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Abstract

Numerous biological mechanisms are synchronized by the circadian rhythm
in species so diverse as mushrooms, drosophiles or mammals. Because of
its ubiquity and of its implication in numerous cellular functions, we believe
important to be able to extract the main “coarse-grain” mechanisms common to
a majority of organisms. In this chapter we consider both differential equation
models and discrete models and we deliberately choose to push the simplicity
of the model as far as possible, focusing only on a few biological behaviours of
interest. The hope is to get the essential abstract causalities that govern these
behaviours.

1 Introduction

The growing interest for the circadian cycle in biology is motivated by sev-
eral facts, including an important proportion of the population with staggered
working timetable, the effect of jet lag, and, also importantly, the drug chrono-
therapy. Many of these studies involve careful modelling where the circadian
cycle interacts with other subsystems such as the metabolic pathway influenced
by a particular drug [1]. A good design of such complex models implies,
among others, a proper global understanding of the main features of the cir-
cadian cycle behaviours. In this perspective the goal of this paper is to design
models of the circadian cycle that focus on these main features whilst being
sufficiently simple to offer a human comprehension of the global circadian
system.

Mathematical models of biological systems are often classified into three
main frameworks.

• Continuous models using differential equations constitute probably the
most frequently used framework, see for example [2].



• With the growing interest for logical approaches, discrete models con-
stitute a class of frameworks which focus on the causality relationships
between events, this kind of models is well suited to take into account
qualitative information [3, 4].

• Lastly the stochastic approaches form a sort of intermediate class of
frameworks: the global dynamics of the model is divided into elemen-
tary steps to which are attributed some probabilities [5].

Among others, Leloup and Goldbeter [6] proposed a carefully detailed differ-
ential model of the circadian clock; Forger and Peskin [7] proposed a stochastic
model. There does not yet exist any qualitative model of the mammalian
circadian clock, which we incidentally propose in this article because discrete
approaches push further simplicity. As a first step towards simplification we
propose two successive differential models reflecting a two-step simplification
of the Leloup-Goldbeter’s model. We then jump directly to a discrete model in
order to take the day-night alternation into account, this additional simplifica-
tion being sufficiently intuitive to avoid addressing a stochastic modelling.

In section 2 we describe the main molecular mechanisms that constitute
circadian cycle in the suprachiasmatic nucleus. Although partly governed by
the light/dark alternation, it is known that this cycle is actually an endogenous
cycle, governed by an internal mechanism in each cell and the goal of section 3
is to introduce two simplified EDP models and section 4 establishes on the
smaller model a mathematical proof of the existence of sensible parameters
that lead to a limit cycle in the dynamics. Section 5 introduces a supplementary
simplification using the discrete Thomas’ framework whereas introducing the
light influence on the system. Lastly section 6 takes into consideration some
delays and gives an obvious explanation of the main reasons for the robustness
against the day length variations.

2 Molecular processes underlying the mammalian circadian clock

Mammalian circadian clocks regulate numerous biological functions (sleep-
ing, locomotive activity, internal temperature, hormonal secretions and so on).
In the absence of temporal reference point, the circadian rhythm shows a
sustained oscillation both at the cellular and the organism levels, indicating
that the body possesses an endogenous daily clock. Although each cell is
equipped with an internal clock, there are external synchronizers, called Zeit-
gebers (“donors of time”), such as light, social rhythms, food or physical
exercise that maintain a 24-hour oscillation.

In mammals there is an internal supervisor made of two neuronal groups
situated at the base of the hypothalamus, that is called the suprachiasmatic



nucleus (SCN) [8]. All the cells that constitute the SCN exhibit a rhythmic
circadian clock and they are strongly synchronized (apparently using some
local signals). The cells in the peripherical tissues (liver, muscles...) also
exhibit a rhythmic behaviour [9] but it seems that the SCN plays the role of
main oscillator synchronising the peripheral oscillators. Injuries of the SCN
entail a visible disappearance of the global rhythm, and a transplant restores
it [10, 11, 12]. In the suprachiasmatic nucleus, the main Zeitgeber is light.
This “pacemaker” receives signals from the retina via the retinohypothalamic
tract which is independent from the vision mechanism [13]. According to [14]
these signals are passed on by the SCN into the pineal gland which, through the
night-secretion of melatonin, informs the whole body of the arrival of night.

