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A B S T R A C T

Identifying the informative genes has always been a major step in microarray data analysis. The complexity of
various cancer datasets makes this issue still challenging. In this paper, a novel Bio-inspired Multi-objective
algorithm is proposed for gene selection in microarray data classification specifically in the binary domain of
feature selection. The presented method extends the traditional Bat Algorithm with refined formulations, ef-
fective multi-objective operators, and novel local search strategies employing social learning concepts in de-
signing random walks. A hybrid model using the Fisher criterion is then applied to three widely-used microarray
cancer datasets to explore significant biomarkers which reveal the effectiveness of the proposed method for
genomic analysis. Experimental results unveil new combinations of informative biomarkers have association
with other studies.

1. Introduction

Machine learning has been an extremely powerful tool for biological
data analysis. It has had several applications in various fields of bio-
logical sciences mostly in two recent decades. Designing the prediction
models is one of the most interesting applications of machine learning.
Prediction models have been used in different biological applications
such as [1–12]. Developing statistical models for identification and
classification of cancerous tissues from normal tissues using gene ex-
pression profiles is one the most challenging application of ML [13].
Novel DNA microarray technology has the feasibility of measuring the
expression levels of huge number of genes simultaneously in a single
experiment. This technology enables the researchers to comprehensive
overview to precisely discover which genes are expressed in a specific
tissue under various conditions. However, developing prediction
models using gene expression profiles is quite challenging since there
are several irrelevant or insignificant genes to clinical diagnosis and
prognosis [14]. Hence, identifying highly informative genes for cancer
classification is accordingly an valuable endeavor.

Gene selection is a branch of feature selection that is the process of
selecting the subsets of relevant and significant genes for a classifica-
tion/prediction problem. Several issues are associated with gene se-
lection in microarray datasets [15]. First, selecting a subset of in-
formative genes from high-dimensional microarray datasets is a non-

deterministic polynomial-time (NP)-Hard problem. Therefore, meta-
heuristics algorithms including evolutionary methods or Bio-inspired
algorithms are widely used. The next issue is technically the curse of
sparsity, which means the number of samples is very small and scanty.
Next, the high complexity of gene expression data that arises from
several facts such as the high correlation between genes and consider-
able interactions among them, makes the process of selecting in-
formative genes very challenging. For instance, a high regulated. Fur-
thermore, the diagnostic process of identifying infected tissues would
be quite easier, reliable and interpretable when the number of in-
formative genes is small [51-53].

Several gene selection methods have been proposed in the literature
to surmount the challenges that roughly fall into three categories in-
cluding filter model, wrapper model, and hybrid model [16]. A filter
model relies primarily on the general statistical characteristics of the
training data without using any learning algorithm. Thus, such methods
are fast but have rather poor performance. In contrast, the wrapper
models use a predetermined learning algorithm to guide the searching
process toward optimal subset(s) of features. This model often employs
bio-inspired or evolutionary algorithms in its body so that it starts with
a population of features subsets. Such population should be evaluated
using that established learner and be improved in several iterations.
Hence, the computational complexity of this approach is high especially
in the case of high-dimensional datasets [17–19]. The performance of
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wrapper approaches is generally better than the filter models since they
consider interactions between the solutions and the predictors. The
hybrid approaches take the advantages of both models by firstly ap-
plying a filter model to reduce the feature space and selecting more
relevant genes, and then exploiting a wrapper model to search for op-
timal subset/s of features [20–22].

Furthermore, several nature-inspired algorithms have been devel-
oped in the literature in recent decades [23,24]. Bat algorithm (BA)
[25] was one of the most recent Bio-inspired methods that soon became
well known for its superior performance in solving several optimization
problems. BA was widely used mainly for its faster convergence and
better time complexity. Several Bat-inspired methods exist in the lit-
erature, but, to our knowledge, most of them are either mono-objective
or designed for solving optimization problems in the continuous do-
main. In this work, we developed a multi-objective version of the BA
with refined formulations, effective multi-objective operators and ro-
bust local search strategies particularly for variable selection in binary
domain namely MOBBA-LS. The main contributions of the proposed

method are as follows:

− The first ever multi-objective version of bat algorithm for binary
variable selection,

− Novel local search strategies incorporating social learning concepts
− Specific random walk well-suited for local search in binary domain
− Simplified multi-objective procedure without generating multiple

population and its associated computational burden.

