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Abstract

It is becoming a routine task to build models of increasing complexity about
a given gene network. While available data on the connectivity between
elements of the network are more and more numerous, the kinetic data of the
associated interactions remain difficult to interprete in order to identify the
strength of the gene activations or inhibitions. This parameter identification
problem constitutes the cornerstone of the modelling processes. In this article,
we show that some information about the elapsed time that takes a trajectory
between two points (and that can be experimentally measured) can be of
great interest for constraining the parameters of the model. It brings us to
set out various frameworks of hybrid modelling (where a model is defined as
a combination of a qualitative model with additional continuous variables) in
which it is possible to compute elapsed time of trajectories while maintaining
powerful automated reasoning capacities. This chapter is an overview of the
main formal frameworks able to treat activation or inhibition delays between
genes.

1 Introduction

Computational modelling of gene regulatory networks aims at deep under-
standing of how their components are controlled, thus allowing the prediction
of a set of non-obvious behaviours that can be experimentally tested. Un-
fortunately, while available data on the interaction graph between genes are
more and more numerous, the kinetic data allowing us to identify the sensible
parameter values are difficult to obtain experimentally and they require many
indirect reasonings. This parameter identification problem constitutes the
cornerstone of the modelling activities. More precise the available informa-
tion about the dynamics of the system, more precise can be the model. But
precision is not the main criterion. If the precision of the model is higher
than the one of the knowledge of the biological system, the precision given
by computer simulations is only a consequence of an arbitrary choice of
parameter values. Qualitative models where parameters are easier to identify
constitute the good compromise.

This comment motivated some researchers to develop methods where this
identification problem is tractable. In particular René Thomas’ discrete mod-
elling [26] of gene regulatory networks (GRN) is a well-known approach to



study the dynamics resulting from a set of interacting genes. It deals with
some discrete parameters that reflect the possible targets of trajectories. Those
parameters are a priori unknown, but they can generally be deduced from a
well-chosen set of biologically observed trajectories.

Besides, it neglects the time delay necessary for a gene to pass from one
level of expression to another one, whereas information on the time necessary
for the system to go from one state to another one is often experimentally
available. For example, time used by the system to cover a whole turn of a
periodic trajectory (e.g. circadian cycle) is often available. Time can also be
an abstract time such as the current state of accomplishment within a phase
(e.g. cellular cycle where “time” is connected to the measure of the mass
of the cell). Such an information is not used to face up to the parameter
identification problem in the “standard” Thomas’ framework without delays.
Such kind of information motivates several researchers to propose formal
frameworks where time is explicit.

Hybrid extensions of the discrete approach of R. Thomas make time ex-
plicit: New parameters, i.e. delays mandatory for a gene to go from a dis-
crete abstract level to another one, allow the determination of time along a
trajectory. Hybrid modelling frameworks preserve powerful computer-aided
reasoning capabilities. Adding delays, the identification problem is more dif-
ficult because of the increased number of parameters. Nonetheless computer
is able to reject a large class of parameter values.

So, hybrid models (where the levels of expression of each gene remain
abstracted into a finite number of possible values but where the delays elapsed
inside each discrete level are continuous real numbers) seem to be the best
trade-off between precision and automated reasoning capabilities :

e Differential equations give a full continuous precision both on the con-
centration level of the gene products and on the time along a trajectory,
but parameter values are almost impossible to identify precisely with
respect to the experimental and measurement capabilities in biology,
and computers are unable to perform proofs on these models, they only
perform simulations.

e The discrete approach (so called “logical approach”) of René Thomas
provides an easy way to identify, exhaustively and using computer proofs,
the sensible parameter values, but the discrete models give rise to some
trajectories which cannot be observed biologically because the in vivo
delays make them impossible.

e [nvivo cell models are somehow “in between” the differential equation
models and the discrete models:

— The number of molecules produced by a gene is finite and it can
sometimes be very low, thus, the continuous differential models
induce an abuse of precision (which can exhibit some limit be-
haviours that do not exist in vivo)
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Figure 1: The incoherent type 1 feedforward loop (I11-FFL)

— The number of molecules produced by a gene is most of the time
much higher than the number of discrete levels in the Thomas’
models, thus, discrete modelling is a rough approximation.

It appears to be possible to define adequate hybrid frameworks for the mod-
elling of gene networks, but the task is not so easy. Many obstacles have been
encountered by us and our colleagues. This chapter is an overview of the main
techniques that have been proposed; it shows the main obstacles and gives a
picture of the current state of the art in hybrid modelling of gene networks.

In this chapter we first present in Section 2 the basic discrete modelling
framework of gene regulatory networks without delays due to R. Thomas and
an extension based on formal methods from computer science which allow
the automation of the search of parameter values from experimentally known
behaviours. Section 3 focuses on the now classical framework of piecewise
linear differential equations and their relationships with discrete models. In
Section 4 we present the first hybrid approach due to R. Thomas consisting
in completing a discrete model by a set of clocks which measure the time
necessary to pass through a transition. Another dual approach has been also
proposed by Bockmayr and Siebert [23] and is sketched in Section 5. An
alternative hybrid framework is then proposed in Section 6 in which the delays
introduced in the hybrid models are coherent with the underlying piecewise
linear differential equation systems. Finaly we discuss in Section 7 some
parameter identification issues when considering hybrid models with delays.

In order to evaluate the consequences of introducing delays into the mod-
elling framework, we consider in the sequel some examples all based on a
particular graph pattern [22]: the feedforward loop - incoherent type 1 (I1-
FFL), see Figure 1, which is one of the most common network motifs. The
dynamics of such a pattern of interaction graph have been largely studied [20].
The feed-forward loop is composed of a transcription factor a that regulates
a second transcription factor ¢ and both a and c regulate a gene b. So, a
regulates b via two paths. When the signs of both paths (that is the product
of signs of each interaction along the path) are not equal, the feed-forward is
said incoherent [3].

Intuitivelly, it is straightforward to comprehend that when a is switched
on, both b and c are subject to change. If the delay mandatory for b to come
on is less than the one associated with ¢, then one can observe a transitory
presence of b before the presence of ¢ inhibits b. We will also see that the
situation is complex when a oscillates.



2 Discrete modelling of gene regulatory networks

René Thomas has introduced in the 70’s a qualitative approach [26] in order
to model gene networks and to predict their dynamics. Three main ideas
constitute the foundation of this qualitative approach.

2.1 Firstidea

The criterion to abstract the qualitative concentration levels of a gene product
is the number of other genes on which it acts in the network.

