathcal{R} \{\!\! [M/x]\!\! \} \\ \mathcal{F} ::= \phi \mathcal{R} \\ \mathcal{G} ::= \left[\cdot \right] \left| \begin{array}{c} \mathcal{G} \end{array} \right| C \left| (\boldsymbol{\nu} x[\vec{m} \rangle y) \mathcal{G} \right| \mathcal{G} \{\!\! [M/x]\!\! \} \end{split}$$

Rules for term reduction (\longrightarrow_{M}) and structural congruence for terms (\equiv_{M}) :



Some rules for configuration reduction (\longrightarrow_c) use special thread contexts, denoted $\hat{\mathcal{F}}$, which do not affect variables bound by explicit substitutions:

 $\frac{}{\mathcal{F}[\texttt{new}] \longrightarrow_{\texttt{C}} (\boldsymbol{\nu} x[\varepsilon \rangle y)(\mathcal{F}[(x,y)])}$

[RED-SEND]

 $(\boldsymbol{\nu} x[\vec{m}\rangle y)(\hat{\mathcal{F}}[\texttt{send}\,M\,x] \parallel C) \longrightarrow_{\mathsf{C}} (\boldsymbol{\nu} x[M,\vec{m}\rangle y)(\hat{\mathcal{F}}[x] \parallel C)$

[RED-RECV]

 $(\boldsymbol{\nu} x[\vec{m}, M \rangle y)(\hat{\mathcal{F}}[\texttt{recv}\, y] \parallel C) \longrightarrow_{\texttt{C}} (\boldsymbol{\nu} x[\vec{m} \rangle y)(\hat{\mathcal{F}}[(M, y)] \parallel C)$

Pérez (Groningen, NL)

Additional rules for configuration reduction (\longrightarrow_c) :

 $\frac{[\text{RED-SELECT}]}{(\boldsymbol{\nu}x[\vec{m}\rangle y)(\mathcal{F}[\texttt{select}\,\ell\,x] \parallel C) \longrightarrow_{\mathsf{C}} (\boldsymbol{\nu}x[\ell,\vec{m}\rangle y)(\mathcal{F}[x] \parallel C)}$ $[\text{RED-CASE}] \qquad j \in I$ $(\boldsymbol{\nu}x[\vec{m},j\rangle y)(\mathcal{F}[\texttt{case}\,y\,\texttt{of}\,\{i:M_i\}_{i \in I} \parallel C) \longrightarrow_{\mathsf{C}} (\boldsymbol{\nu}x[\vec{m}\rangle y)(\mathcal{F}[M_i,y] \parallel C))$

$LAST^n$ Semantics

Rules for configuration reduction (\longrightarrow_c) that enforce garbage-collection of closed sessions:

[RED-CLOSE]

 $(\boldsymbol{\nu} x[\vec{m} \rangle y)(\mathcal{F}[\texttt{close}\, x; M] \parallel C) \longrightarrow_{\texttt{C}} (\boldsymbol{\nu} \Box [\vec{m} \rangle y)(\mathcal{F}[M] \parallel C)$

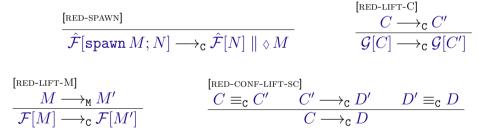
[RED-RES-NIL]

 $(\boldsymbol{\nu}\Box[\epsilon\rangle\Box)C\longrightarrow_{\mathsf{C}}C$

[RED-PAR-NIL]

$$C \parallel \diamond () \longrightarrow_{\mathsf{C}} C$$

Additional rules for configuration reduction (\longrightarrow_c) :



$LAST^n$ A Simple Example

$$\begin{split} \left(\lambda x.x \; (\lambda y.y) \right) \; \left((\lambda w.w) \; (\lambda z.z) \right) &\longrightarrow_{\mathsf{M}} \left(x \; (\lambda y.y) \right) \left\{ \left[\left((\lambda w.w) \; (\lambda z.z) \right) / x \right] \right\} \\ &\equiv_{\mathsf{M}} \left(x \left\{ \left((\lambda w.w) \; (\lambda z.z) \right) / x \right\} \right) \; (\lambda y.y) \\ &\longrightarrow_{\mathsf{M}} \left((\lambda w.w) \; (\lambda z.z) \right) \; (\lambda y.y) \\ &\longrightarrow_{\mathsf{M}} \left(w \left\{ \left((\lambda z.z) / w \right\} \right) \; (\lambda y.y) \\ &\longrightarrow_{\mathsf{M}} \left(\lambda z.z \right) \; (\lambda y.y) \\ &\longrightarrow_{\mathsf{M}} z \left\{ \left((\lambda y.y) / z \right\} \right\} \\ &\longrightarrow_{\mathsf{M}} \lambda y.y \end{split}$$

Observe how β -reduction induces explicit substitutions, which are "pushed inside" reduction contexts.

