	CÔTE D'AZUR	Why do we model?
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Symbolic Al & biol. networks Jean-Paul Comet Intro cont. mod. Discretisation Diff.Eq. Sol. Dyn. Consistency Fonct. CTL Extraction	 What is a model? the reference to be imitated (photographer's model, model organism model). result of this imitation = representation of an object → symbol system (textual, graphical, math, logical) a good model = composition rules for addressing the consequences of the proposed model (reasoning). Integrate a wide range of knowledge Abstract to understand Revise contradictory preconceptions Suggest "wet" experiments Minimize costs and numbers Perform "<i>in silico</i>" experiments that would be impossible "<i>in vivo</i>" or "<i>in vitro</i>".
Genetic regulation networks	CÔTE D'AZUR	Genetic regulation networks
 Advances in genomics the genome's essential role in the functioning of an organism Proteins Participate in the body's various functions Transcription : DNA → RNA Translation : RNA → Proteins Regulation of macromolecule synthesis Regulation network = system complex One have local rules, one looks for global behavior Interaction : positive/negative regulation + certain knowledge : activation thresholds Incompatibilities of simultaneous interactions ? (expertise) From 2 different configurations : Different behaviors Epigenesis (epi : on, above) 	Symbolic Al & biol. networks Jean-Paul Comet Intro cont. mod. Discretisation Diff.Eq. Sol. Dyn. Consistency Fonct. CTL Extraction	 Interactions between entities of interest : genes, proteins Molecular model : set of known relationships Genes / regulatory proteins Positive / negative effects Post-translational regulation is often omitted A protein can have several targets Self-regulation possible Graph modeling Nodes : biological entities Arcs : interactions
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><image/><image/></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	 Symbolic Al for complex biological networks: Differential Models vs Discrete Models GB5 BIMB - year 2024-2025 GB5 BIMB - year 2024-2025 Complex Regulatory Networks (n.1) Symbolic Al for Complex Regulatory Networks (n.1) Jean-Paul Comet (projet Bioinfo Formelle) Université Côte d'Azur 13 novembre 2024 Complex Regulation networks Porteins Porteins Parations: DNA - Proteins Regulation of macromolecule synthesis Regulation network = system complex Interaction : positive/negative regulation + certain howledge : activation thresholds Incompatibilities of simultaneous interactions ? (expertise) Regulation network = system complex Regulation firmen configuration Proteins Piterent behavior Piterent behavior

CÔTE D'AZUR Static aspects

Symbolic AI &

biol. networks

CÔTE D'AZUE

biol. networks

Intro

D'AZUR

• Static aspects well taken into account (Mol. Bio.)

- Each node is assigned a numerical value (concentration)
- Temporal evolution of the system : dynamics
- Another way to study the organism

CÔTE D'AZUR Initial approaches

Symbolic AI & biol. networks

Intro

- Quantum model (M. Delbrück, 1935) : study of mutation frequencies (rays) high-energy barrier separating 2 gene states (mutation).
- Epigenetic landscape (C.H. Waddington, 1940)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - - - のへで

• Systems of differential equations : since 1960

- complex systems and biology (since 1950)
- Biochemical kinetics (Michaelis-Menten)

From differential equations to discrete abstractions

- oscillators, biological switches, delay equations ...
- Phage group (Delbrück) : qualitative reasoning
- 1970s : Boolean approach (R. Thomas)
 - each entity : on / off
 - qualitatively captures the dynamics of Diff. systems.
 - importance of feedback circuits (system behavior)
 - multistationarity : positive feedback circuit required
 - homeostasis : necessary negative feedback circuit (equilibrium state towards which the system converges or around which it oscillates)
- 1990s : discrete approach (with all stationary states)
 - advantage : biological data are rarely quantitative

CÔTE D'AZUR

Symbolic AI & biol. networks

Discretisation

Phase space discretization (2)

- $x_u < \Theta_{uv}$, *u* is present at too low a level to regulate *v*
- $x_u > \Theta_{uv}$, *u* is in sufficient quantity to regulate *v*
- $x_u = \Theta_{uv}$, the function *I* is not defined, we don't know whether u regulates or not v

u participes to the synthesis of v if

- if *u* is an activator of *v* and if $x_u > \Theta_{uv}$
- if *u* is an inhibitor of *v* and if $x_u < \Theta_{uv}$

Absence of an inhibitor = presence of an activator

• Notion of a gene's **Resource** : the set of regulators involved in its synthesis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

CÔTE D'AZUR Phase space discretization (3)

