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Why do we model ?

What is a model ?
the reference to be imitated (photographer’s model, model
organism model)
result of this imitation = representation of an object
→ symbol system (textual, graphical, math.., logical...)
a good model = composition rules for addressing the
consequences of the proposed model (reasoning)

Integrate a wide range of knowledge
Abstract to understand
Revise contradictory preconceptions
Suggest "wet" experiments
Minimize costs and numbers
Perform "in silico" experiments that would be impossible
"in vivo" or "in vitro".

Predictivity
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Genetic regulation networks

Advances in genomics
the genome’s essential role in the functioning of an
organism
Proteins

Participate in the body’s various functions
Transcription : DNA −→ RNA
Translation : RNA −→ Proteins

Regulation of macromolecule synthesis
Regulation network = system complex

One have local rules, one looks for global behavior
Interaction : positive/negative regulation
+ certain knowledge : activation thresholds
Incompatibilities of simultaneous interactions ? (expertise)
From 2 different configurations :

Different behaviors
Epigenesis (epi : on, above)
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Genetic regulation networks

Interactions between entities of interest : genes, proteins
Molecular model : set of known relationships

Genes / regulatory proteins
Positive / negative effects
Post-translational regulation is often omitted
A protein can have several targets
Self-regulation possible

Graph modeling
Nodes : biological entities
Arcs : interactions
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Static aspects

Static aspects well taken into account (Mol. Bio.)

x y

2, +

1, −

1,+

Each node is assigned a numerical value (concentration)
Temporal evolution of the system : dynamics
Another way to study the organism
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Initial approaches

Quantum model (M. Delbrück, 1935) :
study of mutation frequencies (rays) high-energy barrier
separating 2 gene states (mutation).
Epigenetic landscape (C.H. Waddington, 1940)
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From differential equations to discrete abstractions

Systems of differential equations : since 1960
complex systems and biology (since 1950)
Biochemical kinetics (Michaelis-Menten)
oscillators, biological switches, delay equations ...

Phage group (Delbrück) : qualitative reasoning
1970s : Boolean approach (R. Thomas)

each entity : on / off
qualitatively captures the dynamics of Diff. systems.
importance of feedback circuits (system behavior)

multistationarity : positive feedback circuit required
homeostasis : necessary negative feedback circuit
(equilibrium state towards which the system converges or
around which it oscillates)

1990s : discrete approach (with all stationary states)
advantage : biological data are rarely quantitative
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The different modeling frameworks
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GRN : some definitions

A regulatory network : directed graph G = (V ,E ).
V : set of biological entities of interest
E ⊆ V × V : set of interactions
Each arc is labelled with a sij sign,

We denote G+(v) (resp. G−(v)) the set of successors
(resp. predecessors)
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GRN modeling : differential equations

Each variable v is associated with a value xv ∈ R+.
Network state : (xv )v∈V

System of differential equations :

dxv
dt = Fv (x) − λv xv ∀v ∈ {1, 2, . . . n}

With
{
λv ≥ 0 : degradation coefficient
Fv (x) : variable synthesis rate v

The synthesis rate is often additive :

Fv (x) =
∑

u∈G−(v)
Iαuv
Θuv (xu)

Θuv : threshold αuv : sign of interaction
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The synthesis rate

Often, u has almost no effect below Θuv and a saturated
effect above
Sigmoidal function (e.g. Hill function) : f (x) = xn

K + xn )

0

0
0

0

xu

xu

Θuv

Θuw

kuv

kuw

I+
Θuv

(xu)

I−
Θuw

(xu)
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Phase space discretization (1)

0

0

0

0

xu

kuv

kuw

I+
Θuv

(xu)

0
0 Θuv

xu

0
0 Θuw

I−
Θuw

(xu)

Θuv

Θuw

kuv

kuw

xu

xu

Ĩ+
Θuv

(xu)

Ĩ−
Θuw

(xu)

0 210 1 2
Ĩ+
Θuv (.) is not defined at Θuv
Ĩ−
Θuw (.) is not defined at Θuw
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Phase space discretization (2)

xu < Θuv , u is present at too low a level to regulate v
xu > Θuv , u is in sufficient quantity to regulate v
xu = Θuv , the function I is not defined, we don’t know
whether u regulates or not v

u participes to the synthesis of v if
if u is an activator of v and if xu > Θuv

if u is an inhibitor of v and if xu < Θuv

Absence of an inhibitor = presence of an activator

Notion of a gene’s Resource : the set of regulators
involved in its synthesis
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Phase space discretization (3)

Outgoing thresholds are ordered
Abstract thresholds are the ranks of thresholds
Discretization function :

du(xu) =
{

q si Θq
u < xu < Θq+1

u
sq
u si xu = Θq

u

The discretization function is increasing
The synthesis rate is then equal to :

Fv (x) = kv +
∑

u∈ressources(v)
kuv
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Qualitative Regulatory Network

Definition : A qualitatif regulatory Network is a directed
graph G = (V ,E )

V : set of biological entities of interest
E ⊆ V × V : set of interactions
each arrow (u, v) is labelled with a couple
(αuv , quv ) ∈ {+,−} × {0, 1, . . . , bu}
bu is the number of outgoing thresholds
( |{Θuw ,w ∈ G+(u)}| )
∀m ∈ {1, . . . , bu}, ∃v ∈ G+(u) such that quv = m

For G = (V ,E ) a QRN, there exists a finite number of
qualitative RN
Enumeration when i → j1, i → j2, . . . , i → jn,

choose bi ≤ n
associate with each interaction, a outgoing threshold
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Different types of states