Pérez (Groningen, NL)

$LAST^n$ The Bookshop Scenario, Revisited

The entire system:

$$\begin{split} \mathsf{Sys} &\triangleq \blacklozenge \mathtt{let}\,(s,s') = \mathtt{new}\,\mathtt{in}\,\mathtt{spawn}\,\mathsf{Shop}_s;\\ \mathtt{let}\,(m,m') &= \mathtt{new}\,\mathtt{in}\,\mathtt{spawn}\,\mathsf{Mother}_m;\\ \mathsf{Son}_{s',m'} \end{split}$$

The code for the shop:

$$\begin{split} \mathsf{Shop}_s &\triangleq \mathsf{let}\,(\mathit{title}, s_1) = \mathsf{recv}\,s\,\mathsf{in}\\ \mathsf{case}\,s_1\,\mathsf{of}\,\{\mathsf{buy}:\lambda s_2.\mathsf{let}\,(\mathit{card}, s_3) = \mathsf{recv}\,s_2\,\mathsf{in}\\ \mathsf{let}\,s_4 = \mathsf{send}\,\mathsf{book}(\mathit{title})\,s_3\,\mathsf{in}\\ \mathsf{close}\,s_4;(),\\ \mathsf{blurb}:\lambda s_2.\mathsf{let}\,s_3 = \mathsf{send}\,\mathsf{blurb}(\mathit{title})\,s_2\,\mathsf{in}\\ \mathsf{close}\,s_3;()\} \end{split}$$

 $Sys = \blacklozenge let(s, s') = new in \dots$ $\longrightarrow_{\mathbf{C}} (\boldsymbol{\nu} y[\varepsilon \rangle y') \blacklozenge \operatorname{let}(s, s') = (y, y') \operatorname{in} \ldots$ $\longrightarrow_{\mathbf{C}} (\boldsymbol{\nu} y[\varepsilon) y') \blacklozenge$ spawn Shop_s; ... {[y/s, y'/s']} $\equiv_{\mathbf{C}} (\boldsymbol{\nu} y[\varepsilon) y') ((\boldsymbol{\bullet} \operatorname{spawn} \operatorname{Shop}_{s}; \ldots) \{ [y/s, y'/s'] \})$ $\longrightarrow_{\mathbf{C}} (\boldsymbol{\nu} y[\varepsilon) y') ((\bullet \operatorname{let}(m, m') = \operatorname{new} \operatorname{in} \dots || \diamond \operatorname{Shop}_{\circ}) \{ [y/s, y'/s'] \})$ $\equiv_{\mathbf{C}} (\boldsymbol{\nu} y[\boldsymbol{\varepsilon} \rangle y') ((\boldsymbol{\bullet} \operatorname{let} (m, m') = \operatorname{new} \operatorname{in} \dots \parallel$ \diamond let (*title*, s_1) = recv ($s\{\{y/s\}\}$) in...){ $\{y'/s'\}\}$ $\longrightarrow_{\mathsf{C}} (\nu y[\varepsilon)y') \big((\blacklozenge \operatorname{let}(m,m') = \operatorname{new}\operatorname{in} \dots \| \diamond \operatorname{let}(\mathit{title},s_1) = \operatorname{recv} y \operatorname{in} \dots) \{ |y'/s'| \} \big)$ $\longrightarrow^2_{\mathbf{C}} (\boldsymbol{\nu} y[\varepsilon) y') ((\boldsymbol{\nu} z[\varepsilon) z') (\mathbf{A} \operatorname{spawn} \operatorname{Mother}_m; \operatorname{Son}_{s',m'}) \{ [z/m, z'/m', y'/s'] \} \parallel \diamond \operatorname{Shop}_n)$ $\longrightarrow_{\mathbf{C}} (\boldsymbol{\nu} y[\varepsilon) y') ((\boldsymbol{\nu} z[\varepsilon) z') (\blacklozenge \operatorname{Son}_{s',m'} \{ [z'/m', y'/s'] \} \parallel \Diamond \operatorname{Mother}_m \{ [z/m] \}) \parallel \Diamond \operatorname{Shop}_n)$ $\equiv_{\mathbf{C}} (\boldsymbol{\nu} y[\varepsilon) y') ((\boldsymbol{\nu} z[\varepsilon) z') (\blacklozenge \operatorname{Son}_{s',m'} \{ |z'/m', y'/s'| \} \parallel \diamond \operatorname{let} (x, m_1) = \operatorname{recv} (m \{ |z/m| \}) \operatorname{in} \dots)$ $\longrightarrow_{\mathbf{C}} (\boldsymbol{\nu} y[\varepsilon) y') ((\boldsymbol{\nu} z[\varepsilon) z') (\diamond \operatorname{Son}_{s',m'} \{ [z'/m', y'/s'] \} \parallel$ $\diamond \operatorname{let}(x, m_1) = \operatorname{recv} z \operatorname{in} \dots) \parallel \diamond \operatorname{Shop}_n)$

 $=(\boldsymbol{\nu} y[\boldsymbol{\varepsilon}\rangle y')\big((\boldsymbol{\nu} z[\boldsymbol{\varepsilon}\rangle z')\big(\boldsymbol{\bullet}\operatorname{Son}_{s',m'}\{\!\![z'/m',y'/s']\!\}\parallel \boldsymbol{\diamond}\operatorname{Mother}_z\big)\parallel \boldsymbol{\diamond}\operatorname{Shop}_y\big)=:\operatorname{Sys}^1$

$LAST^n$ Type System

Types include functional types (T, U) and session types for communication (S):

$$\begin{array}{c|ccccc} T,U::=T\times U & \text{pair} & S::=!T.S & \text{send} \\ & T \multimap U & \text{function} & ?T.S & \text{receive} \\ 1 & \text{unit} & \oplus\{i:T\}_{i\in I} & \text{select} \\ S & \text{session} & & \&\{i:T\}_{i\in I} & \text{branch} \\ & & \text{end} \end{array}$$

Aligned with our semantics, we use \Box to denote the session type for endpoints that have been already closed.

Given a session type S, its dual type \overline{S} characterizes compatible behaviors. In defining duality, only the continuations of send and receive types are dualized.

$$\overline{!T.S} = ?T.\overline{S} \qquad \overline{?T.S} = !T.\overline{S}$$
$$\overline{\oplus \{i:S_i\}_{i\in I}} = \&\{i:\overline{S_i}\}_{i\in I} \qquad \overline{\&\{i:S_i\}_{i\in I}} = \oplus \{i:\overline{S_i}\}_{i\in I} \qquad \overline{end} = end$$

LASTⁿ Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

Judgments for terms:

 $\Gamma \vdash_{\mathsf{M}} M : T$

where the typing context Γ is a list of variable-type assignments x : T.