Symbolic AI & biol. networks

Discretisation

- Outgoing thresholds are ordered
- Abstract thresholds are the ranks of thresholds
- Discretization function :

$$d_u(x_u) = \left\{egin{array}{ccc} q & si & \Theta^q_u < x_u < \Theta^{q+1}_u \ s^q_u & si & x_u = \Theta^q_u \end{array}
ight.$$

- The discretization function is increasing
- The synthesis rate is then equal to :

$$F_v(x) = k_v + \sum_{u \in \operatorname{ressources}(v)} k_{uv}$$

CÔTE D'AZUR	Qualitative Regulatory Network	
Symbolic AI & biol. networks		Symbol biol. ne
Jean-Paul Comet Intro cont. mod. Discretisation Diff.Eq. Sol. Dyn. Consistency Fonct. CTL Extraction	 Definition : A qualitatif regulatory Network is a directed graph G = (V, E) V : set of biological entities of interest E ⊆ V × V : set of interactions each arrow (u, v) is labelled with a couple (α_{uv}, q_{uv}) ∈ {+, -} × {0, 1,, b_u} b_u is the number of outgoing thresholds ({Θ_{uw}, w ∈ G⁺(u)}) ∀m ∈ {1,, b_u}, ∃v ∈ G⁺(u) such that q_{uv} = m For G = (V, E) a QRN, there exists a finite number of qualitative RN Enumeration when i → j₁, i → j₂,, i → j_n, choose b_i ≤ n associate with each interaction, a outgoing threshold 	Jean- Cor Intro cont. m Discreti Diff.Eq. Sol. Dyn. Consist Fonct. CTL Extract

CÔTE Different types of states D'AZUR c Al & works • Quantitative state : $(x_v)_{v \in V}$ with $x_v \in \mathbb{R}^+$ • Qualitative state : $(x_v)_{v \in V}$ with $x_v \in \{0, 1, 2, \dots, b_v\}$ • A qualitative variable is said **singular** when it corresponds to the discretisation of a threshold • It is said **regular** in the other case • A state is said **singular** when it has a singular coordinate

CÔTE The different types of states (example)	CÔTE Reminders on diff. eq. : 1st order Linear Diff. Eq.	
Symbolic Al & biol. networks Jean-Paul Comet	Symbolic Al & biol. networks Jean-Paul Comet• $x \to a(x), x \to b(x), x \to c(x) : 3$ continuous function on $I \subset \mathbb{R}$. 1st Order Linear Differential Equation :	ins
Intro cont. mod. Discretisation Diff.Eq. Sol. Dyn. Consistency Fonct. CTL Extraction 1, - v	regular statesintro cort. mod. $a(x).y' + b(x).y = c(x),$ $x \in I$ DiscretisationDiff.Eq. Sol.One defines $Y = y - y_0$ • One gets : $a(x).Y' + b(x).Y = 0$ eq. without 2^d met • one separates the variables : $\frac{Y'}{Y} = -\frac{b(x)}{a(x)}$ $Y(x)$ and $a(x)$ not number • The general solution is then $Y = k.e^{-A(x)}$ where $A(x)$: primitive of $b(x)/a(x)$ and k : constantSpace of continuous states• The solution with a second member is obtained by add y_0 : $y = y_0 + k.e^{-A(x)}$ The value k depends on the initial condition.	rmber المال ding
CÔTE DAZUR Inside a regular domain	CÔTE Search for a particular solution : variation of constants	
Symbolic AI & biol. networks Jean-Paul Comet Intro Cont. mod. System of independant equations – For variable $x'_{v} + \lambda_{v}x_{v} = \mu$ • particular solution : $x_{v}(t) = \frac{\mu}{t}$	x_v : x_v : $y_{\text{biol. networks}}$ y_{conet} $y_{$	
Discretisation Diff.Eq. Sol. Dyn. Consistency Fonct. CTL Extraction $X_{V}(t) = \lambda_{v}$ • Solution of the equation without second member: $X(t) = k.e^{-\lambda_{v}.t}$ • Solution of the equation with second member: $x(t) = \frac{\mu}{\lambda_{v}} + k.e^{-\lambda_{v}.t}$ • Computation of k – let us suppose $x_{0} = \frac{\mu}{\lambda_{v}} + k$ $k = -(\frac{\mu}{\lambda_{v}} - x_{0})$	er Diff Eq. Sol Dyn. Consistency $e \times (0) = x_0$ $e \times (0) = x_0$	=0 1ber '.