The proposed method was then applied on three high-dimensional
microarray cancer datasets to identify significant biomarkers and to
investigate the effectiveness and the usefulness of MOBBA-LS for
genomic analysis. It found new combinations of the most discriminative
biomarkers competitive with previous studies.

2. Materials and methods

A hybrid model was applied to microarray datasets for gene selec-
tion in tumor classification. A filter method was first used to efficiently
screen out the highly irrelevant genes and form a filtered subset of a
relatively small size. For initial filtering, the Fisher score that have a
proven performance in separating informative genes [26,27] and in
other applications [28,29] was utilized. Fisher criterion employs the
statistical properties of each gene in different classes as a potential
measure of discriminant ability for classification (see Eq. (1)). In this
study, only 500 top-scored genes (as suggested by [26,30]) were chosen
as the filtered subset.
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(1)

where, M is the number of classes, μi is the arithmetic mean of ith gene
expression values, μij is the arithmetic mean of values of jth class of ith

gene and σij2 is the variance of expression values of ith gene in its jth

class.
The filtered subset was then employed by a new-developed wrapper

algorithm to select the final subsets of highly discriminating genes for
cancer classification. The developed wrapper method is indeed a novel
extension of bat algorithm. Several versions of BA have been proposed
in the literature for various application domain. Those algorithms could
be typically classified in terms of representation types and how the
algorithm deal with the problem objectives as illustrated in Fig. 1. The
BA has mostly adopted in continuous domain for solving engineering
optimization problems [24,31]. Nonetheless, there are a few number of
Binary BA exist in the literature all of which, to best of our knowledge,
are single objective i.e., they did not solve the variable selection pro-
blem as a multi-objective optimization problem such as [18,32–34]. In
contrast, in this study, a multi-objective version of Binary BA in-
tegrating various artificial intelligence concepts was proposed.

2.1. Bat algorithm

BA is a natural-inspired algorithm that was computerized by em-
ploying the fundamental characteristics of microbats in finding their
preys as described in [25]. The preys in computerized version are

Fig. 1. A general classification of bat algorithm-based ap-
proaches proposed in the literature according to encoding re-
presentation and number of objectives.

Pseudocode 1
MOBBA-LS: multi-objective binary bat algorithm with local searches.
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indeed the optimal solutions being sought. The bats, in nature, fly
randomly with different velocity vi from a position xi with frequency
fmin varying wavelength λ and loudness A to search for prey, as for-
mulated in Eqs. (2)–(5).
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where α and γ is a real number between 0.0 and 1.0. In this study, the
Loudness of singular bats (Ai

t+1) was redefined as a total swarm's
loudness in every iteration as shown in Eq. (6). The total loudness
brings the possibility of maintaining the diversity and exploitation of
the swarm in an easier way and with lower space complexity particu-
larly in the local search level.

=+A αAt t1 (6)

Moreover, among a few representative binary BA in the literature
[18,32,33], Nakamura used a sigmoid function to map the continuous
parameters of the BA into the binary values nonlinearly. We preferred
that non-linear transformation since that tackled out-of-bound velocity
values very well (see Eq. (7)).
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2.2. Multi-objective binary bat algorithm with specific local searches

A new wrapper method exploiting the refined Bat algorithm, fast
multi-objective evolutionary operators, and novel specific local search
strategies, namely MOBBA-LS, was proposed. The MOBBA-LS was

Flowchart 1. Bio-inspired local search strategies.

Table 1
Identified genes in Leukemia cancer dataset and number of misclassified samples of four
classifiers.

Data Leukemia Genes

Classifiers Accession code Description Database-Id

SVM KNN NBY DT

Train 0 0 0 0 M92287_at
X95735_at
HG1612-
HT1612_at

CCND3 Cyclin
D3
Zyxin
Macmarcks

2354
4847
804

Test 1 0 0 3
LOOCV 1 1 0 1

DT stands for Decision Tree classifier, NBY for Naïve Bayes, KNN for K-nearest-neighbor.
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developed with binary representation to be well suited for variable
selection problems. In the view of multi-objective behaviour, MOBBA-
LS takes the advantages of multi-objective operators of NSGA-II [35]
that is one of the most efficient and fast multi-objective algorithms in
the literature. Nevertheless, unlike NSGA-II, the MOBBA-LS does not
generate multiple population and therefore reduce its related compu-
tational burdens; instead it focuses on altering and manipulating the
current swarm wisely to increase diversity while maintaining ex-
ploitation. The MOBBA-LS adopts the fast-non-dominated-sort operator
to identify the leader bats that are our superior solutions and techni-
cally are the members of the first front of multi-objective output. This
leader set is then effectively exploited by local searches. The notion of
employing a leader set was inspired by social learning strategies [36]
and was recently employed in designing a modern particle swarm op-
timization algorithm to improve its local search [37]. The leader bats
were used in the local search procedures to guide the swarm smoothly
toward the potential sources (the search regions). Two novel local