LASTⁿ Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

Judgments for terms:

 $\Gamma \vdash_{\mathtt{M}} M : T$

where the typing context Γ is a list of variable-type assignments x : T.

Judgments for buffered channels:

 $\Gamma \vdash_{\mathsf{B}} [\vec{m}\rangle : S' > S$

where S denotes a sequence of sends and selections corresponding to the values and labels in \vec{m} , after which the type continues as S'.

LASTⁿ Typing Judgments

The type system has three layers: typing for terms, for buffers, and for configurations.

Judgments for terms:

 $\Gamma \vdash_{\mathtt{M}} M : T$

where the typing context Γ is a list of variable-type assignments x : T.

Judgments for buffered channels:

 $\Gamma \vdash_{\mathsf{B}} [\vec{m}\rangle : S' > S$

where S denotes a sequence of sends and selections corresponding to the values and labels in \vec{m} , after which the type continues as S'.

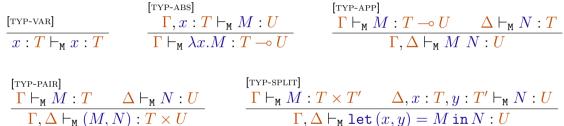
Judgments for configurations:

 $\Gamma \vdash^{\phi}_{\mathsf{C}} C : T$

where ϕ says whether C contains the main thread ($\phi = \phi$) or child threads ($\phi = \phi$).

Pérez (Groningen, NL)

$I.AST^n$ Typing Rules (1/4)

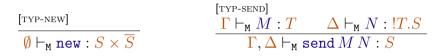


$$\frac{\vdash_{\mathsf{M}} M: T \quad \Delta \vdash_{\mathsf{M}} N: U}{\Gamma, \Delta \vdash_{\mathsf{M}} (M, N): T \times U} \qquad \frac{\Gamma \vdash_{\mathsf{M}} M: T \times T'}{\Gamma, \Delta \vdash_{\mathsf{M}} \mathsf{le}}$$

[TYP-UNIT] $\emptyset \vdash_{\mathsf{M}} () : \mathbf{1}$

$$\frac{\prod_{\text{[TYP-SUB]}} \Gamma, x: T \vdash_{M} M: U \quad \Delta \vdash_{M} N: T}{\Gamma, \Delta \vdash_{M} M\{[N/x]\}: U}$$

LASTⁿ Typing Rules (2/4)



$$\frac{\Gamma \vdash_{\mathsf{M}} M : \bigoplus \{i : S_i\}_{i \in I} \quad j \in I}{\Gamma \vdash_{\mathsf{M}} \operatorname{select} j M : S_j} \qquad \qquad \frac{[{}^{\mathsf{TYP-RECV}}]}{\Gamma \vdash_{\mathsf{M}} \operatorname{select} j M : S_j}$$

 $\frac{\overset{[\mathrm{TYP-CASE}]}{\Gamma \vdash_{\mathrm{M}} M : \&\{i:S_i\}_{i \in I}} \quad \forall i \in I. \ \Delta \vdash_{\mathrm{M}} N_i:S_i \multimap U}{\Gamma, \Delta \vdash_{\mathrm{M}} \mathrm{case} \, M \, \mathrm{of} \, \{i:N_i\}_{i \in I}:U}$

Pérez (Groningen, NL)

Deadlock-free Asynchronous Functional Sessions

LASTⁿ Typing Rules (3/4)

$$\frac{\Gamma \vdash_{\mathsf{M}} M : \mathsf{end}}{\Gamma, \Delta \vdash_{\mathsf{M}} \mathsf{N} : T}$$

$$\frac{\Gamma \vdash_{\mathsf{M}} M: \mathbf{1} \qquad \Delta \vdash_{\mathsf{M}} N: T}{\Gamma, \Delta \vdash_{\mathsf{M}} \operatorname{spawn} M; N: T}$$

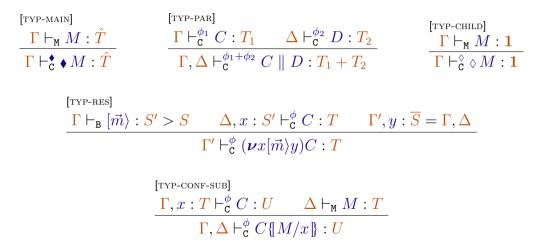
We need rules for buffers and "half-closed" sessions:

$$\frac{[{}^{\text{TYP-BUF}]}}{\emptyset \vdash_{\mathsf{B}} [\epsilon\rangle : S' > S'} \qquad \qquad \frac{[{}^{\text{TYP-BUF-SEND}]}}{\Gamma \vdash_{\mathsf{M}} M : T} \quad \Delta \vdash_{\mathsf{B}} [\vec{m}\rangle : S' > S}{\Gamma, \Delta \vdash_{\mathsf{B}} [\vec{m}, M\rangle : S' > !T.S}$$

 $\frac{\Gamma \vdash_{\mathsf{B}} [\vec{m}\rangle : S' > S_j \quad j \in I}{\Gamma \vdash_{\mathsf{B}} [\vec{m}, j\rangle : S' > \oplus\{i : S_i\}_{i \in I}}$

 $\frac{[\text{TYP-BUF-END-L}]}{\emptyset \vdash_{B} [\varepsilon\rangle : \text{end} > \Box} \qquad \frac{[\text{TYP-BU}]}{\emptyset \vdash_{B}}$