CÔTE D'AZUR

wmbolic AI &

biol. networks

General solutions of a linear diff. eq. of 1^{er} order

Constant variation method

$$k'(x) = \frac{c(x)}{a(x)\cdot Y} = \frac{c(x)}{a(x)} \cdot e^{A(x)}$$

where A(x) : primitive of b(x)/a(x)

Denoting B(x) a primitive of the function
 ^{c(x)e^{A(x)}}/_{a(x)}
 , the set
 of solutions is
 ^(x)/_{a(x)}
 ^(x)/_{a(x)}

$$k(x) = B(x) + C^{st}$$

• The general solution can then be written as

 $f(x) = (B(x) + C)e^{-A(x)}$

• That is, finally

$$f = \exp\left(-\int \frac{b(x)}{a(x)} dx\right) \left\{ C + \int \frac{c(x)}{a(x)} \exp\left(\int \frac{b(x)}{a(x)} dx\right) dx \right\}$$

COTE Consequences

Symbolic AI & biol. networks Jean-Paul Comet Intro

- Solution : $x_v(t) = \frac{\mu_v}{\lambda} (\frac{\mu_v}{\lambda} x_0^v).e^{-\lambda t}$ • Derivative $x'_v(t) = (\mu_v - \lambda . x_0^v).e^{-\lambda t}$
- The sign of derivatives does not change over time
 ⇒ monotonic trajectories on each axis.

 $\overrightarrow{v(t_1)} = ((\mu_1 - \lambda . x_0^1), (\mu_2 - \lambda . x_0^2), \dots, (\mu_n - \lambda . x_0^n))^t \times e^{-\lambda t_1}$ $\overrightarrow{v(t_2)} = ((\mu_1 - \lambda . x_0^1), (\mu_2 - \lambda . x_0^2), \dots, (\mu_n - \lambda . x_0^n))^t \times e^{-\lambda t_2}$

• Particular cases : $\lambda_{v} = \lambda, \forall v \in V$

 \implies The trajectories are straight

= $\overrightarrow{v(t_1)}.e^{-\lambda(t_2-t_1)}$

Fonct.

Extraction

COTE Inside a regular domain

Symbolic AI & biol. networks

ymbolic AI &

- System of independent equations For the variable x_{ν} : $x'_{\nu} + \lambda_{\nu} x_{\nu} = \mu$
 - Solution of equation without second member $x' + \lambda_v x = 0$: $X(t) = k_e e^{-\lambda_v \cdot t}$

- $\begin{aligned} x(t) &= (C_1 + \mu \int e^{\lambda_v t} dt) \cdot e^{-\lambda_v \cdot t} \\ &= (C_1 + \frac{\mu}{\lambda_v} (e^{\lambda_v t} + C_2)) \cdot e^{-\lambda_v \cdot t} \\ &= \frac{\mu}{\lambda_v} + C \cdot e^{-\lambda_v \cdot t} \end{aligned}$
- Computation of C Let us suppose $x(0) = x_0$

 $x_v(t)$

$$\begin{array}{rcl} x_0 & = & \frac{\mu}{\lambda_v} + C \\ C & = & -(\frac{\mu}{\lambda_v} - x_0) \end{array}$$

$$=\frac{\mu}{\lambda_{v}}-(\frac{\mu}{\lambda_{v}}-x_{0}).e^{-\lambda_{v}t}$$

COTE Definition of local interaction graph

• $i \stackrel{+}{\rightarrow} j$ if the increase in *i* has a + influence on the evolution of *j*, in other words, the increase of *i* leads to an increase in $\frac{dx_j(t)}{dt}$.

$$i \stackrel{+}{\rightarrow} j$$
 if $\frac{\partial^2 x_j(t)}{\partial t \partial x_i} > 0$

i → j if the increase in i has a - influence on the the evolution of j, in other words, the increase of i leads to an decrease in dx_j(t)/dt

$$i \xrightarrow{-} j$$
 if $\frac{\partial^2 x_j(t)}{\partial t \partial x_i} < 0$

• No interaction if
$$\frac{\partial^2 x_j(t)}{\partial t \partial x_i} = 0$$

• The local interaction graph of the system in

$$J(x) = \begin{pmatrix} \frac{\partial^2 x_1}{\partial t \partial x_1} & \cdots & \frac{\partial^2 x_1}{\partial t \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 x_n}{\partial t \partial x_1} & \cdots & \frac{\partial^2 x_n}{\partial t \partial x_n} \end{pmatrix}$$

もちゃんぽう ふかく ボット 白マ

CÔTE D'AZUR Svmbolic AI & biol. networks

Local Interaction Graph – PLDE

• Inside the regular domains :

$$\begin{array}{rcl} \frac{\partial^2 x_i(t)}{\partial t \partial x_i} &=& -\lambda_i \\ \frac{\partial^2 x_i(t)}{\partial t \partial x_i} &=& 0 \end{array}$$