Quantitative state : (xv )v∈V with xv ∈ R+

Qualitative state : (xv )v∈V with xv ∈ {0, 1, 2, . . . , bv }
A qualitative variable is said singular when it corresponds
to the discretisation of a threshold
It is said regular in the other case
A state is said singular when it has a singular coordinate
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The different types of states (example)

1,+

1,−

u v

0

0

0
0

0
0

1

1

1

regular states

singular states

Space of continuous states

xu

xv

Θuv

Θvu

xu

xu
xv

xv
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Reminders on diff. eq. : 1st order Linear Diff. Eq.

x → a(x), x → b(x), x → c(x) : 3 continuous functions
on I ⊂ R.
1st Order Linear Differential Equation :

a(x).y ′ + b(x).y = c(x), x ∈ I

If one knows a particular equation y0 :
One defines Y = y − y0
One gets : a(x).Y ′ + b(x).Y = 0 eq. without 2d member
one separates the variables :

Y ′

Y = −b(x)
a(x) Y (x) and a(x) not null

The general solution is then Y = k.e−A(x)

where A(x) : primitive of b(x)/a(x) and k : constant
The solution with a second member is obtained by adding
y0 :

y = y0 + k.e−A(x)

The value k depends on the initial condition
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Inside a regular domain

System of independant equations – For variable xv :
x ′

v + λv xv = µ

particular solution :
xv (t) = µ

λv

Solution of the equation without second member
x ′ + λv x = 0 :

X (t) = k.e−λv .t

Solution of the equation with second member :
x(t) = µ

λv
+ k.e−λv .t

Computation of k – let us suppose x(0) = x0
x0 = µ

λv
+ k

k = −( µ
λv

− x0)

Solution : xv (t) = µ
λv

− ( µ
λv

− x0).e−λv t
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Search for a particular solution : variation of constants

The solution to the diff. equation lies in
finding a primitive A(x) de b(x)/a(x)
searching for a particular solution

Method of the variation of constants (Laplace)
Let Y be a solution of the equation a(x).Y ′+b(x).Y=0
that does not cancel on I.
Let’s look for a particular solution of eq. with 2d member
of the form :

y = k(x).Y (x)
where k(.) is a function to be determined
However, k is derivable and we have : y ′ = k ′Y + kY ′.
Carrying over into a(x).y ′ + b(x).y = c(x) one gets

[a(x).Y ′ + b(x).Y ].k + a(x).k ′Y = c(x)

[a(x).Y ′ + b(x).Y ] is identically zero
then k ′(x) = c(x)

a(x).Y
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General solutions of a linear diff. eq. of 1er order

Constant variation method

k ′(x) = c(x)
a(x).Y = c(x)

a(x) .e
A(x)

where A(x) : primitive of b(x)/a(x)
Denoting B(x) a primitive of the function c(x)eA(x)

a(x) , the set
of solutions is

k(x) = B(x) + C ste

The general solution can then be written as

f (x) = (B(x) + C)e−A(x)

That is, finally

f = exp
(

−
∫ b(x)

a(x)dx
){

C +
∫ c(x)

a(x) exp
(∫ b(x)

a(x)dx
)

dx
}
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Inside a regular domain
System of independent equations – For the variable xv :

x ′
v + λv xv = µ

Solution of equation without second member
x ′ + λv x = 0 :

X (t) = k.e−λv .t

Solution of equation with second member

x(t) = (C1 + µ
∫

eλv tdt).e−λv .t

= (C1 + µ
λv

(eλv t + C2)).e−λv .t

= µ
λv

+ C .e−λv .t

Computation of C – Let us suppose x(0) = x0

x0 = µ
λv

+ C
C = −( µ

λv
− x0)

Solution : xv (t) = µ

λv
− ( µ

λv
− x0).e−λv t
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Consequences

Solution : xv (t) = µv
λ

− (µv
λ

− xv
0 ).e−λt

Derivative x ′
v (t) = (µv − λ.xv

0 ).e−λt

The sign of derivatives does not change over time
=⇒ monotonic trajectories on each axis.
Particular cases : λv = λ,∀v ∈ V

−−−→
v(t1) =

(
(µ1 − λ.x1

0 ), (µ2 − λ.x2
0 ), . . . , (µn − λ.xn

0 )
)t × e−λt1

−−−→
v(t2) =

(
(µ1 − λ.x1

0 ), (µ2 − λ.x2
0 ), . . . , (µn − λ.xn

0 )
)t × e−λt2

=
−−−→
v(t1).e−λ(t2−t1)

=⇒ The trajectories are straight
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Definition of local interaction graph
i +→ j if the increase in i has a + influence on the evolution
of j , in other words, the increase of i leads to an increase
in dxj (t)

dt .

i +→ j if ∂2xj(t)
∂t∂xi

> 0

i −→ j if the increase in i has a - influence on the the evolution of
j , in other words, the increase of i leads to an decrease in dxj (t)

dt

i −→ j if ∂2xj(t)
∂t∂xi

< 0

No interaction if ∂2xj (t)
∂t∂xi

= 0
The local interaction graph of the system in state x :

J(x) =




∂2x1
∂t∂x1

. . . ∂2x1
∂t∂xn... . . . ...

