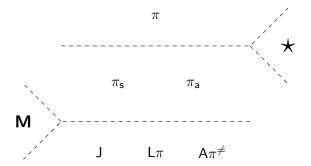
Mixed Choice in Session Types

Kirstin Peters joint work with Nobuko Yoshida

March 25, 2024

- Palamidessi proved that the π-calculus with mixed choice (π) is strictly more expressive than the asynchronous π-calculus (π_a) via leader election in symmetric networks as distinguishing feature
- but there are more levels of synchrony relevant for the π -calculus



What about the typed fragments of session typed languages that enjoy safety and deadlock-freedom?

$$\mathcal{P}_{\pi}: P ::= \sum_{i \in \mathbf{I}} \alpha_i . P_i \mid (\nu x) P \mid P \mid P \mid ! P \qquad \alpha ::= y(x) \mid \overline{y}z \mid \tau$$

$$\mathcal{P}_{\mathsf{CMV}}: P ::= y! v.P \mid y?xP \mid x \triangleleft l.P \mid x \triangleright \{l_i : P_i\}_{i \in I}$$
$$\mid P \mid P \mid (\nu yz)P \mid \text{ if } v \text{ then } P \text{ else } P \mid \mathbf{0}$$

$$\mathcal{P}_{\mathsf{CMV}^+}: P ::= y \sum_{i \in \mathbf{I}} M_i \mid P \mid P \mid (\nu yz)P \mid \text{ if } v \text{ then } P \text{ else } P \mid \mathbf{0}$$
$$M ::= 1 * v.P \qquad * ::= ! \mid ?$$

in Mixed Sessions by F. Casal, A. Mordido, and V.T. Vasconcelos

$$S = (\nu xy)(y (l!false.S_1 + l?z.S_2) | x (l!true.0 + l?z.0) y (l!false.S_3 + l?z.S_4))$$

more flexibility: e.g. in produce-consumer examples

- CMV⁺ increases the flexibility in comparison to CMV
- Does CMV⁺ increase the expressive power (CMV⁺ > CMV)?
- We do not expect that for linear choices, but what about unrestricted?

Mixed Sessions do <u>not</u> increase the expressive power of choice, <u>neither</u> in linear nor <u>unrestricted</u> choices.

• Why is the expressive power of unrestricted choices not increased?

- $\pi \rightarrow CMV^+$ via Leader Election
- $\pi \rightarrow \text{CMV}^+$ via the Pattern \star

•
$$CMV^+ \longrightarrow CMV$$

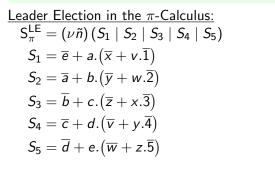
 $\rightarrow CMV$

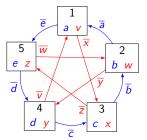
LE * * *

 CMV^+ -

Definition (Leader Election)

 $P = (\nu \tilde{x})(P_1 | \dots | P_k)$ elects a leader $1 \le n \le k$ if for all $P \Longrightarrow P'$ there exists $P \Longrightarrow P' \Longrightarrow P''$ such that $P''' \downarrow_n$ for all P''' with $P'' \Longrightarrow P'''$, but $P'' \Downarrow_m$ for any $m \in \{1, \dots, k\}$ with $m \ne n$.



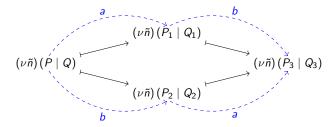


 $S_{\pi}^{\mathsf{LE}} \longmapsto (\nu \tilde{n}) (\overline{x} + \nu.\overline{1} \mid S_3 \mid S_4 \mid S_5) \longmapsto (\nu \tilde{n}) (\overline{x} + \nu.\overline{1} \mid \overline{z} + x.\overline{3} \mid S_5) \\ \longmapsto \overline{3} \mid (\nu \tilde{n}) S_5 \not \mapsto$

Theorem ($\pi \rightarrow \times \rightarrow \text{CMV}^+$ via Leader Election)

There is no good encoding from the π -calculus into CMV⁺.