Such a criterion is based on the fact that, when a gene acts on another one,
the curve that represents the production rate of the target gene with respect to
the concentration level of the source gene is a sigmoid. For example, assume
that z is a gene that activates a gene y and inhibits a gene 2 as in Figure 2, then
the corresponding sigmoids allow us to consider two thresholds inside the
interval of all possible real concentrations levels of the z product: 71 and 7.
These two thresholds delimit three intervals within which the gene x behaves
uniformly. Each interval is conventionaly identified by an integer, which is
the number of genes on which x has an action. If we know the order between
the thresholds, then we can additionally label the action of x on a gene by
the number of the first interval that activates this action (lower left drawing of
Figure 2).

So, the interaction graph contains variables that mostly represent genes
(sometimes they represent abstract phenotypes or environmental conditions)
and it contains edges between variables that can be labelled by a sign (+ for
activation, — for inhibition) and by an integer threshold.

2.2 Second idea

At a given global state of the network, the concentration toward which a
gene product tries to go depends only on the inventory of the activations and
inhibitions that act on this gene.

Figure 2: Multivalued regulatory graph
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Figure 3: Parameters

For example, if w is an activator of x and v is an inhibitor of x and if we
assume that x has no other activator or inhibitor in the network, as in Figure 3,
then four cases have to be considered:

K, 1is the number of the interval toward which = tends to go when it has
no help at all from the considered network. It means that u does not
activate z, thus the current state of w is strictly less than the threshold of
(u — ), and v inhibits z, thus the current state of v is greater or equal
to the threshold of (v — x).

K, is the number of the interval toward which x tends to go when it benefits
only from the help of w. It means that the current state of u is greater or
equal to the threshold of (v — z), and the current state of v is greater
or equal to the threshold of (v — x).

K, 1s the number of the interval toward which x tends to go when it benefits
only from the help of v. It means that the current state of w is strictly
less than the threshold of (v — z), and the current state of v is strictly
less than the threshold of (v — z).

K, 4 1s the number of the interval toward which x tends to go when it
benefits both from the help of « and from the help of v. It means that
the current state of u is greater or equal to the threshold of (v — x),
and the current state of v is strictly less than the threshold of (v — x).

It is also possible that a gene influences itself in a given network, neverthe-
less auto-regulations do not change the approach at all. For each state, the
parameters K ... define the vector state toward which the system tends to go.
Figure 4 gives a small example of gene network where we have arbitrarily
chosen the parameters as follows: K, = 0, K, , = K, , = K, ., = 2 and
K,=K,,=1

2.3 Third idea

The variables of a network are asynchronously updated toward their param-
eters, crossing at most one threshold.

The asynchronous updating is motivated by the fact that a threshold rep-
resents a very thin region of the real concentration space for each variable,
thus, the probability that several variables cross their thresholds exactly at
the same time is negligible. Consequently, when the network is in a state
such that several variables can change (i.e., such that several variables have
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Figure 4: Table of focal points

a concentration level belonging to an interval which is different from the
interval pointed by the current parameter /...), there are as many possible
next states as such variables. From such a state, the system can choose to
modify any one of these variables.

For example, Figure 5 shows the state graph extracted from the network
given in Figure 4. The left hand side of the figure shows what would happen if
we followed a naive synchronous updating that would reflect the table of focal
points: the situation would be biologically incredible for two reasons. The
first reason, as already mentioned, is that = and y would be updated at the same
time for example from the state (1,0). The second reason is that from the state
(0,0), the variable  would cross two thresholds, which is contradictory with
the fact that we are modelling a continuous change of concentration levels.
The right hand side of the figure provides the correct abstract behaviours of
the system. It shows in particular that it is possible to reach the stable state
(0,1) from the initial state (0,0).

2.4 The boolean framework

The boolean framework was the first framework introduced by René Thomas.
It modifies the first idea as follows: the product of a gene can be “present”
or “not present” in the cell. It means that there is only one threshold for
each gene; the two other ideas (the parameters K and the asynchronous state
graph) remain unmodified.
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Figure 5: Synchronous and asynchronous state graphs
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Figure 6: Boolean feedforward

Let us consider the “type 1 incoherent feedforward loop” introduced in
Figure 1. As we are in the boolean framework, every threshold is equal to 1.
Moreover, if we want that b needs the presence of its activator a and the
absence of its inhibitor c to be synthesized, then a unique choice is possible to
make all the interactions of the graph functional, see the parameter valuation
in Figure 6. Remember that, in the K. parameters, the subscript ¢ means
that ¢ does not pass the threshold, as it is an inhibitor of b. Lastly, the variable
a being the entry point of the feedforward pattern, we do not consider K, yet.

The question that we will address on this example all along the article is
the following: what shall be the behaviour of b in response to the input signal
offered by a ?

Obviously, if a is equal to O for a sufficiently long time, both b and ¢ will
also be equal to 0, because b and ¢ need a as a resource in order to reach the
state 1; see Figure 7. Let us assume that the signal a goes from O to 1. Then,
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Figure 7: Asynchronous state graph for type 1 incoherent feedforward loop

the current state will move to (a = 1,b = 0,¢ = 0): the square situated at
the lower left corner of the plan @ = 1 of Figure 7. The new stable state
is b = 0 and ¢ = 1 but, due to the asynchronous semantics, there are two
different paths from the current state: either we go directly to the stable state
and b remains constantly equal to 0, or we follow the other path where b is
transitorily equal to 1, before being inhibited by c.

Under which conditions will b always signal the presence of a via a tran-
sitory production ? May-be the conjunction of resources for the variable b is
not optimal, e.g., would a disjunction be better ? or any other values for the
K. parameters ?

This is more generally the usual question of identification of the parameter
values, according to some biologically known behaviours or some hypothet-
ical behaviours. Here, the example would be small enough to enumerate all



the possible parameter values, to generate the state graphs and study for each
of them the answer of b. It is of course not the case when addressing real size
gene networks and so, formal methods from computer science are required to
perform computer-aided identification of parameters.

2.5 Temporal logic and automatic model checking

Temporal logics are languages that allow us to formalize biologically known
behaviours or hypothetical behaviours in such a way that computers can au-
tomatically check if a model exhibits those behaviours or not. The building
blocks of a temporal logic are atoms, connectives and temporal modalities.
Let us here consider the Computation Tree Logic [12, 17], CTL for short,
which is the most common temporal logic:

e Atoms in our case are simple statements about the current state of
a variable of the network. For example equalities (e.g., * = 2) or
inequalities (e.g., x < lory > 1).

e Connectives are the standard connectives: negation (e.g., —(z = 0) is
the negation of the atom = = 0), conjunction (e.g., (z = 0) A (y > 1)),
disjunction (e.g., (z = 0) V (y > 1)), implication (e.g., (xr = 0) = (y >
1)), and so on.

e Temporal modalities are combinations of two types of information:

— Quantifiers: a formula can be checked with respect to all possi-
ble choices of paths in the asynchronous state graph (universal
quantifier, denoted by A), or one can check if it exists at least one
path choice such that the formula is satisfied (existential quantifier,
denoted by E).

