

master BBC

Jean-Pau

. Thomas

CIL

Engineering

General Schema

Hoare Logic

Master SVS – PARCOURS Bio-informatique et Biologie Computationnelle (BBC)

year 2024-2025

Formal methods for discrete modelling

Jean-Paul Comet

Université Côte d'Azur

24 September 2024

Plan

master BBC

ean-Pau Comet

R. Thor

Software

General Schema 1 Discrete models for gene networks according to René Thomas

- 2 CTL
- 3 Techniques of software testing
- 4 General Schema for BRN
- 6 Genetically modified Hoare logic, and examples
 - Hoare Logic
 - Examples

CÔT D'AZU

Teaching organization

master BBC

Jean-Pau Comet

Thomas

oftware

ieneral

oare Logic

Lectures : 2 sessions of 2 hours each

Tutorial: 2 sessions of 2 hours each

Teacher : Jean-Paul Comet

Jean-Paul.Comet@univ-cotedazur.fr

	Sessions	schedule	teacher	Lecture/tuto
1	24 September 2024	8h-12h	JPC	lecture+tuto
2	1 October 2022	8h-12h	JPC	lecture+tuto

- Evaluation: A 2-hour exam on 8 October 2024 from 9 to 11 a.m.
- Course material + tutorials :

https://www.i3s.unice.fr/~comet/SUPPORTS/

□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆○ 2/77

CÔTE D'AZUR

Multivalued Regulatory Graphs

master BBC

Jean-Paul Comet

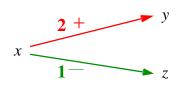
R. Thomas

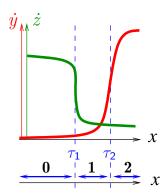
ΓL

ngineerin eneral

Hoare Logic

Derivatives are sigmoids w.r.t. the source gene





First simplification: piecewise linear

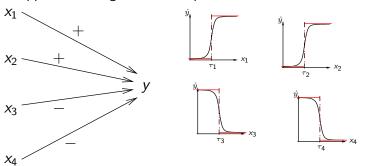
master BBC

R. Thomas

Software Engineering General

Hoare Logi

Approximate sigmoids as step functions :



Presence of an activator = Absence of an inhibitor $\frac{dy}{dt} = k_0 + k_1.\mathbb{1}_{x_1 \geqslant \tau_1} + k_2.\mathbb{1}_{x_2 \geqslant \tau_2} + k_3.\mathbb{1}_{x_3 < \tau_3} + k_4.\mathbb{1}_{x_4 < \tau_4} - \gamma.y$ Solutions of the form $Ce^{-\gamma t} + \frac{\Sigma \mathbb{1} k_i}{\gamma}$ whose $\lim_{t \to \infty}$ is $\frac{\Sigma \mathbb{1} k_i}{\gamma}$ As many such equations as genes in the interaction graph In each hypercube, all the trajectories have a unique attractive point, which can be outside de hypercube

CÔTE D'AZUR

State Graphs

master BBC

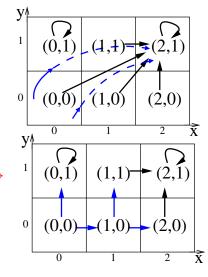
Jean-Paul Comet

R. Thomas

Software Engineering

General Schema

(x,y)	Focal Point
(0,0)	$(K_{x,\overline{y}},K_y)=(2,1)$
(0,1)	$(K_x, K_y)=(0,1)$
(1,0)	$(K_{x,x\overline{y}},K_y)=(2,1)$
(1,1)	$(K_{x,x}, K_y) = (2,1)$
(2,0)	$(K_{x,x\overline{y}},K_{y,x})=(2,1)$
(2,1)	$(K_{x,x}, K_{y,x}) = (2,1)$



CÔTE D'AZUR

Discrete Gene Networks (Thomas & Snoussi)

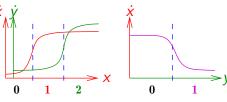
master BBC

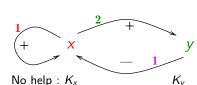
Jean-Paul Comet

R. Thomas

Software Engineering General

loare Logic





No help: K_x x helps: $K_{x,x}$

Absent y helps : $K_{x,\overline{y}}$ Both : $K_{x,x\overline{y}}$ In each state, a variable v tries to go toward the interval numbered $K_{v,\omega}$: the one containing $\frac{\Sigma \mathbb{1} k_i}{\gamma}$