search strategies were adopted to further the search potential of the
proposed algorithm for variable selection specifically in binary domain.
Both methods endeavor wisely to maintain exploitation and explora-
tion, for instance, by randomizing the selection process among leader
bats and other bats, and by intelligent movements in the search space.

The general steps of the proposed algorithm are demonstrated in
Pseudocode 1. From that, after some parameter initializations in Lines 1
to 3, random binary bats are created through Lines 5 to 17. The leader
Bats are separated in Line 18. The main loop of the MOBBA-LS iterates
through Lines 19 to 31. Generating new solutions based on Bat Motion
rules is described in Lines 20-26. The prediction capability of each bat/
solution was evaluated using a classifier. The choice of classifiers during
metaheuristics' search is critical to properly guide the searching pro-
cedure and to obtain informative genes in microarray data classification
(as discussed in our previous work [26]). In Line 22, SVM classifier with
a 10-fold cross-validation was used to assess the classification value of
each subset. In Line 27, the bats are non-dominantly sorted to obtain
the first non-dominated front (the leader bats) to be used afterward by
the local searches in the Line 28. The procedure iterates until the
stopping criteria meet. Some stopping criteria were defined including
(a) reaching to minimum prediction accuracy on training samples, (b)
obtaining at least one solution with a minimum length among superior
solutions, and (c) reaching to a predetermined maximum iteration.

2.2.1. Local search strategies
Local search strategies play an important role in every evolutionary

algorithm. As a matter of fact, incorporating local search methods offers
“not only a better speed of convergence to the evolutionary approach,
but also better accuracy for the final solutions” [38]. In the presented
algorithm, two novel intelligent local search strategies, namely, injec-
tion local search (ILS) and extended local search (ELS) were designed
and adopted to improve the searching potential of MOBBA-LS.
Flowchart 1 illustrates how two strategies work together. Each strategy
involves selection process and random walk operations. The selection
process focuses on whether the leaders or typical bats should be in-
spected over iterations. The Loudness of whole swarm and pulse rate of
bats were exploited to obtain a trade-off in the selection process of ILS
and ELS, respectively. In both strategies, the concentration on im-
proving the leaders gradually increases as the Loudness or pulse rate
approaches their boundary values.

The first strategy, the ILS, is to further the exploitation of sound
characteristics of every bird in the swarm by smoothly distributing
them via injection operator. The ILS actually imitates the social beha-
vior of the bats to learn from each other along with learning from su-
perior ones. The notion of this strategy is inspired from social learning
concepts that have been successfully utilized in the modern extensions
of particle swarm optimization [39]. In ILS, the position of a bat is
subject to change based on either the position of a leader or a neigh-
boring bat. The injection operator replaces some features within the
position of the bat (as need-to-be-altered characteristics) with that of a
randomly selected one (as learned characteristics). The amount of
changes adjusts by a predetermined injection rate.

The second strategy incorporates exploitation while focusing on

Table 2
The misclassification counts of the identified genes without including Clone-ID HG1612-
HT1612_at.

M92287_at,
X95735_at

Classifiers

SVM KNN NBY DT

Train 0 0 1 0
Test 2 2 2 3
LOOCV 2 2 3 2

Table 3
Identified genes in Prostate cancer dataset and number of misclassified samples of four
classifiers.

Data Prostate Genes

Classifiers Accession Index

SVM KNN NBY DT 37639_at, 37939_at 6185, 6247

Train 0 4 9 1 40607_at 9937
Test 2 1 1 25 41504_s_at 10234
LOOCV 8 7 10 8 38091_at, 38044_at 9097, 9050

DT stands for Decision Tree classifier, NBY for Naïve Bayes, KNN for K-nearest-neighbor.

Table 4
Identified genes in SRBCT cancer dataset and number of misclassified samples of four
classifiers.