— Discrete time elapsing: a formula can be checked at the next state
(letter X)), in some future state which is not necessarily the next
one (letter F'), in all future states (letter G) and a formula can
be checked until another formula becomes satisfied in the future

(letter U).
first character second character
A = for All path choices | X = neXt state
In short: F' = for some Future state
E = there Exists a choice | G = for all future states (Globally)
U = Until

For example, the formula ((z = 0) A (y > 0)) = A[(x = 0)U(y = 0)]
means that, starting from an initial state where x = 0 and y is strictly positive,
there will be a state in the future such that y = 0 and meanwhile, x will remain
equal to 0, whatever the choice of path. More generally, Figure 8 summarizes
the CTL semantics with the following conventions: we start from an arbitrary
initial state that constitutes the root of the tree; a blue arrow means that ¢
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Figure 8: CTL modalities

becomes true in the target of the arrow; a green arrow means that ¢ is not
satisfied in the target of the arrow; a red arrow means that v is satisfied both
in the source and in the target of the arrow.

One of the main advantages of CTL is that there are very efficient model
checkers, see for example [9]. A model checker is an algorithm that takes as
inputs a CTL formula and a state graph, and furnishes as output the subset of
states that satisfy the formula.

Model checking can be used to identify the parameters that are compatible
with the known or hypothetical behaviours [7]. SMBioNet is a software
platform where we can enter the influence graph between genes and where we
can enter CTL formulas that describe the known behaviours: it automatically
computes all the sets of parameter values that are compatible with both the
graph and the behavioural properties. Technically, SMBioNet generates all
the possible state graphs and performs model checking. Then, a model is
proposed if and only if all its states satisfy all the behavioural properties.

For our feedforward example, the transitory activation of the gene b can
be formalized in CTL as follows:

b=0ANc=0NAG(a=1)) = AF(b=1NAXAG(b=0))

It means that if the signal a becomes active when b and c are inactive, then b
will become active in the future, and then it will become inactive.
We have also assumed that « is able to control c:

(a=1Nc=0)= EX(c=1)
(a=0Nc=1)= EX(c=0)

It means that when a = 1 (resp. a = 0) ¢ can increase (resp. decrease). We
use £ X and not AX because the asynchrony can allow another variable to
cross a threshold before c.



When submitting the formula to SMBioNet, we discover that there is no
parameter values such that b always signals the switch of a by a transitory
change of value: the direct path from (a = 1,b = 0,¢ = 0) to (a = 1,b =
0,c = 1) seems unavoidable whatever the values of the parameters.

Nonetheless, if we assume for instance that the delay for a gene to act on
another gene is identical for all interactions in Figure 6, then a would start
both the expression of b and c almost at the same time, and only after another
delay, ¢ will switch b to 0. So, b will always signal the switch of a.

The paradox comes from the fact that the standard Thomas’ approach does
not take delays into account. The parameters K... control only the function-
ality of combined interactions, not the delays. So, the asynchrony of variable
updates always gives the possibility for a to activate c and then for ¢ to inhibit
b before the direct activation of b by a will take place. More generally, it may
also depend on the real initial state inside the square (¢« = 1,0 = 0,¢ = 0)
and it may also depend on the relative production speeds of b and c. Indeed
the standard Thomas’ framework has a rough notion of time: it is reduced to
the random scheduling of variable changes. This motivates the introduction
of delays into the modelling framework.

2.6 Logic programming with constraints

Before discussing the different ways to introduce delays into the Thomas’
framework, let us mention the importance of constraint solving for the pa-
rameter identification problem. The current platform SMBioNet exhaustively
generates the possible state graphs and checks on them the temporal proper-
ties. When time delays will be introduced, they will of course constitute addi-
tional parameter values which will need to be identified as well. Delays shall
be real numbers because time passes continuously, and consequently, an ex-
haustive enumeration of all the possible behaviours will become impossible.
Temporal properties will induce constraints on both the Thomas’ parameters
and the time delay parameters, in such a way that the set of solutions will
involve intervals of real time delays containing an infinity of points.

In the standard discrete framework of R. Thomas, L. Trilling has already
proposed to use logic programming with constraints in order to identify the
K... values [13]. More precisely, the method extracts all the parameter values
that make possible a given set of observed paths in the state graph. The
method has also been extended and implemented by F. Corblin [10] in the
same research team, and the results are impressive. Provided that the temporal
properties under consideration can be expressed via a finite number of paths
of fixed length, a few seconds of computing time are needed for problems
where SMBioNet needs several hours.

The idea is to specify, in the PROLOG language, the Thomas’ asynchronous
construction of the state graph, according to symbolic representations of the
K... parameters. Then, by specifying that a given path exists in the state
graph, PROLOG will generate the constraints on the parameters that permit



each transition of the path. Lastly, constraint solving algorithms try to exhibit
parameter values or to prove inconsistencies.

As an example, let us consider the path (b = 0,¢c = 0) — (b = 1,¢ =
0) - (b=1,c=1) — (b = 0,c = 1) in the plan @ = 1 as in Figure 7.
The first transition of the path generates the constraint (K, ,. > 0) because
the variable b goes from O to 1 when a and (the absence of) ¢ are resources
of b. The two other transitions generate similarly (K., > 0) and (K, < 1)
respectively. In order to ensure that b will always signal the presence of a via
a transitory switching on, one has to negate the existence of the path (b =
0,¢c = 0) — (b = 0,c = 1), which generates the negation of (K., > 0).
Lastly, constraint solving will trivially prove that the resulting global set of
constraints is inconsistent. The same computations must be done for all the
paths that exhibit a transitory production of b.

Of course, both constraint programming methods and model checking
methods give the same result and they both raise the same “delay paradox”
mentioned previously. The simple chronologic notion of random scheduling
of variable changes is not sufficient; we need an explicit notion of chronomet-
ric delays in the modelling framework.

3 Piecewise Linear Differential Equations

Since chronometric information is of great importance in the dynamics of the
modelled system, it seems natural to come back to the framework of differen-
tial equations because differential systems make the time explicit. Moreover
in this modelling framework, the trajectories are deterministic: from an initial
state, the whole trajectory can be computed.

Nevertheless, parameters of the differential equations are generally not
known and have to be determined. If we want to use knowledge on the time
that takes a particular trajectory between two points, in order to determine
unknown parameters, one has to explicite the relationship between elapsed
time along a trajectory and parameters. Thus the differential equation system
has to be solved. Generally, if the differential system has no particular shape,
the symbolic solving of the differential system is not possible and the large
number of variables makes appear additional difficulties. The computer tools
which are useful for simulations of such systems are nevertheless not well
adapted for this difficult task.