[TYP-BUF-END-R]



Pérez (Groningen, NL)

Deadlock-free Asynchronous Functional Sessions

LASTⁿ The Booking Scenario

Consider the system where all session interactions have taken place, and all three threads are ready to close their sessions:

 $\mathsf{Sys} \longrightarrow^*_{\mathsf{C}} (\boldsymbol{\nu} y[\varepsilon \rangle y') \big((\boldsymbol{\nu} z'[\varepsilon \rangle z) \big(\blacklozenge \mathsf{close} \, z'; \mathsf{book}(\, \text{``Dune''} \,) \parallel \diamond \mathsf{close} \, z; \mathsf{close} \, y' \big) \parallel \diamond \mathsf{close} \, y \big)$

 $\longrightarrow_{\mathsf{C}} \blacklozenge \mathsf{book}(\text{``Dune''}) \parallel (\boldsymbol{\nu} y[\varepsilon\rangle y') \big((\boldsymbol{\nu} \Box[\varepsilon\rangle z) \diamond \operatorname{close} z; \operatorname{close} y' \parallel \diamond \operatorname{close} y \big)$

- $\equiv_{\mathbf{C}} \mathbf{\bullet} \mathsf{book}(\text{``Dune''}) \parallel (\boldsymbol{\nu} y[\varepsilon \rangle y') \big((\boldsymbol{\nu} z[\varepsilon \rangle \Box) \diamond \operatorname{close} z; \operatorname{close} y' \parallel \diamond \operatorname{close} y \big)$
- $\longrightarrow_{\mathbf{C}} \blacklozenge \mathsf{book}(\text{``Dune''}) \parallel (\boldsymbol{\nu} y[\varepsilon \rangle y') \big((\boldsymbol{\nu} \Box[\varepsilon \rangle \Box) \diamond \operatorname{close} y' \parallel \diamond \operatorname{close} y \big)$
- $\longrightarrow_{\mathbf{C}} \blacklozenge \operatorname{book}(\text{``Dune''}) \parallel (\boldsymbol{\nu} y[\varepsilon\rangle y') \big(\diamond \operatorname{close} y' \parallel \diamond \operatorname{close} y\big)$
- $\equiv_{\mathbf{C}} {\mathbf{\bullet}} \operatorname{book}(\text{``Dune''}) \parallel ({\boldsymbol{\nu}} y'[\varepsilon\rangle y) \big(\diamond \,\operatorname{close} y' \parallel \diamond \operatorname{close} y \big)$
- $\longrightarrow_{\mathbf{C}} { \bigstar } \operatorname{book}(\text{``Dune''}) \parallel { \diamondsuit } () \parallel (\boldsymbol{\nu} \Box [\varepsilon \rangle y) { \diamondsuit } \operatorname{close} y$
- $\longrightarrow_{\mathbf{C}} \blacklozenge \operatorname{book}(\text{``Dune''}) \parallel (\boldsymbol{\nu} \Box[\varepsilon\rangle y) \Diamond \operatorname{close} y$
- $\equiv_{\mathsf{C}} \blacklozenge \mathsf{book}(\text{``Dune''}) \parallel (\boldsymbol{\nu} y[\varepsilon \rangle \Box) \Diamond \operatorname{close} y$

 $\longrightarrow_{\mathsf{C}} \blacklozenge \mathsf{book}(\texttt{``Dune''}) \parallel (\boldsymbol{\nu} \Box[\varepsilon\rangle \Box) \Diamond() \longrightarrow_{\mathsf{C}} \blacklozenge \mathsf{book}(\texttt{``Dune''}) \parallel \Diamond() \longrightarrow_{\mathsf{C}} \blacklozenge \mathsf{book}(\texttt{``Dune''})$

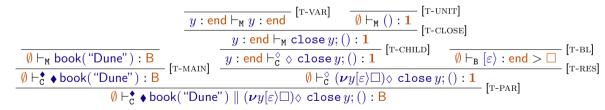
(*)

LASTⁿ Example of Typing

We illustrate the typing of half-closed sessions on the configuration

$\bullet \operatorname{book}(\operatorname{``Dune''}) \parallel (\mathbf{\nu} y[\varepsilon \rangle \Box) \diamond \operatorname{close} y$

We write B (book) to denote a primitive non-linear type that can be weakened/contracted at will and is self-dual. We have:



LASTⁿ Guarantees Derived From Typing

Theorem (Type Preservation for LASTⁿ) Given $\Gamma \vdash^{\phi}_{c} C : T$, if $C \equiv_{c} D$ or $C \longrightarrow_{c} D$, then $\Gamma \vdash^{\phi}_{c} D : T$.

This theorem entails protocol fidelity and communication safety, but not deadlock-freedom.

LASTⁿ Typing Does Not Exclude Deadlocks

Consider the term:

$$M_{a,b} := \operatorname{let} a_1 = \operatorname{send} () a \operatorname{in} \\ \operatorname{let} (v, b_1) = \operatorname{recv} b \operatorname{in} \\ \operatorname{close} a_1; \operatorname{close} b_1; v$$

 \blacktriangleright $M_{a,b}$ sends on a, receives on b, and then closes both sessions.