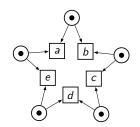
- we cannot solve leader election in symmetric networks of odd degree in CMV⁺
- construct a potentially infinite sequence of steps that always eventually restores the symmetry of the original network
- main ingredient: a confluence lemma



by the syntax the choice construct is limited to a single channel endpoint

Definition (Synchronisation Pattern *)

- $i : \mathbb{P}^* \longmapsto P_i$ for $i \in \{a, b, c, d, e\}$ with $P_i \neq P_j$ if $i \neq j$
- a is in conflict with b, b is in conflict with c, ..., e is in conflict with a
- every pair of steps in {*a*, *b*, *c*, *d*, *e*} that is not in conflict is distributable



Synchronisation Pattern \star in the π -Calculus:

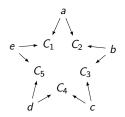
$$\mathsf{S}_{\pi}^{\star} = \overline{\mathsf{a}} + b.\overline{o_{\mathsf{b}}} \mid \overline{\mathsf{b}} + c.\overline{o_{\mathsf{c}}} \mid \overline{\mathsf{c}} + d.\overline{o_{\mathsf{d}}} \mid \overline{\mathsf{d}} + e.\overline{o_{\mathsf{e}}} \mid \overline{\mathsf{e}} + a.\overline{o_{\mathsf{a}}}$$

Theorem $(\pi \rightarrow \times \rightarrow CMV^+ \text{ via the Pattern } \star)$

There is no good encoding from the π -calculus into CMV⁺.

main ingredient: there are no \star in CMV⁺

- assume that there is a \star with five steps a, b, c, d, e
- each step reduces two choices C_i and C_j on matching endpoints
- because of the conflicts, neighbours compete for a choice
- it is impossible to close such a cycle with odd degree



by the semantics an endpoint can interact with exactly one other endpoint

● *Mixed Sessions* provides an encoding [[·]]^{CMV+}_{CMV} from CMV⁺ into CMV

$$S = (\nu xy)(y (l!false.S_1 + l?z.S_2) | x (l!true.0 + l?z.0) | y (l!false.S_3 + l?z.S_4))$$

$$\begin{split} \llbracket \Gamma \vdash S \rrbracket_{\mathsf{CMV}}^{\mathsf{CMV}^+} & \longmapsto \mathcal{T}_1 \\ \mathcal{T}_1 = (\nu x y) \big(y? c.c \triangleright \left\{ \begin{array}{l} l_? : \left(c! \mathsf{false.} \llbracket S_1 \rrbracket_{\mathsf{CMV}}^{\mathsf{CMV}^+} \mid J_1 \right), \\ & l_! : \left(c? z. \llbracket S_2 \rrbracket_{\mathsf{CMV}}^{\mathsf{CMV}^+} \mid J_2 \right) \right\} \\ & \mid (\nu s t) \big(s \triangleright \left\{ \begin{array}{l} l_1 : (\nu c d) \left(x! c.d \triangleleft l_!. \left(d! \mathsf{true.0} \mid J_3 \right) \right), \\ & l_2 : (\nu c d) \left(x! c.d \triangleleft l_?. \left(d? z.0 \mid J_4 \right) \right) \right\} \\ & \mid t \triangleleft l_1.0 \mid t \triangleleft l_2.0 \\ & \mid y? c.c \triangleright \left\{ \begin{array}{l} l_? : \left(c! \mathsf{false.} \llbracket S_3 \rrbracket_{\mathsf{CMV}}^{\mathsf{CMV}^+} \mid J_5 \right), \\ & l_! : \left(c? z. \llbracket S_4 \rrbracket_{\mathsf{CMV}}^{\mathsf{CMV}^+} \mid J_6 \right) \right\}) \end{split}$$