(x,y)	Focal Point
(0,0)	$(K_{x,\overline{y}},K_y)$
(0,1)	(K_x, K_y)
(1,0)	$(K_{x,x\overline{y}},K_y)$
(1,1)	$(K_{x,x},K_y)$
(2,0)	$(K_{x,x\overline{y}},K_{y,x})$
(2,1)	$(K_{x,x},K_{y,x})$

Presence of an activator = Absence of an inhibitor = A resource

 $K_{v,x}$

Multistationarity vs. positive cycles

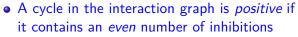
master BBC

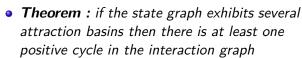
lean-Paul Comet

R. Thomas

Engineering General Schema

loare Logic





 Was a conjecture from the 70's to 2004; proved by Adrien Richard (and by Christophe Soulé for the continuous case)

Oscillations vs. negative cycles

master BBC

lean-Paul

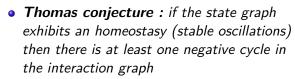
R. Thoma

Software Engineering

Schema

Hoare Logic

• A cycle in the interaction graph is *negative* if it contains a *odd* number of inhibitions



Was a conjecture from the 70's to ≈2010.
 Counter-examples have been found (A. Richard, J.-P. Comet, P. Ruet)

Nonetheless it remains a very useful tip in practice when modelling biological examples!

4 □ → 4 ₱ → 4 분 → 4 분 → 15/77

Thomas parameters: exponential number

master BBC

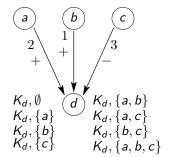
lean-Paul Comet

R. Thomas

Software Engineering

General Schema 2^{i} parameters where i is the in-degree of the gene

$$\prod_{genes} (o+1)^{2^i}$$
 possible parameter values where o is the out degree of each gene



Yeast≈7000 genes Human≈25000 genes Rice≈40000 genes

Characteristic state of a cycle

master BBC

Jean-Paul

R. Thomas

Software Engineering

chema loare Logic Helps characterizing the saddle point (resp. center of the oscillations) of the behaviour "driven" by a positive (resp. negative) cycle.

$$x_1 = \begin{cases} s_1 & x_2 \\ \hline x_1 & s_2 \end{cases} > x_3$$

$$x_4 & s_4 \\ \hline x_i = \text{threshold} \\ s_i - 1 \mid s_i \end{cases}$$

Whatever the sign of $x_i \to x_{i+1}$, for some set of resources ω one should have $K_{x_{i+1},\omega} < s_{i+1} \leqslant K_{x_{i+1},\omega x_i}$, all along the cycle

but it remains a heuristic, at least for negative cycles. . .

CÔTE D'AZUR

Multiplexes: encode cooperation knowledge

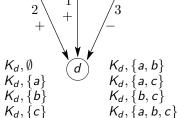
master BBC

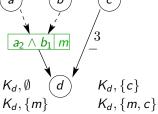
Jean-Paul Comet

R. Thomas

oftware Ingineering

Hoare Lo





multiplex name = mmultiplex formula $\equiv a_2 \wedge b_1$ abbreviation : $v_i \equiv (v \geq i)$

 $\mathbf{8} \to \mathbf{4}$ parameters

Any propositional formula + remove sign

master BBC

lean-Paul

R. Thomas

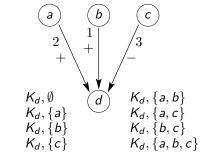
CTL

Software Engineering

General Schema

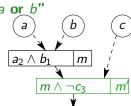
Hoare Logi

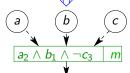
"... and c inhibits d whatever a or b"



 $\boldsymbol{8} \longrightarrow \boldsymbol{2} \ \mathbf{parameters},$

$$(o+1)^8 \rightarrow (o+1)^2$$
 parameterizations





$$K_d, \emptyset$$
 d $K_d, \{m\}$

Plan

master BBC

Jean-Pau Comet

R. Thoma

Software Engineerir

General Schema

Hoare Logic

1 Discrete models for gene networks according to René

- 2 CTL
- Techniques of software testing
- 4 General Schema for BRN
- 6 Genetically modified Hoare logic, and examples