Data SRBCT Genes

Classifiers Image-Id Database-Id

SVM KNN NBY DT 1435862, 461425 545, 554
Train 0 0 3 1 812105, 755239 742, 801
Test 3 0 0 4 842973, 244618 1666, 2046
LOOCV 7 6 3 7

Fig. 2. Scatterplot of three identified genes in different samples of Leukemia cancer dataset. Zyxin is highly expressed for AML, CCND3 is highly expressed for all and Macmarcks is highly
expressed for all and moderately for a few samples of AML.
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exploration. the ELS encourages each bat to perform some specific
random walks via two specific operators namely Reduce Operator (RO)
and Increase Operator (IO). The RO alters the position of the bat by
removing randomly some features along its length whereas the IO ar-
bitrarily augments some features. In both operators, the pulse rate (of
the current bat) increases when a better position unfolds. All operations
function smoothly at a predetermined tiny walk rate. One important
consideration in the proposed search strategy is the possibility of
backward search by creating and prioritizing the solution with more
number of features by the IO operator. Such behaviour is clear in the
last block of Flowchart 1 where the previously found solution X would
be preserved only of it fully dominates the new solution that has slightly
more number of features. The ELS could be seen as an intelligent type of
mutation operator adopted as the random walk for the bat algorithm.
One consideration is the walk rate and injection rate must be set to tiny
values (such as 0.01) to avoid fluctuations around the optimum points
of the search space. However, it can be empirically set to higher values
to facilitate the convergence of the algorithm.

3. Experimental results

The proposed method was applied on three high-dimensional mi-
croarray cancer dataset to identify most discriminative biomarkers.
First, the Fisher score was employed to filter the datasets and to create a
new dataset with only top statistically relevant genes. The MOBBA-LS
was then applied 30 times (as suggested by [17]) to obtain most dis-
criminating genes in each dataset. Afterward, the identified subsets of
genes in the first front of the proposed multi-objective algorithm were
studied over independent runs. A 10-fold cross validation with SVM was
employed to approximate the prediction accuracy of the solutions (the
bats) during the algorithm process (see Supplementary materials 2 for
parameter settings and implementations). The efficiency of utilizing the
SVM for measuring the quality of population individuals within an
evolutionary algorithm was already proved in microarray data appli-
cation [26,40,41]. Tables 1–4 explain the best identified subsets with
lowest number of genes and highest accuracy. The prediction accuracy
of each subset were evaluated using four widely-used classifiers in-
cluding support vector machines (SVM), K-Nearest Neighbors (KNN),
Naïve Bayes (NBY), and Decision Tree (DT), each of which was assessed

in according to the training samples, testing samples, and Leave-One-
Out Cross Validation (LOOCV). All implementations were conducted in
Matlab 2016b MacOS can also be accessed online in mathworks.com
searching for MOBBA-LS method.

3.1. Leukemia cancer data

The first dataset we used was the leukemia cancer data containing
7129 gene-expression levels of 72 patients with either acute myeloid
leukemia (AML) or acute lymphoblastic leukemia (ALL) [14]. This two-
class dataset was originally divided into a training set of 38 samples and
a test set of 34 samples. The training samples consisted of 27 ALL and
11 AML samples. The test data had 20 and 14 samples for ALL and AML,
respectively.

The proposed method identified a highly informative subset of three
genes which were mostly consistent with the previous studies in the
literature. Table 1 presents a description of the best-identified subset of
genes with its performance in various classifiers. From Table 1, all
classifiers were suited well on training samples with zero misclassified
samples. On testing samples, both SVM and Decision-Tree (DT) had
only one miss in AML samples while DT had additionally two more
misses in ALL samples. However, KNN and NBY performed best on both
the training and testing samples with zero misclassification rate. The
LOOCV performance of these genes was also remarkable. All classifiers
had at most one misclassified sample out of 72 ones. Overall, the SVM,
KNN and NBY had very close performance using these genes even
though that NBY outperformed others with perfect prediction accuracy
over all data subsets.

Furthermore, the biological relevance of these genes was also re-
markable. The first two genes have already been identified as in-
formative genes by [15,42]. Also, several combinations of M92287_at
were determined by [43] using rough sets even so none of them gave
the overall accuracy of more than 94.1%. Our results suggest that the
combination of Macmarcks could be quite effective in prognosis of
leukemia cancer.