3.1 Piecewise Linear Differential Equations

To simplify this task, we can restrict the form of the differential system.
Snoussi [24] proposed to construct a piecewise linear differential equation
system: with each qualitative situation (that is when interactions does not
change) is associated a differential system which is easy to solve symbolically.
The way to construct such a system of differential equations can be sketched
as follows:



e With each node of the interaction graph is associated a variable of the
differential equation. This variable represents the concentration of the
associated protein.

e Each variable has a particular degradation rate. The degradation is
supposed to be proportional to the concentration of the protein (greater
the concentration, greatest the degradation).

e Each variable has a synthesis rate which depends on the activity of its
regulators (greater the number of activators, greatest the synthesis rate).

e Each predecessor of a variable (in the interaction graph) has an influ-
ence on the synthesis rate of the considered variable: if it is an activator,
the synthesis rate is increased when the regulator has a concentration
greater than the threshold associated with the interaction; if it is an
inhibition, the synthesis rate is increased when the regulator has a con-
centration smaller than the threshold, see Figure 9.

Figure 9: Example of a gene regulated by two activators and by one inhibitor.

The previous outline leads to the following differential equation system:

d i i i
o= kot Y kX Lng g+ Y K X Agco, | = i
JEA() JeI(3)

where A(i) (resp. I(7)) is the set of activators (resp. inhibitors) of 4, and
Ljcondition) 18 €qual to 1 if the condition is satisfied and equal to 0 otherwise'.
The first term is the synthesis rate which can be decomposed into three part:

° kg which is the basal synthesis rate,

e the contribution of activators (each activator contributes to the synthesis
rate when its concentration is greater than some threshold) and

e the contribution of inhibitors (each inhibitor contributes to the synthesis
rate when its concentration is less than some threshold).

"Let us remark that when a concentration is on a threshold, the contribution of the
associated action is not taken into consideration. It would be better to consider that the
differential equation is not defined on thresholds: one does not know whether the regulation
takes place or not. If one is interested in the precise behaviour of the system on thresholds, one
has to embed such a differential equation into the framework of differential inclusions [14].
This work has already been done in the context of gene regulatory networks [11].



Finaly v;z; represents the degradation. Such a differential system is called a
Piecewise Linear Differential Equation system, PLDE for short.

The previous differential equation system is based on the qualitative con-
tribution of each regulator. Unfortunately, even if the additivity of contribu-
tions is not put into question, the contribution of a regulator is not a discon-
tinuous step function. To improve the model, the set fonction 1,4 (resp.
1,4 can be replaced by a Hill function:

z" on
Hel@) =g (P H-(z) = W)

where 7 is the parameter of the Hill function which controls its roughness.

3.2 Coherence between PLDE and discrete models

Such a differential equation system has a deep relationship with the discrete
models of Section 2. Let us first remark that the thresholds allow a discretiza-
tion of the phase space: ranking the thresholds {6, ;| is a possible target of j}
for each variable j allows one to split the concentration space of j into differ-
ent subdomains numbered from O to b;. The discretization of the continuous
phase space is then defined by associating with each concentration state s, the
discrete vector characterizing the subdomain of s. Thus the parameter of the
discrete model K , is the discretization of the coordinate ¢ of the equilibrium
point of the differential system associated with the situation where w is the set
of regulators contributing to the synthesis rate:
i'™ coordinate of the ko + ZjeA(j)ﬂw k; + Zje](j)ﬁw k;

equilibrium point Y

If each contribution to the synthesis rate k;, is positive and if, for each ¢
and each w, K;, is equal to the discretization of the ith coordinate of the
equilibrium point, then there exists a transition from discrete state s; to s if
and only if there exists a trajectory of the differential system starting from the
domain associated with s; and going to the threshold separating this domain
from the domain associated with sy [24].

3.3 A feedforward loop controled by a positive auto-regulation

To study the behavior of an incoherent type 1 feedforward loop, we first
consider that the action of the transcription factor a does not change, that
is, that its level of concentration does not cross the threshold of one of its
interactions. The simplest way to study such a system is to consider that
the transcription factor a is also a regulator of itself, see Figure 10. This
positive auto-regulation leads to multi-stationarity [28] of a: if a is present
(resp. absent), it remains present (resp. absent). As in Section 2.4 we suppose
that b needs the presence of its activator a and the absence of its inhibitor ¢ to



Figure 10: Incoherent type 1 feedforward loop combined with a positive auto-
regulation of a.

be synthesized. Mathematical modelling suggested that the I1-FFL can show
two dynamical features [20] amongst whose a transient pulse of expression of
b. To verify this possible behaviour, let us build the corresponding differential
equation system:

%(t) = k§ + kilia>0,.) — Va-a(t)
é%_t(t) = kg + ki Ljase, ) + KL jeco,,) — 76-D(t)
d_tc(t> = k’g + kg]l[a>9a,c} — 'yc.c(t)

Nevertheless this differentential system does not express that b needs the
presence of its activator a and the absence of its inhibitor c to be synthesized.
It has to be modified to take into account the condition under which the
activation of b is effective: [(a > 0,5) A (¢ < 0.3)]:
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= k’g -+ kt(ll]]‘[a>9a,a] — ’ya.a(t)
= Ko+ kgc]l[(a>9a,b)A(c<ac,b)] — 7-b(1)
= kG + EiLase, ) — Ye-c(t)
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where k. is the contribution to the synthesis rate of b due to the presence of
a and the absence of c.

The global behaviour of such a system is driven by the values of parame-
ters. For example, for some values of parameters, the protein b is synthesized
before the action of the inhibitor takes place, see Figure 11-left, whereas for
some other values of parameters, the synthesis of b is not so visible, see

Figure 11-right. Let us remark that in both cases, the equilibrium point of

40 _ s

. . . k:b kb
variable b when a is present and c absent is then same: % 5 = o3 =

20. Both models lead to the same discrete model.

Thus the identification of parameters becomes a crucial step also in the
PLDE modelling framework, because a variation of parameters can lead to
different qualitative behaviours, see Figure 11. Moreover the values of ki-
netic parameters k£ are mandatory to deduce the sequence of domains the
trajectory passes through, which are also necessary to compute the time that
takes a trajectory passing through such a sequence of domains.

The first idea to overpass the parameter identification problem is to grope
for parameters until a set of parameters leads to a behaviour compatible with
available information about the trajectories. After having found a valuation of
parameters, simulations of the mathematical model are performed (several of
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Figure 11: Feedforward loop controled by a positive auto-regulation: accord-
ing to kinetic parameters, b can be activated before the effect of the inhibition
of ¢ or not. Left: 7, = 2 and k?, = 40 Right: 7, = 0.25 and k°, = 5.
Other parameters are identical for both simulations: ¢, , = 10.0, 8,;, = 21.0,
Oue = 20.0, 0cp = 10.0, 7o = Y. = 2, k§ = kb = k§ = 0.0, k¢ = 50.0,
kS = 25. Initial state is (15, 2, 2).
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them under perturbations) in order to evaluate its robustness, that is its abil-
ity to maintain its functions against internal and external perturbations [18].
Indeed, since robustness is one of the fundamental characteristics of biologi-
cal systems and has been demonstrated many times experimentally [19], the
evaluation of the robustness of the PLDE model is a indicator of its validity.
Nevertheless the evaluation of the robustness of the PLDE model does not
validate completely the model.