∂2xn
∂t∂x1

. . . ∂2xn
∂t∂xn
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Local Interaction Graph – PLDE

Inside the regular domains :

∂2xi (t)
∂t∂xi

= −λi
∂2xi (t)
∂t∂xj

= 0

on the edge of regular states

∂2xi (t)
∂t∂xj

= +∞ si µ2 > µ1
∂2xi (t)
∂t∂xj

= −∞ si µ2 < µ1

Degradation ̸= an interaction (we don’t consider it)
Interactions are only visible at points of discontinuity.
Global Interaction Graph ≡ ∪x∈ΩG(x)
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Solutions for regular states (1)

Consider a regular state and one of its variables xu.
For any continuous value in the same domain, the
synthesis rate is identical
The diff. eq. system has a solution :

If initial state is x0, solution of the system is

xv (t) = φv (x0) − (φv (x0) − x0
v )e−λv t

with :

φv (x) = Fv (x)
λv

=
∑

u∈G−(v) Ĩαuv
Θuv

(xu)
λv

φv (x0) plays the role of attractor

Rq 1 : Fv (x) is constant ( Fv (x) = Fv (x0) )
Rq 2 : φv (x) is constant inside a given domain.

Symbolic AI &
biol. networks

Jean-Paul
Comet

Intro

cont. mod.

Discretisation

Diff.Eq.

Sol.

Dyn.

Consistency

Fonct.

CTL

Extraction

Solutions for regular states (2)

One has limt→∞x(t) = φv (x0), ∀v ∈ V
All domain states evolve towards the same constant state :

Φ(x0) = (φv (x0))v∈V

called focal point, attractor, image, target...
2 possible cases :

Φ(x0) belongs to the same domain, Φ(x0) corresponds to
a continuous stationary state,

All trajectories tend towards Φ(x0)
Φ(x0) does not belong to the same domain

The trajectories are in the direction of Φ(x0)
Once outside the domain, the focal point changes.
Φ(x0) may never be reached
Waiting time computation in regular state
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Solutions for regular states (2)

One has limt→∞x(t) = φv (x0), ∀v ∈ V
All domain states evolve towards the same constant state :

Φ(x0) = (φv (x0))v∈V

called focal point, attractor, image, target...
2 possible cases :

Φ(D1)

D1

D3

D2

D4 The focal point is in the current
domain. The trajectories don’t leave
the domain :
⇒ no output
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Solutions for regular states (2)

One has limt→∞x(t) = φv (x0), ∀v ∈ V
All domain states evolve towards the same constant state :

Φ(x0) = (φv (x0))v∈V

called focal point, attractor, image, target...
2 possible cases :

D1

D3 Φ(D1)

D2

D4
The focal point is in the domain D3.
The trajectories do leave the domain :
⇒ to the North

Symbolic AI &
biol. networks

Jean-Paul
Comet

Intro

cont. mod.

Discretisation

Diff.Eq.

Sol.

Dyn.

Consistency

Fonct.

CTL

Extraction

Solutions for regular states (2)

One has limt→∞x(t) = φv (x0), ∀v ∈ V
All domain states evolve towards the same constant state :

Φ(x0) = (φv (x0))v∈V

called focal point, attractor, image, target...
2 possible cases :

D1

D3

Φ(D1)

D2

D4
The focal point is in the domain D2 .
The trajectories do leave the domain :
⇒ to the Est
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Solutions for regular states (2)

One has limt→∞x(t) = φv (x0), ∀v ∈ V
All domain states evolve towards the same constant state :

Φ(x0) = (φv (x0))v∈V

called focal point, attractor, image, target...
2 possible cases :

D1

D3 Φ(D1)

D2

D4 The focal point is in the domain D4 .
The trajectories do leave the domain :
⇒ to the Est
⇒ to the North
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State graph construction

Synchronous state graph :
From a state, we go directly to its focal point
Each focal point φv (x0) depends only on the predecessors
of v = the set of predecessors that helps it express itself
R(v , x0) = the set of predecessors who help it express itself
Parameterization : φv (x0) = Kv ,R(v ,x0)
Transition table :

x X
x1 x2 . . . xn X1 X2 . . . Xn
0 0 . . . 0 X1(x) X2(x) . . . Xn(x)
0 0 . . . 1 X1(x) X2(x) . . . Xn(x)
0 1 . . . 0 X1(x) X2(x) . . . Xn(x)

where X1((0, 1, 0, . . . , 0)) = φx1((0, 1, 0, . . . , 0)) =
Kx1,R(x1,(0,1,...,0))
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Example

x y

2, +

1, −

1,+

Basal level : Kx Ky
x helps : Kx ,x Ky ,x

y absent helps : Kx ,y
both : Kx ,xy

(x , y) focal points
(0, 0) ( Kx ,y , Ky )
(0, 1) ( Kx , Ky )
(1, 0) ( Kx ,xy , Ky )
(1, 1) ( Kx ,x , Ky )
(2, 0) ( Kx ,xy , Ky ,x )
(2, 1) ( Kx ,x , Ky ,x )
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Regulatory network −→ State graph

(x , y) focal point
(0, 0) (Kx ,y ,Ky ) = (2, 1)
(0, 1) (Kx ,Ky ) = (0, 1)
(1, 0) (Kx ,xy ,Ky ) = (2, 1)
(1, 1) (Kx ,x ,Ky ) = (2, 1)
(2, 0) (Kx ,xy ,Ky ,x ) = (2, 1)
(2, 1) (Kx ,x ,Ky ,x ) = (2, 1)

“Desynchronization” per unit
Manhattan distance −→

0

0

1

1

2

y

x

(0, 0) (1, 0) (2, 0)

(1, 1) (2, 1)
(0, 1)

0

0

1

1

2

y

x

(0, 0) (1, 0) (2, 0)

(1, 1) (2, 1)
(0, 1)
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Continuous and discrete models : consistency (1)

Let M be a discrete model. There are continuous models
consistent with M iff Snoussi’s constraints are respected

Ku,ω ≤ Ku,ω′ , for each u anf for each ω,ω′ s.t. ω ⊆ ω′

Proof :

d





kv +

∑

u∈ressources(v)
kuv


 /λ


 = Ku,ressources(v)

Each ki is positive
The discretization function is increasing.
So the K must satisfy the Snoussi constraints.
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Continuous and discrete models : consistency (2)

Prop. 1 : regular steady states are the same
If there exists a continuous model s.t. x ∈ D(q) is a stable
stationary state, then the associated regular state is
stationary stable in the discrete model.
If q is a stable steady state, then for any continuous
model, there exists a stable stationary state in the regular
domain associated with the qualitative state q.