The main problem

master BBC

Jean-Paul

R. Thomas

Software Engineering

loare Logic

Exhaustively identify the sets of (integer) parameters that cope with known behaviours from biological experiments

Solution = perform reverse engineering *via* **formal logic**

- 2003 : enumeration + CTL + model checking (Bernot, Comet, Pérès, Richard)
- 2005 : path derivatives + model checking (Batt, De Jong)
- 2005 : PROLOG with constraints (Trilling, Corblin, Fanchon)
- 2007 : symbolic execution + LTL (Mateus,Le Gall,Comet)
- ullet 2011 : traces + enumeration + CTL + model checking (Siebert,Bockmayr)
- 2015 : genetically modified Hoare logic + constraint solving (Bernot, Comet, Roux, Khalis, Richard)

Time has a tree structure...

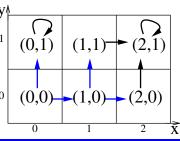
master BBC Jean-Paul Comet

R. Thomas

TL

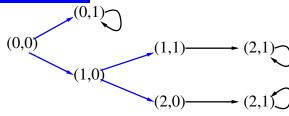
ingineering General

Hoare Logic



As many possible state graphs as possible parameter sets... (huge number)

... from each initial state:



CTL = Computational Tree Logic

master BBC

Jean-Paul

R. Thomas

CTL Software

General

Hoare Logic

• Atoms = comparaisons : (x = 2), (y > 0)...Logical Connectives = $(\varphi_1 \land \varphi_2), (\varphi_1 \Rightarrow \varphi_2)...$ Temporal modalités = made de 2 characters :

first character	second caracter
A = for All path choices	
	F = for some future state
E = there Exists a choice	G = for all future state (Globally)
	U = Until

• Examples :

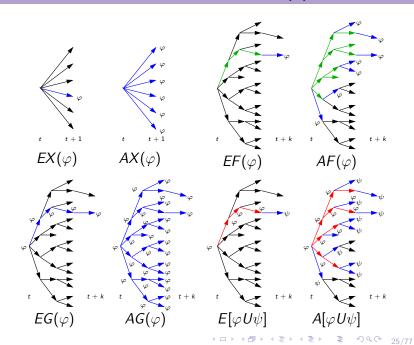
AX (y=1): the concentration level of y belongs to the interval 1 in all states directly following the considered initial state.

EG(x=0): there exists at least one path from the considered initial state where x always belongs to its lower interval.

master BBC

Semantics of Temporal Connectives (1)

Jean-Paul Comet R. Thomas CTL Software Engineering General Schema Hoare Logic



CÔT

Temporal Connectives of CTL

master BBC

Jean-Paul

R. Thor

TI.

oftware ingineering

loare Logic

neXt state:

 $EX\varphi: \varphi$ can be satisfied in a next state

 $AX\varphi$: φ is always satisfied in the next states

eventually in the Future :

 ${\it EF} \varphi: \varphi$ can be satisfied in the future

 $\mathit{AF}\varphi:\varphi$ will be satisfied at some state in the future

Globally:

 ${\it EG}\varphi:\varphi$ can be an invariant in the future

 $\textit{AG}\varphi:\varphi$ is necessarilly an invariant in the future

Until:

 ${\it E}[\psi U \varphi]$: there exist a path where ψ is satisfied until a state

where φ is satisfied

 $A[\psi U \varphi]: \psi$ is always satisfied until some state where φ is

satisfied

CÔTE D'AZUR

Semantics of Temporal Connectives (2)