3.4 A feedforward loop controled by a negative loop

We now study the behavior of the incoherent type 1 feedforward loop when
the transcription factor a oscillates. The simplest way to study such a system
is to consider the interaction graph made of the incoherent type 1 feedforward
loop and of the negative loop (a = a’) containing the transcription factor a,
see Figure 12. The negative feedback loop leads to oscillations of a and a’

OT
a ,a » both are

needed
\_/ (I. ba
ea,a’v +

Figure 12: Incoherent type 1 feedforward loop combined with a negative loop.

under some conditions, in such a case, we say that the circuit is functional.
When the period of oscillation of a and a’ is sufficiently small, neither b nor



c is able to switch-on during a unique period. But if degradation rate is also
sufficiently weak, several period can lead to the activation of b, ¢ or both b and
c. The PLDE model can be easily written:

Gt = K+ ki<, ) — Va-a(t)
a ]{78/ —+ /{Zg/]l[a>9a7a,] — %/.a’(t)

(t) = kb4 k2L as0,,)n(c<0,)] — Vo-b(t)
dt (t> = k(c) + kccl]l[a>9a,c] - ’Yc-c(t)
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This differential system can lead to subtile behabiors. Let us first suppose
that oscillations of a and a’ are much faster than the increasing of b and c. Thus
the order of activation of genes b and c, is intermittent and several behaviours
can be obtained according to relative values of the synthesis and degradation
rates:

neither accumulation of b nor accumulation of ¢
accumulation of b but no accumulation of ¢

no accumulation of b but accumulation of ¢
accumulation of b and ¢, but ¢ is activated before b
accumulation of b and ¢, but b is activated before ¢

(U SNV T O R

Table 1: The different possible behaviours of the feedforward loop controled
by a negative loop.

Figure 13 shows the evolution of concentrations of 4 variables for some
parameter values. It is clear that this choice of parameter values corresponds
to the situation where both variables b and c increase because of the inter-
mittent order due to a: synthesis rate of b (resp. c¢) when a does activate
b (resp. c) is sufficiently high to allow, after a total oscillation period of
a, a little accumulation even after the second phase of the cycle when the
activation order is off. In other word, during each oscillation cycle of a, the
system creates more b than it degrades b. Such an accumulation of b and ¢
are due to low degradation rate but such values are nevertheless credible: the
permease in the lactose operon system is known to be degradated very slowly.
Moreover, in Figure 13, b increases faster than c. Thus b becomes present but
when ¢ becomes greater than the threshold of its action on b, variable b begins
to decrease and will no more be activated. Such a behaviour corresponds to
the situation 5 of the previous table.

Unfortunately, as said in the introduction, there does not exist an auto-
mated method to extract properties of kinetic parameters which have to be
fullfiled to allow the system to present any known dynamical property. We
then set out in the next section a hybrid framework based on the discrete one
which tries to mimics the different behaviours of PLDE systems.
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Figure 13: Incoherent type 1 feedforward loop combined with a negative loop:
the negative loop generates oscillations which allow b and ¢ to accumulate.

4 First hybrid modelling approach due to R. Thomas

To try to automate the parameter identification step for a timed model of a
gene regulatory network, it seems natural to propose to build a timed version
of the discrete approach since this discrete framework can be viewed as a
discretization of the PLDE framework. The refined modelling is based on
the use of delays of activation / inhibition to specify which variable is faster
affected by a change of its regulators. To be more precise, when an order of
activation / inhibition rises, the biological machinery starts to increase or to
decrease the corresponding protein concentration, but this action takes time.
Thus the differences between the values of delays of activation / inhibition
lead to decrease the non-determinism.

4.1 Qualitative states and clocks

This idea dates back to the book of Thomas and d’ Ari [27]: with each variable
is associated a clock which measures the elapsed time, and each transition
needs some delay to be passed over. The simulation of such a model can then
be sketched as follows:

1. The initial state is made of a discrete state and a initialisation of clocks
(generally each clock is set to 0).

2. According to the current discrete state, the clocks associated with vari-
ables whose focal point allows them to evolve (that is whose focal point
is placed outside the domain), run simultaneously at the same speed.

3. The next fired discrete transition is given by the clock which first reaches
its associated delay. If two delays are equal, that is if two clocks reach
their delays at the same time, non-determinism remains and several

0 : ‘ Thresholds: Degradations:



discrete transitions can be fired. In such a case, choose at random a
possible transition.

4. In the new state, some clocks are reset: the clock which allowed the
transition is reset to zero, but also each clock for which the order has
changed. For example, if in the previous state, the variable a was
subject to an decreasing order, but in the new state, it is subject to an
increasing order, its associated clock is reset also to 0.

5. Repeat steps 2, 3 and 4.

4.2 A feedforward loop controled by a positive auto-regulation

Depending of the delays associated with transitions, two behaviours can be
simulated: the first one allows the switch-on of variable b, while the second
does not allow it. Let us consider the boolean network described in Sec-
tion 2.4 completed by the auto-regulation of a. The functionality of the auto-
regulation of a, which does not allow a to evolve from its initial state, leads
to following values of parameters concerning variable a:

Ko=0 Kuo=1

Other parameters are the same, see Figure 6. Because «a is not able to evolve
from its initial state, the state graph is the one of Figure 7. The initial state
is the boolean state (¢ = 1,b = 0,¢ = 0) combined with an initialization of
clocks where each clock is set to zero. On one hand, if the delay mandatory
to activate c is less than the delay mandatory to activate b, then b will never be
switched on because the inhivitor ¢ becomes rapidly effective. On the other
hand, if the delay to activate c is greater, c gives b the time to be switched on
before becoming an effective inhibitor.

We proposed in [2] a formalisation of such a modelling approach which
is based on two types of parameters, d; (x) and d; (x), which represent the
time delays required to change the expression level of a variable v from level
x to x + 1 and from level x to x — 1, respectively, as shown in Figure 14.
Then, we add to each variable v a continuous clock h, whose speed at state
1 1s 1 (when variable v can evolve) or O (if it cannot). At a given qualitative
state u, if the concentration of v is increasing (resp. decreasing), then, when
h, reaches d (u(v)) (resp. d, (u(v))), the level of v becomes p(v) + 1 (resp.
p(v) — 1) and the clock h, is reset.