• on the edge of regular states

$$\begin{array}{lll} \frac{\partial^2 x_i(t)}{\partial t \partial x_j} &= +\infty & \text{si} & \mu_2 > \mu_1 \\ \frac{\partial^2 x_i(t)}{\partial t \partial x_j} &= -\infty & \text{si} & \mu_2 < \mu_1 \end{array}$$

- Degradation \neq an interaction (we don't consider it)
- Interactions are only visible at points of discontinuity.
- Global Interaction Graph $\equiv \bigcup_{x \in \Omega} G(x)$

CÔTE D'AZUR Solutions for regular states (2)

biol. networks • One has $\lim_{t\to\infty} x(t) = \varphi_v(x^0), \forall v \in V$

Symbolic AI &

• All domain states evolve towards the same constant state :

 $\Phi(x^0) = (\varphi_v(x^0))_{v \in V}$

called focal point, attractor, image, target...

- 2 possible cases :
 - $\Phi(x^0)$ belongs to the same domain, $\Phi(x^0)$ corresponds to a continuous stationary state,
 - All trajectories tend towards $\Phi(x^0)$
 - $\Phi(x^0)$ does not belong to the same domain
 - The trajectories are in the direction of $\Phi(x^0)$
 - Once outside the domain, the focal point changes.
 - $\Phi(x^0)$ may never be reached
 - Waiting time computation in regular state

CÔTE D'AZUR Solutions for regular states (1)

Symbolic AI &

biol. networks

- Consider a regular state and one of its variables x_{μ} .
- For any continuous value in the same domain, the synthesis rate is identical
- The diff. eq. system has a solution :
 - If initial state is x^0 , solution of the system is

$$x_{\nu}(t) = \varphi_{\nu}(x^0) - (\varphi_{\nu}(x^0) - x_{\nu}^0)e^{-\lambda_{\nu}t}$$

• with :

$$\varphi_{v}(x) = \frac{F_{v}(x)}{\lambda_{v}} = \frac{\sum_{u \in G^{-}(v)} \tilde{I}_{\Theta_{uv}}^{\alpha_{uv}}(x_{u})}{\lambda_{v}}$$

- $\varphi_{\nu}(x^0)$ plays the role of attractor
- Rq 1 : $F_v(x)$ is constant ($F_v(x) = F_v(x^0)$)
- Rq 2 : $\varphi_v(x)$ is constant inside a given domain.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

CÔTE D'AZUR	Solutions for regular states (2)
Symbolic AI & biol. networks	
Jean-Paul Comet	$ullet$ One has $\mathit{lim}_{t ightarrow\infty}x(t)=arphi_{ u}(x^0), orall u\in V$
	• All domain states evolve towards the same constant state :

$$\Phi(x^0) = (\varphi_v(x^0))_{v \in V}$$

called focal point, attractor, image, target...

• 2 possible cases :

The focal point is in the current domain. The trajectories don't leave the domain : \Rightarrow no output

イロト イロト イミト イミト ミニ のくぐ

CÔTE D'AZUR

Svmbolic AI &

biol. networks

Solutions for regular states (2)

- One has $lim_{t
 ightarrow \infty} x(t) = arphi_{v}(x^{0}), orall v \in V$
- All domain states evolve towards the same constant state :

 $\Phi(x^0) = (\varphi_v(x^0))_{v \in V}$

called focal point, attractor, image, target...

• 2 possible cases :

The focal point is in the domain D_3 . The trajectories do leave the domain : \Rightarrow to the North

イロト イロト イミト イミト ミニ のくぐ

COTE Solutions for regular states (2)

Symbolic AI & biol. networks

- One has $\mathit{lim}_{t o \infty} x(t) = arphi_{v}(x^{0}), orall v \in V$
- All domain states evolve towards the same constant state :

$$\Phi(x^0) = (\varphi_v(x^0))_{v \in V}$$

called focal point, attractor, image, target...

• 2 possible cases :

The focal point is in the domain D_2 . The trajectories do leave the domain : \Rightarrow to the Est

・ロト・(中・・川・・(中・・ロ・

CÔTE Solutions for regular states (2)

Symbolic AI & biol. networks

• One has $lim_{t \to \infty} x(t) = \varphi_v(x^0), \forall v \in V$

• All domain states evolve towards the same constant state :

 $\Phi(x^0) = (\varphi_v(x^0))_{v \in V}$

called focal point, attractor, image, target...