Proof :
a state x ∈ D(q) is stable iff xv = φv (q) for all v ∈ V .
This implies dv (xv ) = dv (φv (q)) ⇒ qv = Kv ,ωv (q). Thus q
is stable.
If q ∈ Q is stable, then qv = Kv ,ωv (q) = dv (φv (q)) for all
v ∈ V . Thus, φv (q) ∈ Dv (qv ) for all v ∈ V and
consequently, φ(q) ∈ D(q) is a stable stationary state.
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Continuous and discrete models : consistency (3)
Proposition 2 : consistency of transitions

Let’s consider a continuous model s.t. a trajectory starting from
D(q) reaches the hyperplane separating D(q) from an adjacent
domain D(q′), then q → q′ is a transition of the asynchronous
discrete model.
Let’s consider a discrete model. There are continuous models
s.t. for any successor q′ of q of the discrete model, there is a
trajectory that reaches from D(q) the hyperplane separating
D(q) from another domain D(q′).

Proof :
1st part : there is only one variable that changes between q and q′. The
asynchronous graph construction takes into account that the focal point is
on the other side of the hyperplane.
2nd part : let’s consider a continuous model s.t. ∀u ∈ V , λu = λ and an
initial state x0 ∈ D(q). The trajectory from x0 is linear.
Let q′ be a successor of q. We have φ(q) /∈ D(q). Let’s choose a point x1

on the edge of D(q) belonging to the hyperplane between D(q) and D(q′),
with a single variable on a threshold. Let’s draw a straight line through x1

and φ(q). The trajectory starting from a point on this line that belongs to
D(q), reaches x1.
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Continuous and discrete models : consistency (4)

Thus :
All regular stationary states are represented
All traces of continuous systems are present
False reciprocal (a discrete trajectory does not necessarily
correspond to a continuous trajectory)
Infinity of continuous models ⇒ finite number of discrete
discrete models

0

0

1

1

2

v

u
(0, 0) (1, 0) (2, 0)

(1, 1) (2, 1)

tuv tuu

tvu

(0, 1)

θuuθuv

θvu

φ(1, 1) φ(2, 0)
φ(2, 1)

φ(0, 0)φ(0, 1)

φ(1, 0)
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Stability of a singular state (1)

At a singular state, the Diff. Eq. Syst. is not defined.
Its focal point is included in the zone defined by the focal
points of the adjacent regular states.
Definition : A singular state is said stationary if it is
included in that zone.
⇒ Regular variables must be stable
Computation in O(2#singular variables) = O(2#variables)
If all outgoing thresholds are different, and if Snoussi

each singular variable is a singular resource of at most one
other variable.
We therefore look at the « max image » and « min
image » corresponding to the regular states with (and
without) these uncertain resources
Computation in O(#singular variables) = O(#variables)
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Stability of a singular state (2)

1
2

u v

(x , y) focal points
(0, 0) ( Ku,v = 2 , Kv = 0 )
(0, 1) ( Ku = 0 , Kv = 0 )
(1, 0) ( Ku,v = 2 , Kv,u = 1 )
(1, 1) ( Ku = 0 , Kv,u = 1 )
(2, 0) ( Ku,uv = 2 , Kv,u = 1 )
(2, 1) ( Ku,u = 2 , Kv,u = 1 )

θuuθuv

θvu

φ(1, 1) φ(2, 0)
φ(2, 1)

φ(0, 0)φ(0, 1)

φ(1, 0)

θuuθuv

θvu

φ(1, 1) φ(2, 0)
φ(2, 1)

φ(0, 0)φ(0, 1)

φ(1, 0)
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Stability of a singular state (3)
Proposition 3 : Let x be a singular state and v a variable. If
for each u ∈ G−(v), xu ̸= θuv , then φv (q) is constant for any
neighboring regular state q.
« Given a qualitative state q, if all the predecessors of the
variable v are not on their activation thresholds on v, the
component v of the focal point is constant for all qualitative
states neighboring q »
Proof :
For each u ∈ G−(v), one has{

xu régular or
xu = θuv ′ ̸= θuv with v ′ ∈ G+(u)

1st case : ∀q regular state, neighbour of de x , one has
qu = xu (Cf previous page – right). The regulation of
u → v does not change.
2d case : for all q, q′ regular states, neighbours of x , qu
and q′

u belong to {θuv ′ − 1, θuv ′} and θuv ′ ̸= θuv . qu and
q′

u are on the same side of θuv .
Consequently, for each (q, q′) of N(x), one has ωv (q) = ωv (q′),
that implies φv (q) = φv (q′).
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Stability of a singular state (4)

Property n.3 usage example

2

1

0

0 1

regular
a b 2

1

1

v = a
xb = sbb ̸= sba
φa(q) =

φa(0, 0) = φa(1, 0)
xb = 0

v = a

v = b
xa = 1
φb(1, 0) = φb(1, 1)

regular

Cte on the 4
regular neighbours
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Positifs / negative circuits – Circuit Fonctionnality

Positive / negative circuits :
A circuit is said positive if each circuit’s element has a
positive influence (direct on indirect) on itself
A circuit is said negative if each circuit’s element has a
negative influence (direct on indirect) on itself
Lemma :

a circuit is positive if it contains an even number of
negative interactions,
it is negative in other cases

A circuit is said fonctionnal if it leads to a
multistationnarity (positive circuits) or to a homeostasis
(negative circuits).