The temporal model described above belongs to the class of the so-called
stopwatch automata [8] which is a specific type of linear hybrid automata [4,
5], LHA for short. LHA are finite state automata augmented with real vari-
ables whose values evolve continuously in a discrete state. Whereas the values
of the continuous variables can be affected by discrete transitions between dis-
crete states, evolutions of continuous variables are lines inside a discrete state.
Linear hybrid automata can be subject to a reachability analysis. However,
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Figure 14: Evolution of a gene’s expression (a), its schema in the discrete
model (b) and in its extension with time delays (c).

in general, the reachability problem for linear hybrid automata is undecid-
able [25].

In such a modelling framework, the parameter identification problem still
remains the cornerstone of the approach. The determination of discrete pa-
rameters (the K, ) can be driven by model checking as shown in section 2.5.
It then remains to identify the delays. Since time delays are real numbers, it
cannot exist any enumeration method (SMBioNet-like) which tries all possi-
ble combinations of delay values and retains only those which are coherent
with knowledge about the behaviour. One then have to turn to constraints in
order to express the conditions under which the known properties are satisfied
by the model.

Let us focus on the example of the feedforward loop controled by a posi-
tive auto-regulation.

1. Let us suppose that available knowledge about the system allows one
to state that when « is on, b is switched on before c. Afterwards b is
switched off (because c becomes present) n minutes after the switch-
on of a. In other words, the discrete path (1,0,0) — (1,1,0) —
(1,1,1) — (1,0,1) has to be possible in the model with delays.

e (1,0,0) — (1,1, 0) leads to the constraint

6, (0) < 6;(0)

e Moreover the time that takes a trajectory from discrete state (1,0, 0)
to (1,0,1),is &, (0) + (65(0) — ;(0)) + (4, (1)). Then we also
have the following constraint:

6(0) + 4, (0) = n minutes.

2. Let us now consider that the switch-on of b does not occur. The deduced
constraint becomes:

0:(0) < 0,;7(0)



Such kind of constraints can be automated by the use of some computer
science tools dedicated to analysis of linear hybrid automata. For example
we used HyTech [16] for two purposes: (1) to find automatically all paths
from a specified initial state to another one and (2) to synthesize constraints
on the delay parameters in order to follow any specific path.

This modelling framework then seems to allow the modeller to take into
account information about observed time. Indeed the parameter identification
can be decomposed into two parts: the valuation of discrete parameters can be
found using an exhaustive approach like SMBioNet, and, the delay parameters
can be found using HyTech which allows the building of constraints.

Nevertheless, such a modelling framework present a little drawback: the
succession of intermittent orders of synthesis of a variable cannot lead to its
global increase. This drawback is explicit in the following example.

4.3 A feedforward loop controled by a negative loop

Let us recall that a and @’ oscillate with a period which is much less than
the delays mandatory for the swich-on of variables b and c. Concentrations
of b and c are then increasing but at each cycle of a, the counter-order of
decreasing of b (resp. c) resets the clock h; (resp. h.) before the clock has
reached the threshold 6, (0) (resp. 0. (0)). Then neither hj, nor h, will reach
the threshold leading to the switch-on of the corresponding variable. This
modelling framework can only represent the situation where neither b nor ¢
can switch-on, case 1 of Table 1.

Thus this modelling framework makes possible the automation of param-
eter identification, and allows the distinction of two different behaviours (b
can be switched-on or not) amongst the 5 possible ones. Nevertheless, it does
not allow the representation of accumulation.

5 Product of automata: an alternative approach

The HyTech model checker performs symbolic model checking on automata
and we have shown that this extension of model checking allows for the
extraction of parameter constraints from some given paths. Another way
to use symbolic model checking in order to identify the parameters and the
delays of a gene regulatory network is to perform products of automata. The
advantage of this kind of approach is that the computation of a product of
automata does not only furnish a resulting automaton; it also systematically
labels the states and the transitions of the automaton by some formulas that
define the conditions under which the transitions can be fired. Then, provided
that we adopt an adequate “hybrid” temporal logic, there are model check-
ing algorithms able to manage symbolic values for some parameters. They
compute the constraints under which a given temporal formula is satisfied.



Figure 15: Timed automaton for one level

Using the UPPAAL model checker

In [23], Heike Siebert and Alexander Bockmayr made use of products of
automata in order to formalize a hybrid modelling framewok for delays in-
spired by the approach of René Thomas. The automata that play the role
of state graphs in this framewok are rather heavy, but they should be con-
sidered as purely technical mathematical objects, which will be submitted to
UPPAAL [6].

The main idea is the following. For each variable v of the network, there
is a clock called h,, and for each possible discrete state of this variable, there
are three possible behaviours with respect to delays:

e cither the parameter K, ,, (Where w is the set of resources of v according
to the current state of the system) is greater than the current value of v,
in which case the clock A, measures the time of increasing of v;

e cither the parameter K, , is lower than the current value of v, in which
case the clock h, measures the time of decreasing of v;

e or the parameter kK, is equal to the current value of v, in which case
the clock h, is off.

This principle is reflected by an “atomic” automaton structure containing
three discrete states (called locations in the timed automata framework), as
shown in the bold part of Figure 15. The central location is intuitively the
default location for the state v = = and every transition that changes the value
of the variable v goes to this central location. Then, if K, , = v is false,
the suitable bold transition goes immediately to the consistent location (either
K,., <vor K,, > v) and the clock h, starts from 0.

The product of these atomic automata is managed in such a way that
the set of resources w is properly computed in the product automaton. The
formulas are rather complex, but they simply reflect the formal definition of
the Thomas’ framework. Lastly, as shown in the figure, if the clock h, reaches
its limit delay d; (z) (resp. d, (z)) then the transition to v = x + 1 (resp.
v = x — 1) is fired, and similarly, if some other variable change induces a



different comparison of K, with respect to x, then the location is pulled
back to the central one.

This technical stuff being done, UPPAAL can be used in order to extract
the constraints generated by some temporal formulas, which can for example
reflect knowledge on the biological system about time delays to go from one
state to another state. Let us remark that this framework still does not treat
accumulation, because when the location is pulled back to the central one, it
resets automatically the clock to 0.

6 Hybrid models inspired by PLDE

We saw that situations where accumulation plays a crucial role for the global
behaviour are difficult to take into consideration. Nevertheless we want to
overpass these difficulties and propose a new hybrid modelling framework
which takes into account accumulation.

The first attempt to propose such a hybrid modelling framework [1] was
based on the discrete model. With each discrete state, is associated a temporal
zone, which makes hybrid the models. The temporal zone is defined as a
hypercube whose dimension is the number of variables. The length of the
hypercube associated with state x in the direction v is d () + df (u): it
corresponds to the sum of the time mandatory to pass to the level p, + 1
under increasing order and the time mandatory to pass to the level p, — 1
under decreasing order. Because of the presence of two delays associated
with a same domain and a same variable, accumulation can be represented
but the decreasing and the decreasing of a variable subject to accumulation
take place at the same speed, this drawback has been discussed in [1], see
Figure 13 inside.

