Mixed Choice in Session Types

Kirstin Peters joint work with Nobuko Yoshida

March 25, 2024

- Palamidessi proved that the π-calculus with mixed choice (π) is strictly more expressive than the asynchronous π-calculus $\left(\pi_{\mathrm{a}}\right)$ via leader election in symmetric networks as distinguishing feature
- but there are more levels of synchrony relevant for the π-calculus

What about the typed fragments of session typed languages that enjoy safety and deadlock-freedom?

$$
\begin{gathered}
\mathcal{P}_{\pi}: P::=\sum_{i \in \mathrm{I}} \alpha_{i} \cdot P_{i}|(\nu x) P| P|P|!P \quad \alpha::=y(x)|\bar{y} z| \tau \\
\mathcal{P}_{\mathrm{CMV}}: P::=y!v . P|y ? x P| x \triangleleft \mathrm{l} . P \mid x \triangleright\left\{l_{i}: P_{i}\right\}_{i \in \mathrm{I}} \\
|P| P|(\nu y z) P| \text { if } v \text { then } P \text { else } P \mid \mathbf{0} \\
\mathcal{P}_{\mathrm{CMV}^{+}}: P::=y \sum_{i \in \mathrm{I}} M_{i}|P| P|(\nu y z) P| \text { if } v \text { then } P \text { else } P \mid \mathbf{0} \\
M::=1 * v . P \quad *::=!\mid ?
\end{gathered}
$$

in Mixed Sessions by F. Casal, A. Mordido, and V.T. Vasconcelos

$$
\begin{aligned}
& S=(\nu x y)\left(y \text { (1!false. } S_{1}+1 ? z . S_{2}\right) \mid x(1 \text { !true. } 0+1 ? z .0) \mid \\
& \left.y \text { (l!false. } S_{3}+1 ? z . S_{4} \text {) }\right)
\end{aligned}
$$

more flexibility: e.g. in produce-consumer examples

- CMV^{+}increases the flexibility in comparison to CMV
- Does CMV^{+}increase the expressive power $\left(\mathrm{CMV}^{+}>\mathrm{CMV}\right)$?
- We do not expect that for linear choices, but what about unrestricted?

Mixed Sessions do not increase the expressive power of choice, neither in linear nor unrestricted choices.

- Why is the expressive power of unrestricted choices not increased?

- $\pi--\times-\rightarrow \mathrm{CMV}^{+}$via Leader Election
- $\pi--\star-\rightarrow \mathrm{CMV}^{+}$via the Pattern \star
- $\mathrm{CMV}^{+} \longrightarrow \mathrm{CMV}$

Definition (Leader Election)

$P=(\nu \tilde{x})\left(P_{1}|\ldots| P_{k}\right)$ elects a leader $1 \leq n \leq k$ if for all $P \Longleftrightarrow P^{\prime}$ there exists $P \Longleftrightarrow P^{\prime} \Longleftrightarrow P^{\prime \prime}$ such that $P^{\prime \prime \prime} \downarrow_{n}$ for all $P^{\prime \prime \prime}$ with $P^{\prime \prime} \Longleftrightarrow P^{\prime \prime \prime}$, but $P^{\prime \prime} \psi_{m}$ for any $m \in\{1, \ldots, k\}$ with $m \neq n$.

Leader Election in the π-Calculus:

$$
\begin{aligned}
\mathrm{S}_{\pi}^{\mathrm{LE}} & =(\nu \tilde{n})\left(S_{1}\left|S_{2}\right| S_{3}\left|S_{4}\right| S_{5}\right) \\
S_{1} & =\bar{e}+a \cdot(\bar{x}+v \cdot \overline{1}) \\
S_{2} & =\bar{a}+b \cdot(\bar{y}+w \cdot \overline{2}) \\
S_{3} & =\bar{b}+c \cdot(\bar{z}+x \cdot \overline{3}) \\
S_{4} & =\bar{c}+d .(\bar{v}+y \cdot \overline{4}) \\
S_{5} & =\bar{d}+e .(\bar{w}+z \cdot \overline{5}) \\
S_{\pi}^{\mathrm{LE}} & \longmapsto(\nu \tilde{n})\left(\bar{x}+v \cdot \overline{1}\left|S_{3}\right| S_{4} \mid S_{5}\right) \longmapsto(\nu \tilde{n})\left(\bar{x}+v \cdot \overline{1}|\bar{z}+x \cdot \overline{3}| S_{5}\right) \\
& \longmapsto \overline{3} \mid(\nu \tilde{n}) S_{5} \longmapsto
\end{aligned}
$$

Theorem ($\pi--\times-\rightarrow$ CMV $^{+}$via Leader Election)

There is no good encoding from the π-calculus into CMV^{+}.