master BBC

n-Paul

R. Thomas

TL

Software Engineering

Schema

Let s_0 be a state. The CTL semantics is difined as follows

- $s_0 \models \top$ and $s_0 \not\models \bot$ $\forall p \in AP, s_0 \models p \text{ iff } p \in L(s_0),$
- $s_0 \models \neg \varphi \text{ iff } s_0 \not\models \varphi$,
- $s_0 \models \varphi_1 \land \varphi_2$ (resp. $\varphi_1 \lor \varphi_2$) iff $s_0 \models \varphi_1$ and (resp. or) $s_0 \models \varphi_2$,
- $s_0 \models \varphi_1 \Rightarrow \varphi_2$ iff $s_0 \not\models \varphi_1$ or $s_0 \models \varphi_2$,
- $s_0 \models \varphi_1 \Leftrightarrow \varphi_2 \text{ iff } s_0 \models (\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1),$
- $s_0 \models AX\varphi$ iff for all successors s_1 of s_0 , one has $s_1 \models \varphi$,
- $s_0 \models EX\varphi$ iff there exists a succussor s_1 of s_0 such that $s_1 \models \varphi$,
- $s_0 \models AG\varphi$ iff $\forall s_i$ from any path $s_0s_1 \dots s_i \dots$, one has $s_i \models \varphi$,
- $s_0 \models EG\varphi$ iff \exists a path $s_0s_1 \dots s_i \dots$, s.t. $\forall s_i$, one has $s_i \models \varphi$,
- $s_0 \models AF\varphi$ iff \forall path $s_0s_1 \dots s_i \dots$, $\exists j$ s.t. $s_i \models \varphi$,
- $s_0 \models EF\varphi$ iff \exists a path $s_0s_1 \dots s_i \dots$, $\exists j$ s.t. $s_j \models \varphi$,
- $s_0 \models A[\varphi_1 U \varphi_2]$ iff \forall path $s_0 s_1 \dots s_i \dots$, $\exists j$ s.t. $s_j \models \varphi_2$, and $\forall i < j, s_i \models \varphi_1$,
- $s_0 \models E[\varphi_1 U \varphi_2]$ iff \exists path $s_0 s_1 \dots s_i \dots$, $\exists j$ s.t. $s_j \models \varphi_2$, and $\forall i < j, s_i \models \varphi_1$

CTL to encode Biological Properties

master BBC

Jean-Paul

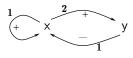
. Thomas

Software Engineering

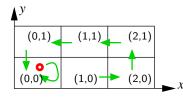
Hoare Lo

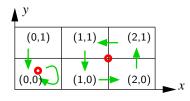
Common properties:

"functionality" of a sub-graph Special role of "feedback loops"



- positive : multistationnarity (even number of)
- negative : homeostasy (odd number of)





Characteristic properties :
$$\begin{cases} (x=2) \Longrightarrow AG(\neg(x=0)) \\ (x=0) \Longrightarrow AG(\neg(x=2)) \end{cases}$$

They express "the positive feedback loop is functional" (satisfaction of these formulas relies on the parameters $K_{...}$)

Model Checking

master BBC

ean-Pau

R. Thom

Software Engineeri

Hoare Logi

- Efficiently computes all the states of a state graph which satisfy a given formula : $\{ \eta \mid M \models_{\eta} \varphi \}$.
- Efficiently select the models which globally satisfy a given formula.

Intensively used:

- to find the set of all possible discrete parameter values
- to check models under construction w.r.t. known
 behaviours (one often gets an empty set of parameter values!)
- and to prove the consistency of a biological hypothesis

CÔT D'AZI

CTL to encode Biological Properties

master BBC

Jean-Paul Comet

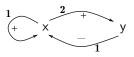
R. Thoma

CTL Software

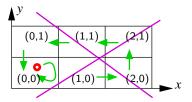
General Ichema

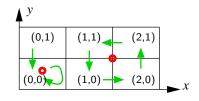
Common properties :

"functionality" of a sub-graph Special role of "feedback loops"



- positive : multistationnarity (even number of)
- negative : homeostasy (odd number of)





Characteristic properties : $\begin{cases} (x=2) \Longrightarrow AG(\neg(x=0)) \\ (x=0) \Longrightarrow AG(\neg(x=2)) \end{cases}$

They express "the positive feedback loop is functional" (satisfaction of these formulas relies on the parameters $K_{...}$)

CÔTE D'AZUR

Model Checking for CTL

master BBC

ean-Paul Comet

Thomas

oftware ingineering

General Schema Computes all the states of a discrete state graph that satisfy a given formula : $\{ \eta \mid M \models_{\eta} \varphi \}$.

Idea 1: work on the state graph instead of the path trees. Idea 2: check first the atoms of φ and then check the connectives of φ with a bottom-up computation strategy. Idea 3: (computational optimization) group some cases together using BDDs (Binary Decision Diagrams).