6.1 From PLDE to hybrid models

Since PLDE modelling framework is able to represent such accumulations,
we present in this section yet another hybrid modelling framework based on
PLDE which partially allows the building of constraints leading to a partic-
ular behaviour. The only new fundamental idea is to express a relationship
between delays of the hybrid model and the PLDE model: the delay d ()
(resp. d; (u)) is an approximation of the time necessary to variable v to cross
the domain from the lower bound to the upper bound (resp. from the upper
bound to the lower one).

In other words, if the PLDE is known, it becomes easy to build the hybrid
model since

e the thresholds defining the discretization of the PLDE are given,
e the parameters K are the discretization of equilibrium points,

e the delays parameters are deducible from the PLDE.



More interesting is the inverse translation: If a hybrid model is supposed
to represent a system, is it possible to construct a PLDE system whose be-
haviours are coherent with the possible paths in the hybrid model ? To answer
this question, the work of Snoussi [24] has to be done again in the hybrid
context: Snoussi has shown that it is possible to build from a discrete model,
a PLDE system whose discretization is the discrete model.

Intuition. Let us consider the differential system modelling the feedforward
loop controled by a positive auto-regulation:

%(t) = 50 X Lfz>1q) —2 x af(t)
?(t) = 40 X Lja>2n)a(e<io)  —2 X b(t)
d_tc(t) = 25X ]1[0,>20] —2 X C(t)

A simulation of this differential system is shown in Figure 11-left. In order to
consider two different qualitative level of b, we introduce a threshold 8, = 10:
if concentration of b is less than 6,, b is said absent, otherwise it is said present.
Let us suppose that a is greater than the threshold 6, ,. 16 domains have to
be considered since a can take 4 qualitative values (less than 0,, = 10.0,
between 0, , and 0, . = 20.0, between 0, . and 0,;, = 21.0, or greater than
0..5), b and c can take 2 qualitative values (greater or less than 6, and 6, ).

1. In the domain (1,0, 0), a is increasing towards 50/2 = 25

dat) = 50 —2xaf(t)
%(zﬁ) — axb()
de) = “axet)

The delay d. ((1,0,0)) is deduced from the solution of the differential
equation: a(t) = 2 — (22 — a(0))e~7". The delay is the time necessary
for the solution to go from the left boundary of the domain to the right

one. Then a(0) = 6,, = 10, and a(t) = 6, . = 20.

1 50 _ 9 1. 1
d((1 = —— In(2—2)=—ZIn(=)=0. 2
H.00) = —h (F=5) = 3 - 055 @

Both other variables stays in the domain, then delays are not significant.

2. In the domain (2,0, 0), a and c are subject to increasing order towards
50/2 = 25 and 25/2 = 12.5 respectively.

) = 50 —2xaf(t)
) —2 % b(t)
) = 25 —2xc(t)
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The delays d;((2,0,0)) and d} ((2,0,0)) are deduced from the solution
of the differential equation: a(t) = 2 — (22 — @(0))e ! and c(t) =

2 2
% — (2 — ¢(0))e . The delay is the time necessary for the solution

to go from the left boundary of the domain to the right one.

e for variable a: a(0) =0, . = 10, and a(t) = 6, = 21.

1 B — by
di((2,0,0)) = —In(2—=]=0.11 (3)
Ya 3_0a,c

e for variable c: ¢(0) = 0, and ¢(t) = 6., = 10.

1 L _0.,
dj((Q,0,0)) = ——1In ( 2% — 0’ ) =0.84 (@)
’)/C 2

Then in the hybrid model, unless if ¢ has accumulated before, a will
pass the threshold 6, ;, before c will cross 0,

. In the domain (3,0, 0), b and ¢ are subject to increasing order towards
40/2 = 20 and 25/2 = 12.5 respectively.

o)y = 50 —2 xaf(t)
iy = 40 —2xb(1)
det) = 95 —2x ()

The solutions of the differential equation system is: b(t) = % — (4—20 —

b(0))e " and c(t) = £ — (£ — ¢(0))e". The delays are the times
necessary for the solution to go from the left boundary of the domain to

the right one.

e for variable b: b(0) = 0, and b(t) = 6, = 10.
40 Qb
d7((3,0,0)) = ——1In (30—0> — 0.34 (5)
1

5 ‘gcb
d((3,0,0)) = ——1In (225—0) —0.84 (6)

c

Other delays are deduced similarly.



6.2 Sketch of the hybrid model

To go further, one needs to describe the evolutions of the hybrid model. In
fact, with each domain is associated a temporal zone which is also defined as
a hypercube whose dimension is the number of variables. According to the
position of the focal point, we split the temporal zone into several subzones.
Let us consider a discrete state ;1 = (1;)iev:

o if K., = M the coordinate ¢ of the temporal zone is divided into
3 parts: the part where the concentration of ¢ has to increase in order
to reach the coordinate 7 of the focal point (the clock associated with ¢
continues to increase until a delay denoted d; (1)), the part where the
concentration of ¢ has to decrease in order to reach the coordinate 7 of
the focal point (the clock continues to decrease until a delay denoted
d; (n)), and the part where the concentration of i has reached the coor-
dinate 7 of the focal point (the clock is stopped).

o if K, > wi(resp. < p;), the coordinate 7 of the temporal zone is not
divided, since in all cases, the concentration of ¢ has to increase (resp.
decrease). The delay d; (n) (resp. d; (1)) is set to 0.

The states of the hybrid model are couples (7, (¢;);ev) where 7 is a qual-
itative state and ¢; < d; (n) + d; (). Evolutions inside a qualitative state
are easy to describe: the system evolves linearly until a boundary is reached:
if the reached boundary corresponds to a subzone where variable ¢ does not
evolve anymore, then the clock associated with variable ¢ stopped.

The description of the transition between two temporal zones is a little
more tricky. If the reached boundary is a external face of the temporal zone,
there is a qualitative jump from the current discrete state to the next state.
The clock of the variable which has changed is reset in order to be coherent
with the new qualitative state, and other clocks are modified to preserve the
proportion of the concentration space which has already been crossed. Some
particular situations lead to tricky rules explaining, for example, what is the
trajectory when one successor of state ji; is 5 and one successor of state jio is
11 (see the notion of black wall in [11]). The precise definition of this hybrid
model can be found in [15].

Let us notice that delays associated with ¢ seem to depend on the current
qualitative state. Nevertheless for all qualitative states where the regulators of
1 are identical, the differential equation for variable 7 is the same. Thus, delays
associated with ¢ depends in fact on the set of active regulators, denoted in the
sequel by w;.

6.3 Constraints on delays

More generally, it is possible to construct constraints on delays in order the
system to follow a given sequence of domains. The principle of the con-
struction of these constraints relies on the enumeration of constraints due to



paths of length 2: py — py — po. For a longer path, the constraint is the
conjunction of constraints due to each sub-path of length 2.