LASTⁿ Typing Does Not Exclude Deadlocks

Consider the term:

$$\begin{split} M_{a,b} := \texttt{let} \, a_1 = \texttt{send} \, () \, a \, \texttt{in} \\ \texttt{let} \, (v, b_1) = \texttt{recv} \, b \, \texttt{in} \\ \texttt{close} \, a_1; \texttt{close} \, b_1; v \end{split}$$

 \blacktriangleright $M_{a,b}$ sends on a, receives on b, and then closes both sessions. Now consider C:

$$C := \blacklozenge \operatorname{let} (x, x') = \operatorname{new} \operatorname{in} \\ \operatorname{let} (y, y') = \operatorname{new} \operatorname{in} \\ \operatorname{spawn} M_{x,y}; M_{y',x'}$$

▶ Intuitively, we would like the two threads to communicate. However, they get stuck:

$$\begin{split} M_{x,y} &\longrightarrow_{\mathsf{M}} \big(\operatorname{let} (v, y_{1}) = \operatorname{recv} y \operatorname{in} \dots \big) \{ \left| \operatorname{send} () x/x_{1} \right| \right\} =: M'_{x,y} \not\longrightarrow_{\mathsf{M}} \\ M_{y',x'} &\longrightarrow_{\mathsf{M}} \big(\operatorname{let} (v', x'_{1}) = \operatorname{recv} x' \operatorname{in} \dots \big) \{ \left| \operatorname{send} () y'/y'_{1} \right| \right\} =: M'_{y',x'} \not\longrightarrow_{\mathsf{M}} \\ C &\longrightarrow_{\mathsf{C}}^{9} (\boldsymbol{\nu} s[\varepsilon\rangle s') (\boldsymbol{\nu} t[\varepsilon\rangle t') \big(\diamond M'_{x,t} \{ \left| s/x \right| \} \parallel \blacklozenge M'_{y',s'} \{ \left| t'/y' \right| \} \big) \not\longrightarrow_{\mathsf{C}} \end{split}$$

Pérez (Groningen, NL)

Deadlock-free Asynchronous Functional Sessions

LASTⁿ Typing Does Not Exclude Deadlocks

Clearly, there are deadlock-free alternatives to $M_{a,b}$. For instance:

```
N_{a,b} := \operatorname{let} a_1 = \operatorname{send} () a \operatorname{in}

\operatorname{close} a_1;

\operatorname{let} (v, b_1) = \operatorname{recv} b \operatorname{in}

\operatorname{close} b_1; v
```

We would like a general technique that excludes deadlocked configurations such as C. We could either

- 1. Strengthen the type system of $LAST^n$ so as to exclude deadlocks
- 2. Transfer the deadlock-freedom guarantee from an external type system

APCP Asynchronous Priority-based Classical Processes

- ▶ In prior work, we developed APCP: a session type system for π -calculus processes.
- ▶ Key features: cyclic process networks, asynchronous communication, and recursion.
- Extends the Curry-Howard correspondences between linear logic and session types.
- Priorities on types are used to rule out circular dependencies in processes (Kobayashi, 2006; Padovani, 2014; Dardha and Gay, 2018).
- ► Key properties: session fidelity, communication safety, and deadlock-freedom.
- APCP is expressive enough for a decentralized analysis of Multiparty Session Types (cf. our journal paper at SCP'22).

APCP Syntax

Process syntax:

Derivable constructs We use the following syntactic sugar:

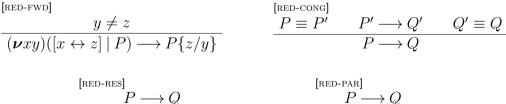
Pérez (Groningen, NL)

APCP Reduction Semantics

[RED-SEND-RECV]

$$(\mathbf{\nu} xy)(x[a,b] \mid y(z,y');Q) \longrightarrow Q\{a/z,b/y'\}$$

$$\frac{j \in I}{(\boldsymbol{\nu} x y)(x[b] \triangleleft j \mid y(y') \triangleright \{i : Q_i\}_{i \in I}) \longrightarrow Q_j\{b/y'\}}$$



$$\frac{P \longrightarrow Q}{(\boldsymbol{\nu} x y) P \longrightarrow (\boldsymbol{\nu} x y) Q}$$

Pérez (Groningen, NL)

Deadlock-free Asynchronous Functional Sessions

 $\overline{P \mid R \longrightarrow Q \mid R}$

APCP Reduction Semantics

Consider process *P*:

$$P \triangleq (\boldsymbol{\nu} z u) \big((\boldsymbol{\nu} x y) \big((\boldsymbol{\nu} a x') (x[v_1, a] \mid x'[v_2, b]) \\ \mid (\boldsymbol{\nu} c z') (z[v_3, c] \mid y(w_1, y'); y'(w_2, y''); Q) \big) \\ \mid u(w_3, u'); R \big)$$

Or, using the sugared syntax:

$$P = (\boldsymbol{\nu} z u)((\boldsymbol{\nu} x y)(\overline{x}[v_1] \cdot \overline{x}[v_2] \cdot \mathbf{0} \mid \overline{z}[v_3] \cdot y(w_1); y(w_2); Q') \mid u(w_3); R')$$

where $Q' \triangleq Q\{y/y''\}$ and $R' \triangleq R\{u/u'\}.$

APCP Reduction Semantics

Consider process P:

$$P \triangleq (\boldsymbol{\nu} z u) \big((\boldsymbol{\nu} x y) \big((\boldsymbol{\nu} a x') (x[v_1, a] \mid x'[v_2, b]) \\ \mid (\boldsymbol{\nu} c z') (z[v_3, c] \mid y(w_1, y'); y'(w_2, y''); Q) \big) \\ \mid u(w_3, u'); R \big)$$

Or, using the sugared syntax:

 $P = (\boldsymbol{\nu} z u)((\boldsymbol{\nu} x y)(\overline{x}[v_1] \cdot \overline{x}[v_2] \cdot \mathbf{0} \mid \overline{z}[v_3] \cdot y(w_1); y(w_2); Q') \mid u(w_3); R')$ where $Q' \triangleq Q\{y/y''\}$ and $R' \triangleq R\{u/u'\}.$

We have:

$$P \longrightarrow (\boldsymbol{\nu} z u)((\boldsymbol{\nu} x y)(\overline{x}[v_2] \cdot \mathbf{0} \mid \overline{z}[v_3] \cdot y(w_2); Q'\{v_1/w_1\}) \mid u(w_3); R')$$

$$P \longrightarrow (\boldsymbol{\nu} x y)(\overline{x}[v_1] \cdot \overline{x}[v_2] \cdot \mathbf{0} \mid y(w_1); y(w_2); Q') \mid R'\{v_3/w_3\}$$

Note: There is no reduction involving from P the send on x', since x' is connected to the continuation name of the send on x and is thus not (yet) paired with a dual receive.