3.1.1. The combination of identified genes without Macmarcks
From Table 2 the number of misclassified samples in test data and

LOOCV samples were dramatically increased while the same

Fig. 3. Scatterplot of four identified genes in the training samples of prostate cancer dataset. The red and blue colors indicate the tumor and normal tissues, respectively. The image Id
37639_at is highly expressed for the normal tissues, 37939_at is moderately to highly expressed for tumor tissues and a few normal samples, the Gene ID 40607_at is highly expressed for
tumor samples and moderately expressed for a few tumor samples and 41504_s_at is moderately to highly expressed for tumor samples.(For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Scatterplot of four identified genes in the training samples of SRBCT cancer dataset. The blue, black, red, and maroon colors correspond to EWS, BL, NB and RMS class of cancer,
respectively. The Clone ID 1435862 is highly expressed for EWS, 461425 and 244618 are highly expressed for RMS, and 812105 is highly expressed for NB with a few cases moderately
expressed for EWS and RMS.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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performance as that of the three-gene subset was observed on training
samples, particularly by the SVM. Such observation revealed that if the
algorithm was allowed to make more progress; then it perhaps removed
the third gene to obtain a smaller set. Thus, the three-gene subset may
or not be identified again by the proposed algorithm. That was because
in a multi-objective approach, a solution with two genes dominates a
solution with three genes when both solutions have an equal perfor-
mance on the training subset. Overall, it could draw a conclusion that
(a): one independent run and applying one classifier did not guarantee
the exploration of the most informative subset of genes and (b) ob-
taining very few number of genes could easily overlook informative
genes. On the other hand, achieving perfect prediction accuracy over

testing samples and LOOCV does not guarantee a perfect prediction of
unseen samples particularly when the number of training samples is
scanty. Such issues pose a great challenge for system biologists to gain
reliable results perhaps by integrating the machine learning with bio-
logical methods. To this sequel, the expression levels of the identified
genes are plotted in Fig. 2 which depicts the Cyclin and Macmarcks
were highly expressed for ALL while the Zyxin highly expressed for
AML.

3.2. Prostate cancer data

The second dataset we used was prostate cancer dataset containing
136 samples consisting of 12600 genes spanning two classes, which
includes 59 cancerous tissues and 77 healthy samples [44]. The training
set includes 52 prostate cancer samples and 50 normal samples. In
addition, the test set contains 25 cancer samples and 9 normal samples.
A subset of four highly discriminative genes was obtained by the pro-
posed method. Table 3 presents a description of each gene and the
performance of them using four classifiers. The Image-ID 37639_at was
already identified in previous studies [40,45,46] as a potential prostate
cancer biomarker. The expression levels of identified genes are plotted
in Fig. 3, of which only Image-ID 37639_at was highly expressed for
normal samples; others were moderately to highly expressed in tumor
samples and a few cases of normal ones. From Table 3, the SVM clas-
sifier was very well-suited on training samples with zero misclassified
sample whereas each of the other three classifiers had only one miss in
the normal samples and the other misses in tumor ones. Considering
testing samples, KNN, SVM and Naïve Bayes had the same very well
performance with only one miss (that was belonged to normal class) out
of 34 testing samples. However, DT failed on classifying the testing
samples with 25 misses. Overall, the SVM and KNN performed accu-
rately on either the testing samples, training samples or leave-one-out
samples.

3.3. SRBCT cancer data

The other dataset we used is the cDNA microarray gene expression
profiles of small, round blue cell tumors (SRBCTs) described in [13].
SRBCT dataset includes four different childhood tumors from 83 sam-
ples including 25 rhabdomyosarcoma (RMS) samples, 18 neuro-
blastoma (NB) samples, 29 Ewing's sarcoma (EWS) samples, and 11
Burkitt's lymphoma (BL) samples. From 83 samples, 63 samples
(RMS:20, NB:12, EWS:23, BL:8) were used for training. The remaining
20 samples (RMS:20, NB:12, EWS:23, BL:8) were used for blind testing
of the system. A subset of six genes was identified by the proposed
method from which three genes were already identified in the litera-
ture. The Clone id 1435862 was identified as an informative gene in
[17] or the 812105 and 244618 were identified in [19]. The expression
levels of four highly expressed genes are demonstrated in Fig. 4.
Moreover, the performance of the classifiers using the identified subset
of genes is reported in Table 4. Using this subset, the SVM and KNN
were suited well on training samples with zero misclassified rate.
However, on testing samples, the KNN and Naïve Bayes achieved the
perfect performance. The SVM had three misclassified samples from
three tumor classes (EWS:1, BL:1, RMS:1) in test data. Overall, the KNN
performed best using the identified genes even thought that the NBY
obtained best LOOCV result with only three misses.