We describe here only one situation among twelve. Let us consider the
path po — 1 — po where the first (resp. second) transition is due to a
qualitative increasing of variable 7y (resp. ;). Let us suppose moreover that
the vector (¢;);cyv represents the clocks when entering into 1, and that there
exists in j; a variable 7} which can also increase. In order to allow the global
path 1o — 11 — po, the following relation has to be satisfied:

(di (1) —¢iy) < (d;Z(ul) —ciy)

The twelve cases are exhaustively treated in [15].

6.4 Construction of constraints on FFL with auto-regulation

Let us consider the path allowing b to be switched-on before c. The sequence
of domains is (1,0,0) —(2,0,0)—(3,0,0)—(3,1,0)—(3,1,1)— (3,0, 1).

1. From (1,0,0), there exists a unique successor domain: (2,0,0). No

constraint.

2. From (2,0, 0), there exists two possible successors: (3,0,0) or (2,0, 1).
Then, considering that clocks are reset to 0 when entering into (2, 0, 0),
we have:

dr((2,0,0)) < df((2,0,0)) see, Figure 16-left

3. From (3,0,0), it is possible to reach either (3,1,0) or (3,0,1). Then
we have

d((3,0,0)) < df((3,0,0)) — d((2,0,0)) see, Figure 16-right

since during the crossing of the domain (2,0,0), ¢ has begun to in-
crease.

4. From (3,1,0) (resp. (3,1, 1)), there exists a unique successor: (3,1,1)
(resp. (3,0,1)). No constraint.

Let us just remark that the delays deduced from the PLDE system of Fig-
ure 11-left (see equations 3, 5 and 6) does satisfy the previous contraints,
whereas the delays deduced from the PLDE system of Figure 11-right does
not satisfy them. Indeed taking into account parameters values of Figure 11-
right, the analytic expression 5 gives d; ((3,0,0)) = 2.77 whereas expres-
sion 6 gives d((3,0,0)) = 0.84.

In a similar way, it is possible to build a set of constraints on delays which
leads to trajectories along which the variable b is not switched on because
of the fast increasing of c. The delays deduced from the PLDE system of
Figure 11-left does not satisfy the contraints, whereas the delays deduced
from the PLDE system of Figure 11-right does satisfy them.
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Figure 16: Illustration of the construction of constraints

6.5 A feedforward loop controled by a negative loop

We consider the boolean model, see Figure 17, of the feedforward loop con-
troled by a negative loop which has been presented in Section 3.4: in order to
build a boolean model thresholds of @ on a’, b and ¢ are considered as equal.
We would like to construct an hybrid system based on this boolean model

Figure 17: Boolean model of the FFL controled by a negative loop.

whose trajectories pass through the following sequence of domains:

(1000— 1100— 0100 — 0000 —)1000 — 1100 —
(1110 —0110 —0010— 1010 —)21110 — 1111

This path expresses that more than one period of oscillation of a and a’ are
mandatory to imply the qualitative increasing of b. Two other periods are
necessary to allow the qualitative activation of ¢ which will be responsible of
the degradation of b.

The expression of the corresponding constraints is very unreadable but
is satisfiable. Figure 18 shows a set of values of parameters leading to the
considered path.
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Figure 18: Simulation of a hybrid model for the FFL controled by a negative
loop. The qualitative part of the initial state is (1,0, 0,0), and its delay’s part
is (2.,0.,0.,0.). Delays are denoted by the involved variable, its qualitative
level and by the set of its effective regulators, see the description of the hybrid
model.

7 Identification issues with delays

Let us remind that the cornerstone of the modelling activity is the parameter
identification step. For the construction of a hybrid model based on the
discrete modelling framework of R. Thomas, one has to identify both discrete
parameters K and delays d* and d~ which correspond to approximations of
times mandatory to pass through the involved domain.

In order to determine the values of delays, the modeller is going to rely on
the measured elapsed time during experiments between two particular states.
This global measured time has to be equal to the sum of delays of visited
qualitative states. Thus, building the constraints associated with the measured
elapsed time requires to know the sequence of visited qualitative states.

The parameter identification step can then be split into two subparts:

e To identify discrete parameters K of the underlying discrete model.
This step can be automated using model-checking or other formal meth-
ods (see sections 2.5, 2.6 and also [21, 13]).

e To identify the delays of the hybrid model. Here the built constraints
on delays express relationships between a real number (the measured
time) and a combination of delays. The resolutness of constraints on
delays is unavoidable.



Let us mention some other approaches which do not consider a continuous
time. The first way consists in discretizing the time in order to remain in a
completely discrete modelling process. The underlying idea is to construct
an approximation so fine as necessary as in the integral calculus. The second
way consists in focusing on the duality between probabilistics approaches and
models based on delays: greater the probability to fire a transition towards a
particular qualitative state, smaller the associated delay. Thus all the scientific
corpus of Markov chains can be useful to evaluate the probabilities of the
model.

Conclusion

We have shown that different modelling frameworks for gene regulatory net-
works have been introduced. For all of them, the parameters have to be
valuated. Fortunately this parameter identification step can be computer-aided
when the modelling framework is formal and when it makes use of formal
tools from computer science: for the purely discrete approach of R. Thomas,
model checking, constraint programming or symbolic execution have been
used to automate this stage. In order to take into consideration elapsed time
and delays, it would be interesting to develop a tool that would take as inputs a
PLDE system and a set of observed trajectories (and associated elapsed times)
and that would give all possible valuations for parameters. Unfortunatelly
such a tool is not conceivable for PLDE models. Thus, formal hybrid mod-
ellings seem to be the best candidates in order to fill up the gap between purely
discrete models for which the parameter identification step can be automated
and the differential models.

With such hybrid frameworks, systems biology should take advantage of
the whole corpus of formal methods from computer science which opens a
large horizon of research perspectives. Let us mention for instance,

e Algorithms that compute the set of parameter valuations that are com-
patible with reachability properties or with a known qualitative path.

e Continuous-time temporal logics adapted to the specificities of the bi-
ological application domain, and then model checking algorithms to
confront a real-time temporal property to a hybrid model.

e Formal or symbolic languages to describe transition paths, taking into
account populations of networks whose states are not synchronized.

e Since our aim is also to link modelling to experiments, tools to extract
from the considered hybrid model several experiments which are able
to refute the candidate models.

Indeed, the hybrid modellings are not the ultimate aim, they are only a guide
for predictions that, in turn, suggest biological experiments whose success
will be in fine the discriminent criterion. Thus a hybrid modelling framework



will be largely adopted only if it is able to help biology toward comprehend-
ing the biological processes through the ability of the hybrid framework to
propose experiments or through its capability of refuting hypotheses. Hybrid
approaches could constitute a trade-off between expressiveness and computa-
tional tractability.
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