Example: $(x = 0) \implies AG(\neg(x = 2))$

Obsession: travel the state graph as less as possible

 $(x=0) \implies AG(\neg(x=2))$

master BBC

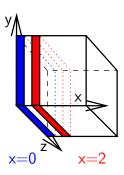
Jean-Paul

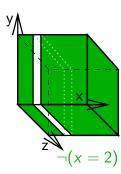
R. Thomas

CTL Software

General

Hooro Logi





and

$$AG(\neg(x=2))$$
?

... one should **travel** <u>all</u> the paths from any green box and check if successive boxes are green : too many boxes to visit. Trick : $AG(\neg(x=2))$ is equivalent to $\neg EF(x=2)$ start from the red boxes and follow the transitions backward.

Formula = Model-Experiment Link

master BBC

Jean-Pau

R. Thoma

Software Engineering

General Schema Formulas are valid or invalid in relation to a set of given traces starting from a given state.

They can be compared with

- all possible traces of the theoretical model
- all known experiments
- ⇒ They are therefore the link between models and biological objects.

Consistency of the epigenetic hypothesis

master BBC

Jean-Paul

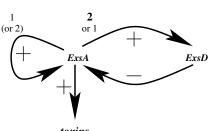
R. Thom

CTL

Software Engineering

General Schema

Hoare Logic



- 2 possible stable states :
 - $(EXsA = 2) \Longrightarrow AX AF(EXsA = 2)$
 - $(EXsA = 0) \Longrightarrow AG(\neg(EXsA = 2))$
- Question 1, consistency: proved by Model checking 8 models among 648, automatically extracted.
- Question 2, and in vivo?

A simple example

master BBC

ean-Paul Comet

Thom

ftware

eneral

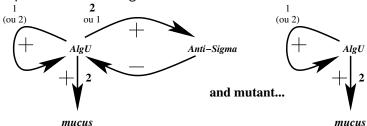
loare Logic

- Phenotype modification, terminology :
 - genetic modification : heritable and irreversible (mutation)
 - epigenetic modification : heritable but reversible
 - Adaptation : non-heritable and reversible
- Biological questions :
 - Is cytotoxicity (and/or muco-toxicity) in the bacterium *Pseudomonas aeruginosa* epigenetic in nature?
 - [→ Cystic Fibrosis]

Mucoid Pseudomonas aeruginosa

master BBC

wild pseudomonas aeruginosa:



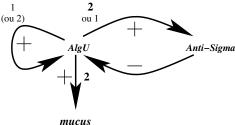
Epigenetic hypothesis (i.e. without mutation)

- \rightarrow The positive cycle is functional in spite of the negative cycle, with one state non-mucoid and the other mucoid.
- → An external signal (produced by the diseased lung) could potentially switch AlgU from the low state to the high state.
- \rightarrow Selection pressure then favours mutants in the mucosal environment \Rightarrow New perspectives for therapy.

Test $(AlgU = 2) \Rightarrow AG (AlgU = 2)$

master BBC

• AlgU = 2 cannot be checked directly, but mucus = 1 can



- Lemma : $AG(AlgU = 2) \Leftrightarrow AF AG(mucus = 1)$
- (... Computer-aided proofing ...)

$$ightarrow$$
 Experiment : (AlgU = 2) \Rightarrow AF AG(mucus = 1)

Validating the epigenetic hypothesis

master BBC

- Question 2 = Validate the stability of the two states in vivo.
- Non-mucoid state : $(AlgU = 0) \Rightarrow AG(AlgU < 2)$ A bacterium with its basal level of AlgU will not spontaneously become mucoid : validated daily
- Mucoid state: $(AlgU = 2) \Rightarrow AX AF(AlgU = 2)$
- Working hypothesis : AlgU can be brought to saturation, not measured
- Experimental design: pulse AlgU and then, after a transition period, test whether mucus production continues pulse de AlqU puis après une phase transitoire, tester si la production de mucus persiste (←⇒ check for hysteresis)
- Experimental designs can be generated automatically

 $(AlgU = 2) \Rightarrow AF AG(mucus = 1)$

master BBC

True $A \Rightarrow B$ False False True True False True True

Karl Popper:

Validate = attempt to refute

So A false is useless So start with a pulse...