Influence of negative circuits :
Oscillation (damped or not) of each variable

=⇒ Homeostasis
Influence of positive circuits :

when we are above, we stay there
when we are down, we stay down

=⇒ Multistationarity
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Charasteristic States (1)

A singular state is said characteristic of a circuit if
The regular components are the variables outside of the
circuit
The singular variables

are the variable of the circuit
each singular variable is on the threshold of the
interaction on its successor in the circuit

u v 22

1

1

u v 22

1

1

u v 22

1

1

u v 22

1

1

(suu, 0)

(suu, 2)

(suu, 1)

(2, svv )

(1, svv )

(suv , svu)

(suu, svv )

(0, svv )
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Charasteristic States (2)

Proposition 4 :
A stationnary singular state is characteristic of a circuit
Proof :
Let x be a singular state and consider S = {v singulière}. If x
is stationnary, one has for each v ∈ S :

min
q∈N(x)

φv (q) < xv < max
q∈N(x)

φv (q)

By proposition 3, if for all u ∈ G−(v) one has xu ̸= θuv then

min
q∈N(x)

φv (q) = max
q∈N(x)

φv (q)

and x is not stationary.
Thus v has at least one predecessor u st xu = θuv , and thus
u ∈ S. Moreover, as θuv ′ ̸= θuv for all v ′ ∈ G+(u), the successor
v of u is the unique one st xu = θuv . Each variable v of S has
thus a unique predecessor u in S st xu = θuv .
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Charasteristic States (3)
Proposition 5 :
Let G be a regulation graph containing a circuit C = v1, ..., vn.
Consider a model and a characteristic state x of C .
Let q ∈ N(x). If x is stationary, then we have :
{

Kv ,ωv (q) = qv for all v /∈ C
Kvi ,ωvi (q)\{vi−1} < θvi vi+1 ≤ Kvi ,ωvi (q)∪{vi−1} for all i ∈ {1, . . . , n}

Proposition 6 :
Let G be a regulation graph, a circuit C = v1, ..., vn and a
characteristic state q of C . If a discrete model M(G) satisfies
the Snoussi constraints and if
{

Kv ,ωv (q) = qv for all v /∈ C
Kvi ,ωvi (q)\{vi−1} < θvi vi+1 ≤ Kvi ,ωvi (q)∪{vi−1} for all i ∈ {1, . . . , n}

then, for any continuous model of M(G), there exists a unique
stationary characteristic state x of C st

du(xu) = qufor all u /∈ C .
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Use of Charasteristic States

We know that the system is multi-stationary /
homeostatic

Using Theorem : A circuit is functional if one of these
characteristic states is stationary
Using Property 4 : among singular states, only
characteristic states can be stationary.
Consider only the parameters which lead to a dynamic
having a characteristic state (of a circuit of the right sign)
stationary

If we know a characteristic stationary state :
Using Property 5 : constraints on parameters
Acceleration of the search for focal points : Property 3.
Property :

Necessary condition to have multistationarity : a positive
circuit is functional
m functional positive circuits generate 3m stationary states
of which 2m are not characteristic states

Symbolic AI &
biol. networks

Jean-Paul
Comet

Intro

cont. mod.

Discretisation

Diff.Eq.

Sol.

Dyn.

Consistency

Fonct.

CTL

Extraction

Stationnary characteristic States

Adjacent states of a characteristic state :
Minimal adjacent state : each variable in the circuit is not
a resource of its successor in the circuit
Maximum adjacent state : each variable in the circuit is a
resource of its successor in the circuit

The circuit C is functional if there exists a characteristic
state included in the domain defined by the focal points of
the adjacent states min and max

All these theorems are only valid under constraints
of distinct outgoing thresholds
What should we do if we want to relax this
constraint ?
Use other information to constrain possible dyna-
mics.
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Time has a tree structure...

y

x

0

1 (1,1)

(1,0) (2,0)

(2,1)

(0,0)

(0,1)

0 1 2

As many possible state graphs
as possible parameter sets. . .
(huge number)

. . . from each initial state :

(2,1)

(2,1)(1,1)

(2,0)

(1,0)

(0,1)

(0,0)
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CTL = Computational Tree Logic

Atoms = comparisons : (x = 2), (y > 0) . . .
Logical Connectives = (φ1 ∧ φ2), (φ1 ⇒ φ2) . . .
Temporal modalités = made de 2 characters :

first character second caracter
A = for All path choices X = neXt state

F = for some future state
E = there Exists a choice G = for all future state (Globally)

U = Until

Examples :
AX (y=1) : the concentration level of y belongs to the
interval 1 in all states directly following the considered
initial state.
EG(x=0) : there exists at least one path from the
considered initial state where x always belongs to its lower
interval.
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Temporal Connectives of CTL

neXt state :
EXφ : φ can be satisfied in a next state
AXφ : φ is always satisfied in the next states

eventually in the Future :
EFφ : φ can be satisfied in the future
AFφ : φ will be satisfied at some state in the future

Globally :
EGφ : φ can be an invariant in the future
AGφ : φ is necessarilly an invariant in the future

Until :
E [ψUφ] : there exist a path where ψ is satisfied until a state

where φ is satisfied
A[ψUφ] : ψ is always satisfied until some state where φ is

satisfied
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Semantics of Temporal Connectives (1)

t t + 1t t + 1

EX (φ)