Pérez (Groningen, NL)

APCP Type System

APCP types processes by assigning binary session types to names.

- We write \circ, π, ρ, \ldots to denote priorities.
- ▶ Also, we use ω to denote the ultimate priority that is greater than all other priorities and cannot be increased further. That is, $\forall \circ \in \mathbb{N}$. $\omega > \circ$ and $\forall \circ \in \mathbb{N}$. $\omega + \circ = \omega$.
- Session types (linear logic propositions) include priorities:

$$A, B ::= A \otimes^{\circ} B \mid A \mathfrak{N}^{\circ} B \mid \oplus^{\circ} \{i : A\}_{i \in I} \mid \&^{\circ} \{i : A\}_{i \in I} \mid \bullet \mid \mu X.A \mid X$$

where \bullet denotes the self-dual type for 'end'.

• The *dual* of session type A, denoted \overline{A} , is defined inductively as follows:

$$\overline{A \otimes^{\circ} B} \triangleq \overline{A} \ \mathfrak{N}^{\circ} \overline{B} \qquad \overline{\oplus^{\circ}\{i:A_i\}_{i \in I}} \triangleq \&^{\circ}\{i:\overline{A_i}\}_{i \in I} \quad \overline{\bullet} \triangleq \bullet \quad \overline{\mu X.A} \triangleq \mu X.\overline{A} \\
\overline{A \ \mathfrak{N}^{\circ} B} \triangleq \overline{A} \otimes^{\circ} \overline{B} \quad \overline{\&^{\circ}\{i:A_i\}_{i \in I}} \triangleq \oplus^{\circ}\{i:\overline{A_i}\}_{i \in I} \quad \overline{X} \triangleq X$$

Pérez (Groningen, NL)

Deadlock-free Asynchronous Functional Sessions

APCP Type System

The typing rules ensure that prefixes with lower priority are not blocked by prefixes with higher priority.

Essential laws:

- 1. Sends and selections with priority \circ must have continuations/payloads with priority strictly larger than $\circ;$
- 2. A prefix with priority \circ must be prefixed only by receives and branches with priority strictly smaller than \circ ;
- 3. Dual prefixes leading to a synchronization must have equal priorities.

APCP Type System

The typing rules ensure that prefixes with lower priority are not blocked by prefixes with higher priority.

Essential laws:

- 1. Sends and selections with priority \circ must have continuations/payloads with priority strictly larger than $\circ;$
- 2. A prefix with priority \circ must be prefixed only by receives and branches with priority strictly smaller than \circ ;
- 3. Dual prefixes leading to a synchronization must have equal priorities.

Judgments are of the form $\Omega \vdash P :: \Gamma$, where:

- \blacktriangleright *P* is a process;
- Γ is a context that assigns types to channels (x : A);
- Ω is a context that assigns tuples of types to recursion variables $(X : (A, B, \ldots))$.

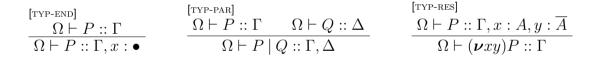
APCP Typing Rules (Selected)

[TYP-SEND]

$$\circ < \operatorname{pr}(A), \operatorname{pr}(B)$$

$$\overline{\Omega \vdash x[y, z]} :: x : A \otimes^{\circ} B, y : \overline{A}, z : \overline{B}$$

 $\frac{\Omega \vdash P :: \Gamma, y : A, z : B \quad \circ < \operatorname{pr}(\Gamma)}{\Omega \vdash x(y, z); P :: \Gamma, x : A \, \mathfrak{P}^{\circ} B}$



$$\frac{\Omega \vdash P :: \Gamma, y : A, x : B \quad \circ < \operatorname{pr}(A), \operatorname{pr}(B)}{\Omega \vdash \overline{x}[y] \cdot P :: \Gamma, x : A \otimes^{\circ} B}$$

Pérez (Groningen, NL)

Deadlock-free Asynchronous Functional Sessions

APCP Typing by Example

We give the typing of the two consecutive sends on x (omitting the context Ω):

$$\begin{array}{c} \circ < \operatorname{pr}(A_{1}), \pi & \frac{\pi < \operatorname{pr}(A_{2}), \operatorname{pr}(B)}{\vdash x[v_{1}, a] :: x : A_{1} \otimes^{\circ} A_{2} \otimes^{\pi} B} & \frac{\pi < \operatorname{pr}(A_{2}), \operatorname{pr}(B)}{\vdash x'[v_{2}, b] :: x' : A_{2} \otimes^{\pi} B} & \frac{\operatorname{pr}(A_{2}), \operatorname{pr}(B)}{\vdash x'[v_{2}, b] :: x' : A_{2} \otimes^{\pi} B} & \frac{\operatorname{pr}(A_{2}), \operatorname{pr}(B)}{v_{2} : \overline{A_{2}}, b : \overline{B}} & \frac{\operatorname{pr}(A_{2}), \operatorname{pr}(A_{2}), \operatorname{pr}(B)}{v_{2} : \overline{A_{2}}, b : \overline{B}} & \frac{\operatorname{pr}(A_{2}), \operatorname{pr}(A_{2}), \operatorname{pr}($$