Pulse allows to reach initial state AlgU = 2. Otherwise we would have to establish a lemma: $(AlgU = 2) \Leftrightarrow (something achievable)$

General form of a test:

(something achievable) \Rightarrow (something observable)

Plan

master BBC

lean-Pau

R. Thomas

Software Engineering

General Schema

Hoore Log

- Discrete models for gene networks according to René Thomas
- 2 CTL
- 3 Techniques of software testing
- 4 General Schema for BRN
- 6 Genetically modified Hoare logic, and examples

Selection of experimental plans

master BBC

lean-Paul Comet

R. Thon

Software Engineering

General Schema

- $\Phi = \{\varphi_1, \varphi_2, \dots \varphi_n\}$ and M =
- Set of formulae resulting from the hypothesis : $Th(H) = \{ \psi \mid \Phi, M \models \psi \}$
- Observable formulae : Φ_{obs} { $\psi \mid \psi$ of the form "achievable" \Rightarrow "observable" }
- Problem : $\Phi_{obs} \cap Th(H)$ is infinite \rightarrow Selecting "Revealers" in $\Phi_{obs} \cap Th(H)$
- P. aeruginosa : By luck, there are 2 observable formulae $\psi_1, \psi_2 \in \Phi_{obs} \cap Th(H)$ such that $\{\psi_1, \psi_2\} \models \Phi$
- General computer science solution: unfolding techniques
 (\(\simeq \) case-by-case reasoning) should make it possible to
 make explicit the assumptions made when limited to a
 fixed number of experiments.

Techniques of software testing

master BBC

ean-Paul

R. Thomas

Software Engineering

chema

Similar problem = does the software meet its specification? Infinite number of possible test scenarios, select revealing ones Solution= divide into scenario domains

Behaviour assumed to be "uniform" within a domain

- Formula unfolding is used to divide the domains
- Probabilistic approach: few unfolding, few (but large) domains, probabilistic drawing of many tests in each domain.
- Deterministic approach : many unfoldings, small domains, selection of a single test per domain.

99% of defects can be detected automatically

CÔTE D'AZUR

Selection of experimental plans

master BBC

Jean-Paul Comet

R. Thomas

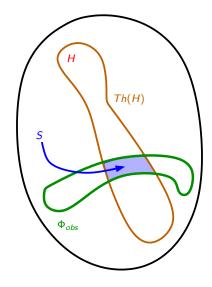
Software Engineering

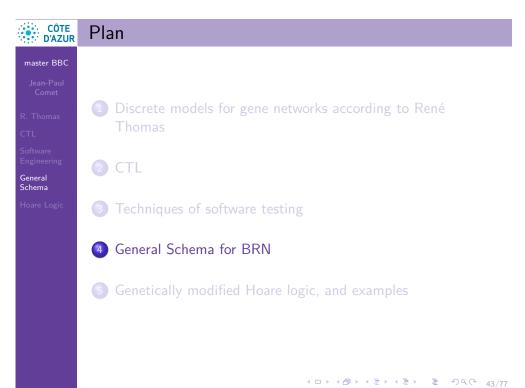
General Schema • *H* : hypothesis

- Φ_{obs} : possible experiments
- *Th*(*H*) : logical consequences of *H*
- *S* : experiments in relationship with *H*

Refutability : $S \Rightarrow H$

The set *S* is infinite... Choice of experiments in *S*? ... optimizations

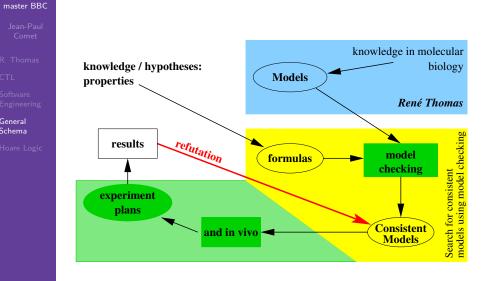




CÔTE D'AZUR General Schema for BRN

General

Schema

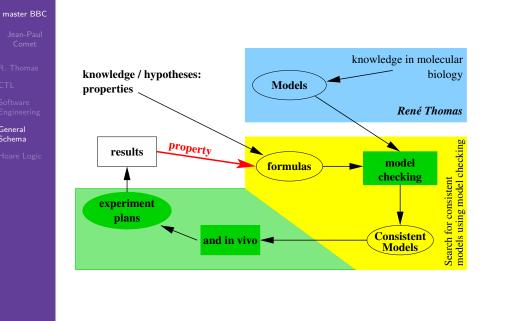


CÔTE General Schema for BRN D'AZUR master BBC knowledge in molecular knowledge / hypotheses: biology **Models** properties René Thomas General Schema Search for consistent models using model checking results model formulas checking experiment plans Consistent and in vivo 🔫 Models