• 2 possible cases :

The focal point is in the domain D_4 . The trajectories do leave the domain : \Rightarrow to the Est \Rightarrow to the North

CÔTE State graph construction

Symbolic AI & biol. networks

- Synchronous state graph :
 - From a state, we go directly to its focal point
 - Each focal point φ_v(x⁰) depends only on the predecessors of v = the set of predecessors that helps it express itself
 - $R(v, x^0)$ = the set of predecessors who help it express itself
 - Parameterization : $\varphi_v(x^0) = K_{v,R(v,x^0)}$
 - Transition table :

	X			X			
<i>x</i> ₁	<i>x</i> ₂		x _n	X1	X_2		X _n
0	0		0	$X_1(x)$	$X_2(x)$		$X_n(x)$
0	0		1	$X_1(x)$	$X_2(x)$		$X_n(x)$
0	1		0	$X_1(x)$	$X_2(x)$		$X_n(x)$

where $X_1((0, 1, 0, ..., 0)) = \varphi_{x_1}((0, 1, 0, ..., 0)) = K_{x_1, R(x_1, (0, 1, ..., 0))}$

CÔTE D'AZUF D'AZUR

Symbolic AI &

biol. networks

Continuous and discrete models : consistency (3)

Proposition 2 : consistency of transitions

- Let's consider a continuous model s.t. a trajectory starting from D(q) reaches the hyperplane separating D(q) from an adjacent domain D(q'), then $q \rightarrow q'$ is a transition of the asynchronous discrete model.
- Let's consider a discrete model. There are continuous models s.t. for any successor a' of a of the discrete model, there is a trajectory that reaches from D(q) the hyperplane separating D(q) from another domain D(q').

Proof:

- 1st part : there is only one variable that changes between q and q'. The asynchronous graph construction takes into account that the focal point is on the other side of the hyperplane.
- 2nd part : let's consider a continuous model s.t. $\forall u \in V, \lambda_u = \lambda$ and an initial state $x^0 \in D(q)$. The trajectory from x^0 is linear. Let q' be a successor of q. We have $\varphi(q) \notin D(q)$. Let's choose a point x^1 on the edge of D(q) belonging to the hyperplane between D(q) and D(q'), with a single variable on a threshold. Let's draw a straight line through x^1 and $\varphi(q)$. The trajectory starting from a point on this line that belongs to D(q), reaches x^1 . ・ロト・日本・モト・モー・ショー シック

CÔTE Stability of a singular state (1)D'AZUR

Symbolic AI & biol. networks

• At a singular state, the Diff. Eq. Syst. is not defined.

- Its focal point is included in the zone defined by the focal points of the adjacent regular states.
- **Definition** : A singular state is said **stationary** if it is included in that zone.
 - \Rightarrow Regular variables must be stable
- Computation in $O(2^{\text{#singular variables}}) = O(2^{\text{#variables}})$
- If all outgoing thresholds are different, and if Snoussi
 - each singular variable is a singular resource of at most one other variable.
 - We therefore look at the « max image » and « min image » corresponding to the regular states with (and without) these uncertain resources
 - Computation in O(#singular variables) = O(#variables)

CÔTE D'AZUR Continuous and discrete models : consistency (4)

• Thus :

Symbolic AI & biol. networks

- All regular stationary states are represented
- All traces of continuous systems are present
- False reciprocal (a discrete trajectory does not necessarily correspond to a continuous trajectory)
- Infinity of continuous models \Rightarrow finite number of discrete discrete models

= 0)

 $\omega(2,0)$

-•φ(0, 0)

CÔTE D'AZUR Stability of a singular state (2)

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● の Q @

Consistency

COTE Stability of a singular state (3)

• **Proposition 3 :** Let x be a singular state and v a variable. If for each $u \in G^-(v)$, $x_u \neq \theta_{uv}$, then $\varphi_v(q)$ is constant for any neighboring regular state q.

« Given a qualitative state q, if all the predecessors of the variable v are not on their activation thresholds on v, the component v of the focal point is constant for all qualitative states neighboring q »

Proof :

For each $u \in G^-(v)$, one has

 x_{μ} régular or

 $x_u = \theta_{uv'} \neq \theta_{uv}$ with $v' \in G^+(u)$

- 1st case : $\forall q$ regular state, neighbour of de x, one has $q_u = x_u$ (Cf previous page right). The regulation of $u \rightarrow v$ does not change.
- 2d case : for all q, q' regular states, neighbours of x, q_u and q'_u belong to $\{\theta_{uv'} - 1, \theta_{uv'}\}$ and $\theta_{uv'} \neq \theta_{uv}$. q_u and q'_u are on the same side of θ_{uv} .

Consequently, for each (q, q') of N(x), one has $\omega_v(q) = \omega_v(q')$, that implies $\varphi_v(q) = \varphi_v(q')$.