- Mixed Sessions prove operational completeness for $[\cdot]_{CMV}^{CMV^+}$
- we add the missing soundness proof

Theorem (CMV⁺ \longrightarrow CMV)

The encoding $[\![\cdot]\!]_{CMV}^{CMV^+}$ from CMV⁺ into CMV is good. By this encoding source terms in CMV⁺ and their literal translations in CMV are related by coupled similarity.

the difference between inputs and outputs in a CMV⁺-choice can be completely captured by labels in CMV-branching

choice in Mixed Sessions can:

• **not** solve leader election

(in symmetric networks of odd degree)

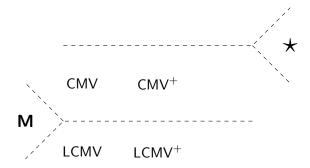
- not express the synchronisation pattern *
 (the * captures the expressive power of mixed choice in π)
- express the synchronisation pattern M (the M captures the expressive power of separate choice in π)

+

the difference between inputs and outputs in a CMV⁺-choice can be completely captured by labels in CMV-branching

Corollary (CMV⁺-Choice is Separate and **not** Mixed)

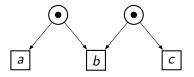
The extension of CMV given by CMV^+ introduces a form of separate choice rather than mixed choice.



- because of unrestricted names, CMV/CMV⁺ do not ensure deadlock-freedom
- LCMV = linearly typed fragment of CMV
- $LCMV^+ = linearly typed fragment of CMV^+$

Synchronisation Pattern ${\bf M}$

A fully reachable pure **M** in Petri nets [van Glabbeek, Goltz, Schicke '08/'12]:



Theorem

A Petri net is distributable iff it does not contain a fully reachable pure **M**.

[Peters, Nestmann, Goltz '13]:

A process calculus is distributable iff it cannot express a non-local M.

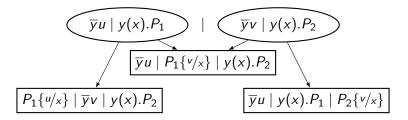
Definition (Synchronisation Pattern M)

Let $\langle \mathcal{P},\longmapsto\rangle$ be a process calculus and $\mathsf{P}^{M}\in\mathcal{P}$ such that:

- P^M can perform at least three alternative steps a: P^M → P_a,
 b: P^M → P_b, and c: P^M → P_c such that P_a, P_b, and P_c are pairwise different.
- The steps a and c are parallel in P^{M} .
- But *b* is in conflict with both *a* and *c*.

In this case, we denote the process P^{M} as **M**. If the steps *a* and *c* are distributable in P^{M} , then we call the **M** *non-local*. Otherwise, the **M** is called *local*.

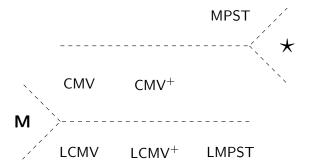
Non-Local **M** in π_a



There are no **M** in LCMV or $LCMV^+$.

- the conflicts in **M** require two competing choices
- choice is limited to exactly two session endpoints
- the conflict between a and b leads to a conflict between a and c

• consider MPST as given e.g. in [Honda, Yoshida, Carbone '08]



 LMPST = the fragment of MPST that ensures safety and deadlock-freedom

Corollary (CMV⁺-Choice is Separate and **not** Mixed)

The extension of CMV given by CMV^+ introduces a form of separate choice rather than mixed choice.

Reasons:

- Syntax: choice construct is limited to a single channel endpoint
- Semantics: an endpoint can interact with exactly one other endpoint

it is a limitation of the syntax and semantics of the language but **not of the type system**

helps us to introduce mixed choice to the unrestricted or non-linear parts of other session calculi

• a decidable and typed (safe and deadlock-free) version of MPST that can express \star is under submission

Thank you for your attention!