- we cannot solve leader election in symmetric networks of odd degree in CMV^{+}
- construct a potentially infinite sequence of steps that always eventually restores the symmetry of the original network
- main ingredient: a confluence lemma

by the syntax the choice construct is limited to a single channel endpoint

Definition (Synchronisation Pattern \star)

- $i: \mathrm{P}^{\star} \longmapsto P_{i}$ for $i \in\{a, b, c, d, e\}$ with $P_{i} \neq P_{j}$ if $i \neq j$
- a is in conflict with b, b is in conflict with c, \ldots, e is in conflict with a
- every pair of steps in $\{a, b, c, d, e\}$ that
 is not in conflict is distributable

Synchronisation Pattern \star in the π-Calculus:

$$
\mathrm{S}_{\pi}^{\star}=\bar{a}+b \cdot \overline{o_{b}}\left|\bar{b}+c \cdot \overline{o_{c}}\right| \bar{c}+d \cdot \overline{o_{d}}\left|\bar{d}+e \cdot \overline{o_{e}}\right| \bar{e}+a \cdot \overline{o_{a}}
$$

Theorem ($\pi--\times-\rightarrow \mathrm{CMV}^{+}$via the Pattern \star)

There is no good encoding from the π-calculus into CMV^{+}.
main ingredient: there are no \star in CMV^{+}

- assume that there is $a \star$ with five steps a, b, c, d, e
- each step reduces two choices C_{i} and C_{j} on matching endpoints
- because of the conflicts, neighbours compete for a choice
- it is impossible to close such a
 cycle with odd degree
by the semantics an endpoint can interact with exactly one other endpoint
- Mixed Sessions provides an encoding $\llbracket \cdot \|_{\mathrm{CMV}^{+}}^{\mathrm{CMV}^{+}}$from CMV^{+}into CMV

$$
\begin{aligned}
& S=(\nu x y)\left(y \text { (1!false. } S_{1}+1 ? z . S_{2}\right) \mid x(1 \text { !true. } 0+1 ? z .0) \mid \\
& y \text { (l!false. } S_{3}+1 ? z . S_{4} \text {)) }
\end{aligned}
$$

$$
\llbracket \Gamma \vdash S \rrbracket_{\mathrm{CMV}}^{\mathrm{CMV}^{+}} \Longleftrightarrow T_{1}
$$

$$
\begin{aligned}
& T_{1}=(\nu x y)\left(y ? c . c \triangleright\left\{l_{?}:\left(c!\text { false. } \llbracket S_{1} \rrbracket_{\mathrm{CMV}^{\mathrm{CMV}}}{ }^{+} \mid J_{1}\right),\right.\right. \\
& \left.l_{!}:\left(c ? z . \llbracket S_{2} \rrbracket_{\mathrm{CMV}}^{\mathrm{CMV}^{+}} \mid J_{2}\right)\right\} \\
& \mid(\nu s t)\left(s \triangleright \left\{1_{1}:(\nu c d)\left(x!c . d \triangleleft l_{1} .\left(d!\text { true. } 0 \mid J_{3}\right)\right)\right.\right. \text {, } \\
& \left.l_{2}:(\nu c d)\left(x!c . d \triangleleft l_{?} .\left(d ? z .0 \mid J_{4}\right)\right)\right\} \\
& \left.\left|t \triangleleft \mathrm{l}_{1} . \mathbf{0}\right| t \triangleleft \mathrm{l}_{2} . \mathbf{0}\right) \\
& \mid y ? c . c \triangleright\left\{l_{?}:\left(c!\text { false. } \llbracket S_{3} \rrbracket_{\mathrm{CMV}^{+}}^{\mathrm{CMV}^{+}} \mid J_{5}\right)\right. \text {, } \\
& \left.\left.l_{!}:\left(c ? z . \llbracket S_{4} \rrbracket_{\mathrm{CMV}^{\mathrm{CMV}}}{ }^{+} \mid J_{6}\right)\right\}\right)
\end{aligned}
$$