CÔTE Positifs / negative circuits – Circuit Fonctionnality

- Positive / negative circuits :
 - A circuit is said positive if each circuit's element has a positive influence (direct on indirect) on itself
 - A circuit is said negative if each circuit's element has a negative influence (direct on indirect) on itself
 - Lemma :
 - a circuit is positive if it contains an *even number* of negative interactions,
 - it is negative in other cases
- A circuit is said <u>fonctionnal</u> if it leads to a multistationnarity (positive circuits) or to a homeostasis (negative circuits).
 - Influence of negative circuits :
 - Oscillation (damped or not) of each variable

イロト イヨト イヨト イヨト ヨー のくで

- \implies Homeostasis
- Influence of positive circuits :
 - when we are above, we stay there
 - when we are down, we stay down
 - \implies Multistationarity

COTE Stability of a singular state (4)

CÔTE Charasteristic States (1)

Symbolic AI & biol. networks

- A singular state is said characteristic of a circuit if
 - The regular components are the variables outside of the circuit
 - The singular variables
 - are the variable of the circuit
 - each singular variable is on the threshold of the interaction on its successor in the circuit

cont. n

Symbolic AI &

biol. networks

Diff Ea

Sol.

Dyn.

Symbolic AI &

biol. networks

biol. networks

Charasteristic States (2)

Proposition 4 :

A stationnary singular state is characteristic of a circuit

• Proof :

Let x be a singular state and consider $S = \{v \text{ singulière}\}$. If x is stationnary, one has for each $v \in S$:

 $\min_{q \in N(x)} \varphi_{v}(q) < x_{v} < \max_{q \in N(x)} \varphi_{v}(q)$

By proposition 3, if for all $u \in G^-(v)$ one has $x_u \neq \theta_{uv}$ then

$$\min_{q\in N(x)}\varphi_{v}(q)=\max_{q\in N(x)}\varphi_{v}(q)$$

and x is not stationary.

Thus v has at least one predecessor u st $x_u = \theta_{uv}$, and thus $u \in S$. Moreover, as $\theta_{uv'} \neq \theta_{uv}$ for all $v' \in G^+(u)$, the successor v of u is the unique one st $x_u = \theta_{uv}$. Each variable v of S has thus a unique predecessor u in S st $x_u = \theta_{uv}$.

・日マ・四マ・山下・山下・山下・山下・

COTE Use of Charasteristic States

- We know that the system is multi-stationary / homeostatic
 - Using <u>Theorem</u>: A circuit is functional if one of these characteristic states is stationary
 - Using **Property 4**: among singular states, only characteristic states can be stationary.
 - Consider only the parameters which lead to a dynamic having a characteristic state (of a circuit of the right sign) stationary
- If we know a characteristic stationary state : Using Property 5 : constraints on parameters
- Acceleration of the search for focal points : **Property 3.**
- Property :
 - Necessary condition to have multistationarity : a positive circuit is functional
 - *m* functional positive circuits generate 3*m* stationary states of which 2*m* are not characteristic states

Charasteristic States (3)

• Proposition 5 :

Symbolic AI &

biol. networks

Fonct.

Let *G* be a regulation graph containing a circuit $C = v_1, ..., v_n$. Consider a model and a characteristic state *x* of *C*. Let $q \in N(x)$. If *x* is stationary, then we have :

$$\left\{ \begin{array}{ll} K_{v,\omega_v(q)} = q_v & \text{for all } v \notin C \\ K_{v_i,\omega_{v_i}(q) \setminus \{v_{i-1}\}} < \theta_{v_i v_{i+1}} \le K_{v_i,\omega_{v_i}(q) \cup \{v_{i-1}\}} & \text{for all } i \in \{1,\ldots,n\} \end{array} \right.$$

• Proposition 6 :

Let G be a regulation graph, a circuit $C = v_1, ..., v_n$ and a characteristic state q of C. If a discrete model M(G) satisfies the Snoussi constraints and if

$$\left\{ \begin{array}{ll} K_{v,\omega_v(q)} = q_v & \text{for all } v \notin C \\ K_{v_i,\omega_{v_i}(q) \setminus \{v_{i-1}\}} < \theta_{v_i v_{i+1}} \leq K_{v_i,\omega_{v_i}(q) \cup \{v_{i-1}\}} & \text{for all } i \in \{1,\dots,n\} \end{array} \right.$$

then, for any continuous model of M(G), there exists a unique stationary characteristic state x of C st

$$d_u(x_u) = q_u$$
 for all $u \notin C$.

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ≧ ∽)९0

COTE Stationnary characteristic States

- Symbolic AI & biol. networks
- Adjacent states of a characteristic state :
 - Minimal adjacent state : each variable in the circuit is not a resource of its successor in the circuit
 - Maximum adjacent state : each variable in the circuit is a resource of its successor in the circuit
- The circuit *C* is functional if there exists a characteristic state included in the domain defined by the focal points of the adjacent states min and max

All these theorems are only valid under constraints of distinct outgoing thresholds

What should we do if we want to relax this constraint?