φ

t t + k

φ

φ

φ

φ

φ

φ

φ

φ

φ
φ

φ

φ

φ

φ

t t + k

t t + kt t + k t t + kt t + k

φ
φ

φ
φ

φ

φ

φ
φ
φ

φ

φ
φ

φ

φ

φ

φ
φ
φ
φ
φ

φφ

φ

φ

φ

φ

φ
φ

φ

φ

φ

φ

φ

φ

φ
φ

φ
ψ

φ

φ

φ
φ

φ
φ

φ

φ

φ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

AX (φ) EF (φ) AF (φ)

EG(φ) AG(φ) E [φUψ] A[φUψ]
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Semantics of Temporal Connectives (2)
Let s0 be a state. CTL semantics is defined inductively :

s0 |= ⊤ and s0 ̸|= ⊥ ∀p ∈ AP, s0 |= p iff p ∈ L(s0),
s0 |= ¬φ iff s0 ̸|= φ,
s0 |= φ1 ∧ φ2 (resp. φ1 ∨ φ2) iff s0 |= φ1 and (resp. or) s0 |= φ2,
s0 |= φ1 ⇒ φ2 iff s0 ̸|= φ1 or s0 |= φ2,
s0 |= φ1 ⇔ φ2 iff s0 |= (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1),
s0 |= AXφ iff for all successors of s1 of s0, one have s1 |= φ,
s0 |= EXφ iff there exists a successor s1 of s0 s.t. s1 |= φ,
s0 |= AGφ iff ∀si of each path s0s1 . . . si . . . , one have si |= φ,
s0 |= EGφ iff ∃ a path s0s1 . . . si . . . , s.t. ∀si , one have si |= φ,
s0 |= AFφ iff ∀ path s0s1 . . . si . . . , ∃j tq sj |= φ,
s0 |= EFφ iff ∃ a path s0s1 . . . si . . . , ∃j tq sj |= φ,
s0 |= A[φ1Uφ2] iff ∀ path s0s1 . . . si . . . , ∃j s.t. sj |= φ2, and
∀i < j , si |= φ1,
s0 |= E [φ1Uφ2] iff ∃ path s0s1 . . . si . . . , ∃j s.t. sj |= φ2, and
∀i < j , si |= φ1
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CTL to encode Biological Properties

Common properties :
“functionality” of a sub-graph

Special role of “feedback loops”
—

y
+

+ x
1 2

1

– positive : multistationnarity (even number of — )
– negative : homeostasy (odd number of — )

y

x

y

x

(0,1) (2,1)(1,1)

(2,0)(0,0) (1,0) (0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)

Characteristic properties :
{

(x = 2) =⇒ AG(¬(x = 0))
(x = 0) =⇒ AG(¬(x = 2))

They express “the positive feedback loop is functional”
(satisfaction of these formulas relies on the parameters K...)
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CTL to encode Biological Properties

Common properties :
“functionality” of a sub-graph

Special role of “feedback loops”
—

y
+

+ x
1 2
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– negative : homeostasy (odd number of — )

y

x

y

x

(0,1) (2,1)(1,1)

(2,0)(0,0) (1,0) (0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)

Characteristic properties :
{

(x = 2) =⇒ AG(¬(x = 0))
(x = 0) =⇒ AG(¬(x = 2))

They express “the positive feedback loop is functional”
(satisfaction of these formulas relies on the parameters K...)
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Model Checking

Efficiently computes all the states of a state graph which
satisfy a given formula : { η | M |=η φ }.
Efficiently select the models which globally satisfy a given
formula.

Intensively used :
to find the set of all possible discrete parameter values
to check models under construction w.r.t. known
behaviours (one often gets an empty set of parameter
values !)
and to prove the consistency of a biological hypothesis
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Model Checking for CTL

Computes all the states of a discrete state graph that satisfy a
given formula : { η | M |=η φ }.
Idea 1 : work on the state graph instead of the path trees.
Idea 2 : check first the atoms of φ and then check the
connectives of φ with a bottom-up computation strategy.
Idea 3 : (computational optimization) group some cases
together using BDDs (Binary Decision Diagrams).
Example : (x = 0) =⇒ AG(¬(x = 2))

Obsession : travel the state graph as less as possible
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(x = 0) =⇒ AG(¬(x = 2))

x=0 x=2
z

¬(x = 2)
z

x

y

x

y

and
AG(¬(x = 2)) ?
. . . one should travel all the paths from any green box and
check if successive boxes are green : too many boxes to visit.
Trick : AG(¬(x = 2)) is equivalent to ¬EF (x = 2)
start from the red boxes and follow the transitions backward.
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Consistency of the epigenetic hypothesis

ExsA ExsD

1

(or 2)

2

or 1

toxins

2 possible stable states :
(EXsA = 2) =⇒ AX AF(EXsA = 2)
(EXsA = 0) =⇒ AG(¬(EXsA = 2))

Question 1, consistency : proved by Model checking
8 models among 648, automatically extracted.
Question 2, and in vivo ?
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Formula = models-experiments link

Formulas are valid or invalid in relation to a set of given traces
starting from a given state

They can be compared
with all the possible traces of the theoretical model
with all known experiments

⇒ They therefore provide the link between models and
biological objects
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A simple example

Modification de phenotype, terminology :
genetic modification : heritable and non-reversible
(mutation)
epigenetic modification : heritable but reversible
Adaptation : non-heritable and reversible

Biological questions :
Is cytotoxicity (and/or mucoidism) in the bacterium
Pseudomonas aeruginosa epigenetic in nature ?
[−→ cystic fibrosis]
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Mucoidy in pseudomonas aeruginosa

Wild pseudomonas aeruginosa :

Anti−Sigma

ou 1

AlgU

1
(ou 2)

mucus

AlgU

1
(ou 2)

2

mucus

22
Et muté...

Epigenetic Hypothesis (i.e. without mutation)
→ The positive cycle is fonctionnal despite the negative

cycle, with a non mucoid state and another mucoid state
→ An external signal (produced by the diseased lung) could

possibly cause AlgU to move from the low state to the
high state.