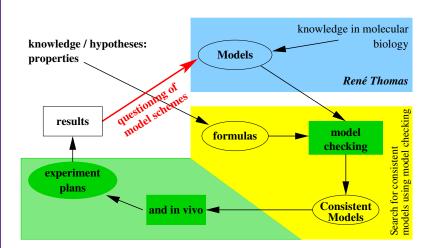
CÔTE D'AZUR General Schema for BRN

General

Schema



Hoare Logi



0

Choose an experiment

master BBC

lean-Pau Comet

R. Thoma

Software

General Schema

Hoare Logic

• $M = \{M_1, M_2, \dots, M_m\}$ $F = \{F_1, F_2, \dots, F_f\}$ and F_1 F_2 F_f M_1 1 1 0 using model checking: 0 Mэ 1 0

• If the models are equi probable, we implement F_i which balances the 2 sets

 M_m

$$E_i = \{M_i | M_i \models F_i\}$$
 and $\overline{E_i} = \{M_i | M_i \not\models F_i\}$

0

1

 \bullet otherwise F_i which balances the 2 probabilities

$$p(\{M_i|M_i \models F_i\})$$
 and $p(\{M_i|M_i \not\models F_i\})$

In fact, we're looking to minimize $E[Size ext{ of set after exp.}]$

- $min(|E_i| \times |E_i| + |\overline{E_i}| \times |\overline{E_i}|) = min(|E_i|^2 + (N |E_i|)^2)$
- $min(N^2 2N|E_i| + 2|E_i|^2)$
- minimum in N/2

Automatic extraction of experiment patterns

master BBC

Jean-Paul Comet

. Thomas

Software

General Schema

loare Logic

- Given a set of models
- Given a set of models Given a set of possible experiments (in the form of formulas)
- Questions :
 - What experiment must be performed to reduce the set of consistent models? (equiprobable / non equiprobable models)
 - Ditto for *n* experiments (order, decision tree)?
 - Ditto with cost?

CÔTE D'AZUR

Choosing a complete strategy (1)

master BBC

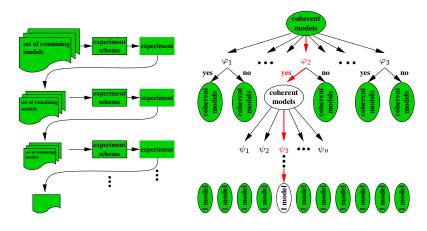
ean-Paul Comet

R. Thomas

Software

General Schema

Hoare Logic



Choosing a complete strategy (2)

master BBC

lean-Paul

. Thomas

CTL

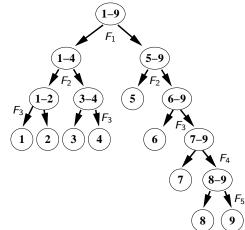
General Schema

. .

• The previous strategy doesn't give the minimum depth tree.

• Ex: 9 models; 5 formulas, min. height = $log_2(9) = 4$

	F_1	F ₂	F ₃	F ₄	F_5
M_1	1	1	1	0	0
M_2	1	1	0	1	1
M_3	1	0	1	0	1
M_4	1	0	0	1	0
M_5	0	1	0	0	0
M_6	0	0	1	0	0
M_7	0	0	0	1	0
<i>M</i> ₈	0	0	0	0	1
<i>M</i> ₉	0	0	0	0	0
	4/5	3/6	3/6	3/6	3/6



Thanks to S. Vial for this example

Choosing a complete strategy (4)

master BBC

Jaan Davil

. Thomas

Software Engineerir General

Schema

	Temporal	Coherent
	formulas	models
1	$x = 0 \Rightarrow$	1, 3, 6, 7,
	AXAF(x=0)	8, 9, 10
2	$x = 2 \Rightarrow$	1, 2, 3, 4,
	AXAF(x = 2)	5, 7, 10
3	$x = 1 \Rightarrow$	1, 3
	AXAF(x = 0)	
4	$x = 1 \Rightarrow$	7, 10
	AXAF(x=2)	
5	$y = 0 \Rightarrow$	1, 2, 3, 6
	AXAF(y=0)	1, 2, 3, 6