Use other information to constrain possible dynamics.

COTE Time has a tree structure...

COTE CTL = Computational Tree Logic

• Atoms = comparisons : $(x = 2), (y > 0) \dots$ Logical Connectives = $(\varphi_1 \land \varphi_2), (\varphi_1 \Rightarrow \varphi_2) \dots$ Temporal modalités = made de 2 characters :

first character	second caracter	
A = for All path choices	X = neXt state	
	F = for some future state	
E = there Exists a choice	G = for all future state (Globally)	
	U = Until	

• Examples :

t + 1

 $EX(\varphi)$

 $EG(\varphi)$

Symbolic AI &

oiol. networks

- AX (y=1): the concentration level of y belongs to the interval 1 in all states directly following the considered initial state.
- EG(x=0): there exists at least one path from the considered initial state where x always belongs to its lower interval.

 $EF(\varphi)$

 $E[\varphi U\psi]$

CÔTE Semantics of Temporal Connectives (1)

 $AX(\varphi)$

 $AG(\varphi)$

CÔTE D'AZUR

biol. networks

 $EX \varphi : \varphi$ can be satisfied in a next state $AX \varphi : \varphi$ is always satisfied in the next states eventually in the Future :

 $EF\varphi:\varphi$ can be satisfied in the future

Temporal Connectives of CTL

 ${\it AF}\varphi:\varphi$ will be satisfied at some state in the future Globally :

 $\textit{EG}\varphi:\varphi$ can be an invariant in the future

 ${\it AG}\varphi:\varphi$ is necessarilly an invariant in the future

Until :

- $E[\psi U\varphi]$: there exist a path where ψ is satisfied until a state where φ is satisfied
- $\begin{array}{l} {\cal A}[\psi U\varphi]:\psi \text{ is always satisfied until some state where } \varphi \text{ is satisfied} \end{array}$

 $A[\varphi U\psi]$

 $AF(\varphi)$

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○ ○

・ロト・日本・モト・モート ヨー りへぐ

▲□▶▲□▶▲∃▶▲∃▶ = のへで

COTE Model Checking for CTL

Computes all the states of a discrete state graph that satisfy a given formula : { $\eta \mid M \models_{\eta} \varphi$ }. Idea 1 : work on the state graph instead of the path trees.

Idea 2 : check first the atoms of φ and then check the connectives of φ with a bottom-up computation strategy. Idea 3 : (computational optimization) group some cases together using BDDs (Binary Decision Diagrams). Example : $(x = 0) \implies AG(\neg(x = 2))$

Example

Symbolic AI &

biol. networks

CÔTE D'AZUR

biol. networks

Obsession : travel the state graph as less as possible

... one should **travel** <u>all</u> the paths from any green box and check if successive boxes are green : *too many boxes to visit*. Trick : $AG(\neg(x = 2))$ is equivalent to $\neg EF(x = 2)$ start from the red boxes and follow the transitions backward.

Consistency of the epigenetic hypothesis $i = \frac{2}{or 1} + \frac{2}{exsA} + \frac{2}{exsD}$

toxins

- 2 possible stable states :
 - $(\texttt{EXsA} = 2) \Longrightarrow \texttt{AX} \texttt{AF}(\texttt{EXsA} = 2)$
 - $(EXsA = 0) \implies AG(\neg(EXsA = 2))$
- Question 1, consistency : proved by Model checking 8 models among 648, automatically extracted.
- Question 2, and in vivo?

COTE Formula = models-experiments link

Formulas are valid or invalid in relation to a set of given traces starting from a given state

They can be compared

Symbolic AI &

biol. networks

- with all the possible traces of the theoretical model
- with all known experiments

\Rightarrow They therefore provide the link between models and biological objects

・ロト・日本・モー・モー・シックペート

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○ ○

and

CÔTE D'AZUR A simple example

Symbolic AI &

biol. networks

CÔTE D'AZUF

biol. networks

D'AZUR

Modification de phenotype, terminology :

- genetic modification : heritable and non-reversible (mutation)
- epigenetic modification : heritable but reversible
- Adaptation : non-heritable and reversible

• Biological questions :

- Is cytotoxicity (and/or mucoidism) in the bacterium Pseudomonas aeruginosa epigenetic in nature?
- $[\longrightarrow cystic fibrosis]$