APCP Typing by Example

Let us type the consecutive inputs on y, i.e., the subprocess $y(w_1, y'); y'(w_2, y''); Q$. Because x and y are dual names in P, the type of y should be dual to the type of x:

$$\frac{\vdash Q :: \Gamma, w_1 : \overline{A_1}, w_2 : \overline{A_2}, y'' : \overline{B} \qquad \pi < \operatorname{pr}(\Gamma, w_1 : \overline{A_1})}{\vdash y'(w_2, y''); Q :: \Gamma, w_1 : \overline{A_1}, y' : \overline{A_2} \ \mathfrak{N}^{\pi} \overline{B}} \qquad \circ < \operatorname{pr}(\Gamma) \\ \vdash y(w_1, y'); y'(w_2, y''); Q :: \Gamma, y : \overline{A_1} \ \mathfrak{N}^{\circ} \ \overline{A_2} \ \mathfrak{N}^{\pi} \ \overline{B}} \qquad (\mathsf{ryp-recv})$$

These two derivations tell us that

 $\circ < \pi < \operatorname{pr}(A_1), \operatorname{pr}(A_2), \operatorname{pr}(B), \operatorname{pr}(\Gamma)$

Pérez (Groningen, NL)

Deadlock-free Asynchronous Functional Sessions

In APCP, type preservation corresponds to the elimination of (top-level) applications of Rule [TYPE-RES].

Theorem (Subject Reduction, Simplified)

If $\Omega \vdash P :: \Gamma$ and $P \longrightarrow Q$, then there exists Γ' such that $\Omega \vdash Q :: \Gamma'$.

APCP Properties Derived From Typing

- We say a process is deadlocked if it is not the inactive process and cannot reduce.
- ► Following Dardha and Gay, we target the elimination of [TYPE-RES].
- In APCP, Rule [TYPE-RES] is key in our sugared notation to bind asynchronous sends/selections and their continuations.

These occurrences of [TYPE-RES] cannot be eliminated via reduction.

APCP Properties Derived From Typing

- We say a process is deadlocked if it is not the inactive process and cannot reduce.
- ► Following Dardha and Gay, we target the elimination of [TYPE-RES].
- In APCP, Rule [TYPE-RES] is key in our sugared notation to bind asynchronous sends/selections and their continuations.
 These resources of [TYPE PEG] connect here limitated a is undertised.

These occurrences of [TYPE-RES] cannot be eliminated via reduction.

To formulate deadlock-freedom, we use two auxiliary notions:

- The active names of P, denoted an(P): the set of (free) names that are used for non-blocked communications (send, receive, selection, branch)
- **Evaluation contexts**, denoted \mathcal{E} .

APCP Properties Derived From Typing

Definition (Live Process)

A process P is $\mathit{live},$ denoted $\operatorname{live}(P),$ if

- 1. there are names x, y and process P' such that $P \equiv (\nu xy)P'$ with $x, y \in an(P')$, or
- 2. there are names x, y, z and process P' such that $P \equiv \mathcal{E}[(\nu y z)([x \leftrightarrow y] | P')]$ and $z \neq x$ (i.e., the forwarder is independent).

Lemma

If $\emptyset \vdash P :: \emptyset$ and P is not live, then P must be **0**.

Theorem (Progress) If $\emptyset \vdash P :: \Gamma$ and live(P), then there is a process Q such that $P \longrightarrow Q$.

Theorem (Deadlock-freedom)

If $\emptyset \vdash P :: \emptyset$, then either $P \equiv \mathbf{0}$ or $P \longrightarrow Q$ for some Q.

Translating LASTⁿ into APCP Key Ideas

To translate LASTⁿ into APCP, we follow Milner's translation of the lazy λ -calculus.

- In LASTⁿ, variables are (i) placeholders for future substitutions and (ii) access points to buffered channels.
- Accordingly, we translate variables as APCP endpoints that (i) enable the translation of explicit substitutions and (ii) enable interaction with the translation of buffers

Translating LASTⁿ into APCP Key Ideas

To translate LASTⁿ into APCP, we follow Milner's translation of the lazy λ -calculus.

- In LASTⁿ, variables are (i) placeholders for future substitutions and (ii) access points to buffered channels.
- Accordingly, we translate variables as APCP endpoints that (i) enable the translation of explicit substitutions and (ii) enable interaction with the translation of buffers

Given a configuration C, we define an APCP process $\llbracket C \rrbracket z$, where z is a fresh name. We also define translations of types and buffers.

Translating LASTⁿ into APCP Key Ideas

To translate LASTⁿ into APCP, we follow Milner's translation of the lazy λ -calculus.

- In LASTⁿ, variables are (i) placeholders for future substitutions and (ii) access points to buffered channels.
- Accordingly, we translate variables as APCP endpoints that (i) enable the translation of explicit substitutions and (ii) enable interaction with the translation of buffers

Given a configuration C, we define an APCP process $\llbracket C \rrbracket z$, where z is a fresh name. We also define translations of types and buffers.

We establish correctness for our translation following Gorla's correctness criteria: Completeness Given $\Gamma \vdash^{\phi}_{c} C : T$, if $C \longrightarrow_{c} D$, then $\llbracket C \rrbracket z \longrightarrow^{*} \llbracket D \rrbracket z$. Soundness Given $\Gamma \vdash^{\phi}_{c} C : T$, if $\llbracket C \rrbracket z \longrightarrow^{*} Q$, then there exists D such that $C \longrightarrow^{*}_{c} D$ and $Q \longrightarrow^{*} \llbracket D \rrbracket z$.