3.4. Comparison with other competitive methods

The performance of the proposed algorithm was compared with
some relevant state-of-the-art methods. Table 5 demonstrates the pre-
diction accuracy of the best-identified genes against the best-identified
genes of the comparing methods of the literature. Whereas in prostate
cancer dataset, the proposed method achieved the highest reported
accuracy with a significantly lower number of genes, it significantly

Table 5
Comparing the performance of MOBBA-LS with the literature methods.

Dataset Method Accuracy Reference

Leukemia Filter 100(30) [47]
Hybrid approach
LOOCV

97.06(3)
95.88(3)

[21]

Hybrid 100(5) [30]
PLSVIP
PLSVEG

100(9)
100(8)

[48]

SVM
KNN
NBY

83.3(3)
97.2(3)
97.2(3)

[19]

mRMR-ABCs
GBC

100(4)
100(8)

[17]

Clustering 100(10) [40]
IDGA-F-SVM 100(15) [26]
IDGA-L-NBY 97.7(8.2)
IDGA-F-KNN 98.1(13.7)
MOBBA-LS
SVM
KNN
NBY

97.1(3)
100 (3)
100(3)

Proposed method

Prostate MRMR 95.60 [49]
Embedded 97.0(30) [50]
Filter 95.2(30) [47]
Hybrid approach 96(8) [20]
Clustering 94.71(10) [40]
IDGA-F-SVM 96.3(14) [26]
IDGA-F-NBY 93.4
IDGA-F-KNN 95.6
MOBBA-LS
SVM
KNN
NBY

94.1(6)
97.1(6)
97.1(6)

Proposed method

SRBCT Hybrid approach
LOOCV

100(6)
96.04

[21]

Hybrid 100(8) [30]
PLSVIP
PLSVEG

100(24)
100(15)

[48]

SVM
KNN
NBY

96.4(6)
97.6(6)
97.6(6)

[19]

mRMR-ABCs
GBC

100(6)
95.36(6)

[17]

IDGA-F-SVM 100(18) [26]
IDGA-F-NBY 97.9(29)
IDGA-F-KNN 97.8(19)
MOBBA-LS
SVM
KNN
NBY

85(6)
100(6)
100(6)

Proposed method

DT stands for Decision Tree classifier, NBY for Naïve Bayes, KNN for K-nearest-neighbor.

Table 6
The resulting p-values of Friedman test.

Methods NSGA-II MOBBA-LS

BBA 0.1416 0.0222
NSGA-II – 0.7300
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outperformed the literature methods over leukemia dataset with perfect
prediction accuracy using only three biomarkers. However, only the
method of [17] has the closest performance with ours; with four genes
(M31523 at, X62320 at, X66401 cds1 at, M92287 at) and the same ac-
curacy. In SRBCT, the proposed method repeated the perfect results of
the literature. We believe that the most remarkable result of our ap-
proach concerns the Leukemia dataset where the proposed algorithm
satisfied both objectives, i.e. the tiny number of genes and the perfect
prediction accuracy. However, the MOBBA-LS attained a comparable
performance with the previous studies in other datasets. The time
complexity of MOBBA-LS was also studied and compared with the latest
binary BA [32] and NSGA-II by allowing each algorithm to progress in
five minutes in 10 independent runs over four datasets. The Friedman
test statistically corroborated (see Table 6) that MOBBA-LS outperforms
BA (under the significance level of 0.05) while having a competitive
complexity with NSGA-II that is the most efficient multi-objective al-
gorithm (see Supplementary materials 1 for the results of running
times).

4. Concluding marks and future works

The experimental results revealed new combinations of important
biomarkers concomitant with the development of three challenging
cancers. The explored genes could be further analyzed by investigating
their possible role in other diseases. Also, the performance of proposed
algorithm could be improved by designing intelligent walk rate and
injection probability. The time complexity could also be reduced by
manipulating the stopping criterion, for instance, by lowering the
number of iterations, and instead, focusing on some ad-hoc analysis
upon the final subsets of genes. Furthermore, it would be an invaluable
future work to re-implement the algorithm on hardware platform using
reconfigurable field programmable gate array (FPGA) such as [54].
Also, it could be implemented on parallel frameworks to dispense its
computational burden by getting benefit from distributed computing in
cloud environment.
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