→ Selection pressure subsequently favours mutants in a
mucosal environment ⇒ New prospects for therapy
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Validation of the epigenetic hypothesis

Question 2 = validate the stability of the two states in
vivo
Non-mucoid state : (AlgU = 0) ⇒ AG(AlgU < 2)
A bacterium with its basal level of AlgU will not become
mucoid spontaneously : validated on a daily basis
Mucoid state : (AlgU = 2) ⇒ AX AF(AlgU = 2)
Working hypothesis
You can take AlgU to saturation, but you can’t measure it
Experiment design : pulse of AlgU then after a transitional
phase, test whether mucus production persists (⇐⇒ check
for hysteresis) (⇐⇒ vérifier une hystérésis)
Experimental designs can be generated automatically
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Test (AlgU = 2) ⇒ AG(AlgU = 2)

AlgU = 2 is not directly verifiable but mucus = 1 is

Anti−Sigma

ou 1

AlgU

1

(ou 2)

2

mucus

2

Lemma : AG(AlgU = 2) ⇔ AF AG(mucus = 1)
(... computer-aided proof ...)

→ Experiment : (AlgU = 2) ⇒ AF AG(mucus = 1)
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(AlgU = 2) ⇒ AF AG(mucus = 1)

A ⇒ B True False
True True False
False True True

Karl Popper :
Validate = Attempt for refutation
So A false is useless
So start with a pulse...

The pulse enables the initial state to be reached AlgU = 2.
Otherwise, we would have had to establish a lemma :

(AlgU = 2) ⇔ (something operable)

General Form of a test :
(something operable) ⇒ (something observable)
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Software testing techniques

Similar Problem = Does a software meet its specification ?
Infinite possible test scenarios, by selecting revelators
Solution = divide into scenario areas
Assumed “uniform” behaviors within a domain

The unfolding of the formula is used to divide the domains
Probabilisticapproach : we unfold a few, few domains (but
large), probabilistic drawing of numerous tests in each
domain.
Deterministic approach : we unfold a lot, small domains,
choice of only one test per domain.

99% of bugs are detectable automatically
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Selection of experimental designs

Φ = {φ1, φ2, . . . φn} and M =

ou 1
1

(ou 2)
2

X Y

Set of formulae, consequences of hypothesis :
Th(H) = {ψ | Φ,M |= ψ}
Observable Formulae : Φobs
{ψ | ψ of the form “operable”⇒ “observable”}
Problem : Φobs ∩ Th(H) is infinite
→ Choose “revelators” in Φobs ∩ Th(H)
P. aeruginosa : by chance, there are 2 observable formulas
ψ1, ψ2 ∈ Φobs ∩ Th(H) such that {ψ1, ψ2} |= Φ
Computer Science general solution : unfolding techniques
(≃ case-based reasoning) should make it possible to make
it possible to explain the hypotheses made when we limit
ourselves to a a fixed number of experiments.
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Selection of experimental plans

H : hypothesis

Φobs : possible
experiments
Th(H) : logical
consequences of H
S : experiments
linked to H

Refutability : S ⇒ H

Set S infinite...
Choice of experiments in S ?
... optimisations

H
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Selection of experimental plans

H : hypothesis
Φobs : possible
experiments

Th(H) : logical
consequences of H
S : experiments
linked to H

Refutability : S ⇒ H

Set S infinite...
Choice of experiments in S ?
... optimisations

H

Φobs
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Selection of experimental plans

H : hypothesis
Φobs : possible
experiments
Th(H) : logical
consequences of H

S : experiments
linked to H

Refutability : S ⇒ H

Set S infinite...
Choice of experiments in S ?
... optimisations

H
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Selection of experimental plans

H : hypothesis
Φobs : possible
experiments
Th(H) : logical
consequences of H
S : experiments
linked to H

Refutability : S ⇒ H

Set S infinite...
Choice of experiments in S ?
... optimisations

H
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Automatic extraction of experiment patterns

a set of models is given
a set of possible experiments (in the form of formulas) is
also given
Questions :

What experiment must be performed to reduce the set of
consistent models ? (equiprobable / non-equiprobable
models)
Ditto for n experiments (order, decision tree) ?
Ditto with cost ?
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Select an experience
M = {M1,M2, . . . ,Mm} and F = {F1,F2, . . . ,Ff }

by model checking :

F1 F2 . . . Ff

M1 1 1 . . . 0
M2 1 0 . . . 0
. . . . . . . . . . . . . . .
Mm 0 1 . . . 0

If the models are equi probable, one selects Fi wich balances

both sets : Ei = {Mj |Mj |= Fi} and Ei = {Mj |Mj ̸|= Fi}

In the other case Fi which balances

both probabilities : p({Mj |Mj |= Fi}) and p({Mj |Mj ̸|= Fi})

In fact, the aim is to minimize E [Sizeof the set after exp.]
min(|Ei | × |Ei | + |Ei | × |Ei |) = min(|Ei |2 + (N − |Ei |)2)
min(N2 − 2N|Ei | + 2|Ei |2)
minimum at N/2
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Choose a comprehensive strategy (1)

experiment
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experiment
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Choose a comprehensive strategy (2)