If you don't want to:

- choose a discriminating formula at random
- choose a formula that is easy to implement in vivo (cost)
- adjust this choice according to intuition
- choose the formula that best cuts M

Using the min-max algorithm to optimize selection :

- determine observable formulas
- 2 limit tree depth (here, prof = 3)
- find the tree for which the cost is minimal

CÔTI D'AZU

Choosing a complete strategy (3)

master BBC

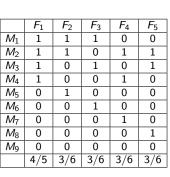
Jean-Paul

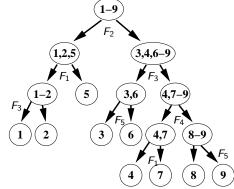
Thomas

Software

General Schema

oare Logic





Choosing an optimal decision tree = NP-complete problem (reduction to the 3-DM problem, L. Hyafil and R.L. Rivest [1975])

CÔTE D'AZUR

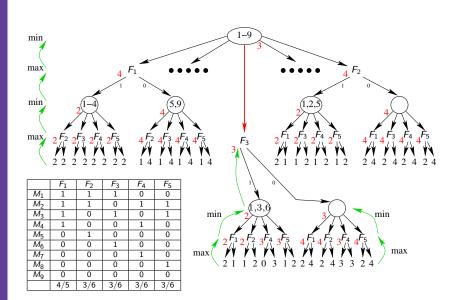
Choosing a complete strategy (4-b)

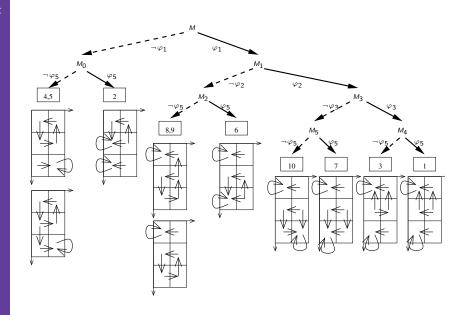
master BBC Jean-Paul Comet

. Thomas

Software Engineering

General Schema





CÔTE D'AZUR

Semantics for Thomas-Snoussi

master BBC

Jean-Pau Comet

R. Thoma

Software Engineerin

General Schema • ODE system $\frac{dx_3}{dt} = (k + k_1 \cdot \mathbf{1}_{x_1 \to x_3} + k_2 \cdot \mathbf{1}_{x_2 \to x_3}) - \lambda \times x_3$

• Discretisation :

1 1

• Sum of positive numbers : Snoussi conditions :

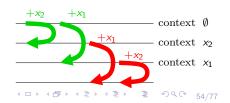
$$\forall a \in \forall G^-(x), \forall \omega \subseteq G^-(x), K_{x,\omega} \leq K_{x,\omega \cup \{a\}}$$

Everywhere, the addition of a resource cannot reduce the the attractor

• Consequence : XOR is not possible

 $K_{x_3,x_1x_2}=0$

$$x_1$$
 x_2 $X_3 = x_1 \text{ XOR } x_2$
 0 0 $K_{x_3} = 0$
 0 1 $K_{x_3,x_2} = 1$
 1 0 $K_{x_3,x_1} = 1$



CÔT D'AZI

Semantics of signs

master BBC

Jean-Paul Comet

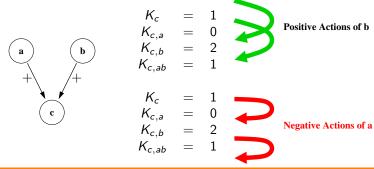
R. Thomas

Software

General Schema

Hoare Logic

Signs and parameters



Relationship between signs and parameters

CÔTE D'AZUR

Another possible semantic

master BBC

Jean-Pau Comet

. Thomas

oftware ingineering

General Schema

oare Logic

- Everywhere, the addition of a resource cannot reduce the the attractor
- There is a configuration where the addition of a resource creates an increase in the attractor

$$\forall a \in \forall G^{-}(x), \exists \omega \subseteq G^{-}(x), K_{x,\omega} < K_{x,\omega \cup \{a\}}$$

- The sign thus becomes a constraint on the parameters.
- Notation : $+_{obs}$, $-_{obs}$ to be distinguished from $+_{snoussi}$, $-_{snoussi}$