- Mixed Sessions prove operational completeness for $\llbracket \cdot \rrbracket_{\mathrm{CMV}}^{\mathrm{CMV}}{ }^{+}$
- we add the missing soundness proof

Theorem $\left(\mathrm{CMV}^{+} \longrightarrow \mathrm{CMV}\right)$

The encoding $\llbracket \cdot \rrbracket_{\mathrm{CMV}^{+}}^{\mathrm{CMV}^{+}}$from CMV^{+}into CMV is good.
By this encoding source terms in CMV^{+}and their literal translations in CMV are related by coupled similarity.
the difference between inputs and outputs in a CMV^{+}-choice can be completely captured by labels in CMV-branching

choice in Mixed Sessions can:

- not solve leader election
(in symmetric networks of odd degree)
- not express the synchronisation pattern \star
(the \star captures the expressive power of mixed choice in π)
- express the synchronisation pattern \mathbf{M}
(the \mathbf{M} captures the expressive power of separate choice in π) $+$
the difference between inputs and outputs in a CMV^{+}-choice can be completely captured by labels in CMV-branching

Corollary (CMV ${ }^{+}$-Choice is Separate and not Mixed)
The extension of CMV given by CMV^{+}introduces a form of separate choice rather than mixed choice.

- because of unrestricted names, CMV/CMV ${ }^{+}$do not ensure deadlock-freedom
- LCMV = linearly typed fragment of CMV
- $\mathrm{LCMV}^{+}=$linearly typed fragment of CMV^{+}

Synchronisation Pattern M

A fully reachable pure \mathbf{M} in Petri nets [van Glabbeek, Goltz, Schicke '08/'12]:

Theorem
A Petri net is distributable iff it does not contain a fully reachable pure \mathbf{M}.
[Peters, Nestmann, Goltz '13]:
A process calculus is distributable iff it cannot express a non-local \mathbf{M}.

Definition (Synchronisation Pattern M)

Let $\langle\mathcal{P}, \longmapsto\rangle$ be a process calculus and $\mathrm{P}^{\mathbf{M}} \in \mathcal{P}$ such that:

- P^{M} can perform at least three alternative steps a : $\mathrm{P}^{\mathrm{M}} \longmapsto P_{a}$, b: $\mathrm{P}^{\mathrm{M}} \longmapsto P_{b}$, and $c: \mathrm{P}^{\mathrm{M}} \longmapsto P_{c}$ such that P_{a}, P_{b}, and P_{c} are pairwise different.
- The steps a and c are parallel in P^{M}.
- But b is in conflict with both a and c.

In this case, we denote the process P^{M} as \mathbf{M}. If the steps a and c are distributable in $\mathrm{PM}^{\mathbf{M}}$, then we call the \mathbf{M} non-local. Otherwise, the \mathbf{M} is called local.

Non-Local \mathbf{M} in π_{a}

There are no \mathbf{M} in LCMV or LCMV^{+}.

- the conflicts in \mathbf{M} require two competing choices
- choice is limited to exactly two session endpoints
- the conflict between a and b leads to a conflict between a and c
- consider MPST as given e.g. in [Honda, Yoshida, Carbone '08]

- LMPST $=$ the fragment of MPST that ensures safety and deadlock-freedom

Corollary (CMV ${ }^{+}$-Choice is Separate and not Mixed)

The extension of CMV given by CMV^{+}introduces a form of separate choice rather than mixed choice.

Reasons:

- Syntax: choice construct is limited to a single channel endpoint
- Semantics: an endpoint can interact with exactly one other endpoint

it is a limitation of the syntax and semantics of the language but not of the type system

helps us to introduce mixed choice to the unrestricted or non-linear parts of other session calculi

- a decidable and typed (safe and deadlock-free) version of MPST that can express \star is under submission

> Thank you for your attention!