The previous strategy doesn’t give the minimum depth tree.
Ex : 9 models ; 5 formulae, min. depth = log2(9) = 4

F1 F2 F3 F4 F5
M1 1 1 1 0 0
M2 1 1 0 1 1
M3 1 0 1 0 1
M4 1 0 0 1 0
M5 0 1 0 0 0
M6 0 0 1 0 0
M7 0 0 0 1 0
M8 0 0 0 0 1
M9 0 0 0 0 0

4/5 3/6 3/6 3/6 3/6

621 3 4

8

8−9

9

7

7−9

1−9

1−4 5−9

1−2 3−4 5 6−9

F5

F1

F2 F2

F3

F3 F3

F4

Thanks to S. Vial for this example
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Choose a comprehensive strategy (3)

F1 F2 F3 F4 F5
M1 1 1 1 0 0
M2 1 1 0 1 1
M3 1 0 1 0 1
M4 1 0 0 1 0
M5 0 1 0 0 0
M6 0 0 1 0 0
M7 0 0 0 1 0
M8 0 0 0 0 1
M9 0 0 0 0 0

4/5 3/6 3/6 3/6 3/6

21 3 6 4,7 8−9

4 7 8 9

1−9

1−2

1,2,5 3,4,6−9

5 3,6 4,7−9
F3

F5

F2

F1 F3

F5 F4

F1

Choosing an optimal decision tree = NP-complete problem
(reduction to 3-DM problem, L. Hyafil & R.L. Rivest [1975])
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Choose a comprehensive strategy (4)

Temporal Coherent
formulas models

1 x = 0 ⇒ 1, 3, 6, 7,
AXAF (x = 0) 8, 9, 10

2 x = 2 ⇒ 1, 2, 3, 4,
AXAF (x = 2) 5, 7, 10

3 x = 1 ⇒ 1, 3
AXAF (x = 0)

4 x = 1 ⇒ 7, 10
AXAF (x = 2)

5 y = 0 ⇒ 1, 2, 3, 6
AXAF (y = 0) 1, 2, 3, 6

If we don’t want to
to choose a discriminating
formula at random,
nor choose a formula that’s
easy to implement in vivo
(costs)
nor adjust this choice
according to intuition,
nor choose the formula that
best cuts M

Using the min-max algorithm to optimize selection :
1 determine observable formulas
2 limit tree depth (here, depth = 3)
3 find the tree for which the cost is minimal
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Choose a comprehensive strategy (4-b)

2 1 2 0 1 2

2

322 3

3 2 4 2 4 3 2 4

3

444 3

31

max

min min

max

1 0

1−9

2 2 2 2 22 2 2 1 4 1 1 444 1

max

min

max

min

22

2

4

5,9

4 4 4

4
1−4

2 1 1 2 2 1 2

3

222 242 2

1 2 4 2 4 2 2 4

444 4

4

4

1 0

1,2,5
2 4

1 0

3

F1 F2 F4 F5 F1 F2 F4 F5

1,3,6

F4 F5F4F3F2F5F3F2

F2F1

F1 F3 F4 F5 F1 F3 F4 F5F3

F1 F2 F3 F4 F5
M1 1 1 1 0 0
M2 1 1 0 1 1
M3 1 0 1 0 1
M4 1 0 0 1 0
M5 0 1 0 0 0
M6 0 0 1 0 0
M7 0 0 0 1 0
M8 0 0 0 0 1
M9 0 0 0 0 0

4/5 3/6 3/6 3/6 3/6
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Choose a comprehensive strategy (5)

710 3 1

8,9 6

4,5 2

φ5¬φ5 ¬φ5 φ5

M

M1

¬φ1 φ1

M2

¬φ2

φ5¬φ5

M0
¬φ5 φ5

M4M5

¬φ3 φ3
M3

φ2
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Sign semantics

Signs and parameters

c

ba

+ +

Kc = 1
Kc,a = 0
Kc,b = 2
Kc,ab = 1

Kc = 1
Kc,a = 0
Kc,b = 2
Kc,ab = 1

Positive Actions of b

Negative Actions of a

Link between signs and parameters
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Sign Semantics for Thomas-Snoussi
diff. eq. system dx3

dt = (k + k1.1x1→x3 + k2.1x2→x3) − λ× x3

Discretisation :
if neither x1 nor x2 acts on x3 : d(k) Kx3

if only x1 acts on x3 : d(k + k1) Kx3,x1

if only x2 acts on x3 : d(k + k2) Kx3,x2

if x1 and x2 act on x3 : d(k + k1 + k2) Kx3,x1x2

Sum of positive numbers, Snoussi conditions :

∀a ∈ ∀G−(x),∀ω ⊆ G−(x),Kx ,ω ≤ Kx ,ω∪{a}

Everywhere, the addition of a resource cannot reduce the
attractor

Consequence : XOR is not possible
x1 x2 X3 = x1 XOR x2
0 0 Kx3 = 0
0 1 Kx3,x2 = 1
1 0 Kx3,x1 = 1
1 1 Kx3,x1x2 = 0

+x1

+x2

+x2 +x1
context

context

context

x2

x1

toto
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Other possible semantics

Everywhere, adding a resource cannot reduce the attractor
There is a configuration where the addition of a resource
creates an increase in the attractor

∀a ∈ ∀G−(x),∃ω ⊆ G−(x),Kx ,ω < Kx ,ω∪{a}

The sign thus becomes a constraint on the parameters.
Notation : +obs , −obs to be distinguished from
+snoussi , −snoussi