Validation of the epigenetic hypothesis

- Question 2 = validate the stability of the two states in vivo
- Non-mucoid state : $(AlgU = 0) \Rightarrow AG(AlgU < 2)$ A bacterium with its basal level of AlgU will not become mucoid spontaneously : validated on a daily basis
- Mucoid state : $(AlgU = 2) \Rightarrow AX AF(AlgU = 2)$
- Working hypothesis You can take AlgU to saturation, but you can't measure it
- Experiment design : *pulse of AlgU then after a transitional* phase, test whether mucus production persists (\iff check for hysteresis) (\iff vérifier une hystérésis)
- Experimental designs can be generated automatically

CÔTE D'AZUR Mucoidy in pseudomonas aeruginosa

- \rightarrow The positive cycle is fonctionnal despite the negative cycle, with a non mucoid state and another mucoid state
- \rightarrow An external signal (produced by the diseased lung) could possibly cause AlgU to move from the low state to the high state.
- \rightarrow Selection pressure *subsequently* favours mutants in a mucosal environment \Rightarrow New prospects for therapy

CÔTE D'AZUR Test $(AlgU = 2) \Rightarrow AG(AlgU = 2)$ Symbolic AI & biol. networks

• AlgU = 2 is not directly verifiable but mucus = 1 is

• (... computer-aided proof ...)

Experiment : $(AlgU = 2) \Rightarrow AF AG(mucus = 1)$

<ロト < 団 > < 三 > < 三 > 、 三 > のへの

CÔTE D'AZUR $(AlgU = 2) \Rightarrow AF AG(mucus = 1)$

			k
$A \Rightarrow B$	True	False	
True	True	False	
False	True	True	
			2

arl Popper : alidate = Attempt for refutation o A false is useless o start with a pulse...

▲□▶▲□▶▲□▶▲□▶ = うくぐ

The pulse enables the initial state to be reached AlgU = 2. Otherwise, we would have had to establish a lemma : $(AlgU = 2) \Leftrightarrow (something operable)$

General Form of a test

(something operable) \Rightarrow (something <u>observable</u>)

CÔTE D'AZUE Selection of experimental designs D'AZUR

• $\Phi = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$ and M =

 $Th(H) = \{ \psi \mid \Phi, M \models \psi \}$ • Observable Formulae : Φ_{obs}

• Problem : $\Phi_{obs} \cap Th(H)$ is infinite

 \rightarrow Choose "revelators" in $\Phi_{obs} \cap Th(H)$

• Set of formulae, consequences of hypothesis :

 $\{\psi \mid \psi \text{ of the form "operable"} \Rightarrow \text{"observable"} \}$

 $\psi_1, \psi_2 \in \Phi_{obs} \cap Th(H)$ such that $\{\psi_1, \psi_2\} \models \Phi$

ourselves to a a fixed number of experiments.

Symbolic AI & biol. networks

Symbolic AI &

biol. networks

CÔTE D'AZUR Software testing techniques

Symbolic AI & biol. networks

Similar Problem = Does a software meet its specification? Infinite possible test scenarios, by selecting revelators Solution = divide into scenario areasAssumed "uniform" behaviors within a domain

- The unfolding of the formula is used to divide the domains
- Probabilisticapproach : we unfold a few, few domains (but large), probabilistic drawing of numerous tests in each domain.
- Deterministic approach : we unfold a lot, small domains, choice of only one test per domain.

99% of bugs are detectable automatically

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣�?

• Ex : 9 models; 5 formulae, min. depth = $log_2(9) = 4$

CÔTE D'AZUR

Symbolic AI &

biol. networks

Choosing an optimal decision tree = NP-complete problem (reduction to 3-DM problem, L. Hyafil & R.L. Rivest [1975])

CÔTE D'AZUF Choose a comprehensive strategy (4)D'AZUR

biol. networks

	Temporal	Coherent
	formulas	models
1	$x = 0 \Rightarrow$	1, 3, 6, 7,
	AXAF(x = 0)	8, 9, 10
2	$x = 2 \Rightarrow$	1, 2, 3, 4,
	AXAF(x = 2)	5, 7, 10
3	$x = 1 \Rightarrow$	1, 3
	AXAF(x = 0)	
4	$x = 1 \Rightarrow$	7, 10
	AXAF(x = 2)	
5	$y = 0 \Rightarrow$	1, 2, 3, 6
	AXAF(y=0)	1, 2, 3, 6

If we don't want to

• to choose a discriminating formula at random.

9

Symbolic AI &

biol. networks

- nor choose a formula that's easy to implement in vivo (costs)
- nor adjust this choice according to intuition,
- nor choose the formula that best cuts M

Using the min-max algorithm to optimize selection :

- determine observable formulas
- (2) limit tree depth (here, depth = 3)
- Ind the tree for which the cost is minimal

イロト イヨト イヨト イヨト ヨー わくぐ

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● の Q @

24242424

max

min