Soundness is critical to transfer deadlock-freedom from APCP to $LAST^n$

Translating LASTⁿ into APCP Translating Types

Our typed translation takes a typed term $\Gamma \vdash_{M} M : T$ and returns a typed process

 $\vdash^* \llbracket M \rrbracket z :: (\Gamma), z : \llbracket T \rrbracket.$

where \vdash^* indicates typability in APCP ignoring priorities and priority checks. Translation of types:

 $\begin{array}{c} (T) \triangleq \bullet \otimes \overline{[T]} \quad (\text{if } T \neq \Box) \\ [T \times U] \triangleq \overline{(T)} \otimes \overline{(U)} \quad [T \multimap U] \triangleq (T) \stackrel{\mathcal{P}}{} [U] \quad [1] \triangleq \bullet \\ [!T.S] \triangleq \bullet \otimes (T) \stackrel{\mathcal{P}}{} \overline{(S)} \quad [\oplus \{i : S_i\}_{i \in I}] \triangleq \bullet \otimes \& \{i : \overline{(S_i)}\}_{i \in I} \quad [\text{end}] \triangleq \bullet \otimes \bullet \\ [?T.S] \triangleq \overline{(T)} \otimes \overline{(S)} \quad [\& \{i : S_i\}_{i \in I}] \triangleq \oplus \{i : \overline{(S_i)}\}_{i \in I} \quad [\Box] \triangleq (\Box) \triangleq \bullet \\ \end{array}$

Intuitively, session types such as '• \otimes ...' codify the enabling of an interaction (with an explicit substitution or with a buffer). A kind of "announcement" for interacting parties.

Translating LASTⁿ into APCP Translating Terms (Selection)

Below, we write '_' to denote a fresh name of type •; when sending names denoted '_', we omit binders '(ν_{--})'.

	$\llbracket x \rrbracket z \triangleq x[_, z]$	[TYP-VAR]
receive x , then run body	$\llbracket \lambda x.M \rrbracket z \triangleq z(x,a); \llbracket M \rrbracket a$	[TYP-ABS]
run abstraction	$\llbracket M \ N \rrbracket z \triangleq (\boldsymbol{\nu} ab)(\boldsymbol{\nu} cd)(\llbracket M \rrbracket a$	[TYP-APP]
trigger function body	$\mid b[c,z]$	
parameter as future substitution	$\mid d(_,e); \llbracket N \rrbracket e)$	
run body	$\llbracket M \llbracket N/x \rrbracket \rrbracket z \triangleq (\boldsymbol{\nu} x a) (\llbracket M \rrbracket z$	[TYP-SUB]
block until body is variable	$a(_,b);\llbracket N \rrbracket b)$	

Translating	g LAST n into APCP	Translating ⁻	Terms (Selection)
[TYP-NEW]	$\llbracket \texttt{new} \rrbracket z \triangleq (\boldsymbol{\nu} ab)(a[_,$	z]	activate buffer
	$\mid b(_,c);(oldsymbol{ u} dx)(oldsymbol{ u} ey)($		block until activated
	$\llbracket [arepsilon angle bracket] d angle$	e	prepare buffer
	$ $ $\llbracket (x, y)$	()] c))	return pair of endpoints
[TYP-SEND]	$\llbracket \texttt{send} \ M \ N \rrbracket z \triangleq (\boldsymbol{\nu} ab)(\boldsymbol{\nu} cc)$	$d)(a(_,e);\llbracket M rbracket e$	block payload until received
	$ \llbracket N rbracket c$	run cha	annel term to activate buffer
	$\mid d(_,f)$	$(oldsymbol{ u}gh)($	wait for buffer to activate
	f[b,g]		send to buffer
	$\mid h[_,z]$])) prepar	e returned endpoint variable
[TYP-RECV]	$\llbracket \texttt{recv} M \rrbracket z \triangleq (\pmb{\nu} a b)(\llbracket M$]a run cha	annel term to activate buffer
	$\mid b(c,d);$		receive from buffer
$(\boldsymbol{\nu} e f)(z[c,e] \mid f(_,g); d[_,g]))$ returned			

Translating LASTⁿ into APCP Deadlock-Free LASTⁿ

- Well-typed APCP processes that are typable under empty contexts (⊢ P :: Ø) are deadlock-free.
- We transfer this result to LASTⁿ configurations by appealing to the operational correctness of our translation (completeness and soundness properties).

Each deadlock-free configuration in $LAST^n$ thus obtained satisfies two requirements:

- ► The configuration is typable $\emptyset \vdash_{c}^{\bullet} C : \mathbf{1}$, i.e., it needs no external resources and has no external behavior.
- ▶ The typed translation of the configuration satisfies priority requirements in APCP.

Theorem (Deadlock-freedom for LASTⁿ) Given $\emptyset \vdash^{\bullet}_{c} C : 1$, if $\vdash [\![C]\!] z :: \Gamma$ for some Γ , then $C \equiv \bullet ()$ or $C \longrightarrow_{c} D$ for some D.

Conclusion

Summary:

- Two different formal systems (LASTⁿ and APCP) that express asynchronous message-passing concurrency
- They are defined at different levels of abstraction, and are connected via a correct translation
- \blacktriangleright The design of LASTⁿ builds upon the best features of APCP
- Transference of deadlock-freedom allows us to exploit already developed machinery (for APCP) and also keep the formulation of LASTⁿ within "familiar territory"

Future work:

- ▶ Recursive types in LASTⁿ
- Behavioral theory for LASTⁿ (by leveraging APCP)

Asynchronous Session-Based Concurrency: Deadlock-freedom in Cyclic Process Networks

Bas van den Heuvel and Jorge A. Pérez

University of Groningen, The Netherlands

March 25, 2024