At the molecular level in the SCN cells, the regulation of the circadian
cycle is driven by the expression of the clock genes, generating a feedback
loop detailed in Figure 1:

• During the day, the protein complex BMAL1/CLOCK induces the ex-
pression of clock genes by fixing their promoters. It stimulates the
production of CRY1 and CRY2 (cryptochromes), as well as of PER1,
PER2 and PER3, RORA and REV-ERBα. Proteins RORA activate
bmal1 and cry1 while REV-ERBα inhibits them [15, 16]. Moreover, in
the suprachiasmatic nucleus, the light activates the transcription of genes
per by inducing the acetylation of their promoters, that allows the slack-
ening of the chromatin and their transcription [17]. Proteins PER are
then phosphorylated by CKIε (Casein Kinase I ε), see [18]. Then these
proteins can follow three different pathways: they can be destroyed via
ubiquitinization, or they can form complexes PER1-PER2-CKIε which
accumulate in the cytoplasm, or they can also form complexes PER1-
CRY1-CKIε and PER2-CRY2-CKIε which also accumulate in the cyto-
plasm1.

• During the night, complexes PER1-PER2-CKIε and PER-CRY-CKIε
are hyperphosphorylated by CKIε before entering the nucleus where
they inhibit BMAL1/CLOCK [19]. This degradation probably origi-
nates from CKIε since it can lead to the degradation of complexes (PER
or CRY)-PER-CKIε-BMAL1/CLOCK by phosphorylating BMAL1 [18].
Thus during the night there is no transcription anymore of the circadian
genes, leading to a negative retro-control of PER and CRY on them-
selves.
In the cytoplasm, PER-CRY-CKIε captures REV-ERBα. RORA can
then activate the transcription of BMAL1 which will form a complex
with CLOCK. Nevertheless a period of time is mandatory to neutralize

1Let us remark that the function of PER3 is not yet known.
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Figure 1: Molecular regulations of the mouse circadian clock during the day
(top) and during the night (bottom).



all molecules REV-ERBα, this explains why the peak of transcription
of BMAL1 takes place several hours before dawn. At dawn, proteins
CRY and PER have all been destroyed by the degradation of complexes.
REV-ERBα is consequently again active and inhibits bmal1 via RORE.
The cycle can then restart [20, 21, 22].

3 Simplified EDP models for the mammalian circadian clock

In this section we propose a mathematical model of the circadian cycle ob-
tained as a simplification of the model of Leloup and Goldbeter [6]. In the next
section we will establish the existence of a limit cycle with a default period of
24 hours.

We will focus in this section on the behavior of the complex PER-CRY.
During the day, the proteins PER and CRY are phosphorylated by CKIε and
form complexes PER-CRY-CKIε which then accumulate in the cytoplasm.
During the night, PER-CRY-CKIε captures REV-ERBα in the cytoplasm and
will be hyperphosphorylated by CKIε before entering the nucleus where it
inhibits its own transcription.

The continuous time model of Leloup and Goldbeter [6] contains 16 differ-
ential equations. The considered genes are per, cry, bmal1, clock and rev-erbα.
They take into account the phosphorylation cycles, membrane exchanges be-
tween nucleus and cytosol, the translations of mRNA into protein, as well
as the association of PER and CRY proteins to form the complex PER-CRY.
The trajectories resulting from the equations can be cyclic with a sensible
circadian period. Goldbeter and Leloup [6] also focus on the behavior of
the concentrations over time under some light-dark alternation patterns: they
consider the constant darkness case as well as the case “12 hours light – 12
hours dark.” Their model is quite close to the biological reality, despite some
simplifications. This model also correctly predicts several mutant behaviours
of the circadian rhythm.

3.1 Model with 8 variables

In this subsection, we reduce the original model of Leloup and Goldbeter
without losing too much information. This approach allows us to get a simpler
model with 8 variables and 8 equations, leading to a better focus on the main
involved mechanisms and on their importance within the overall schema.

We first decided to remove CLOCK protein because, although important to
form a complex with BMAL1, its amount is known to be constant and is never
a critical resource. Secondly, following Leloup and Goldbeter, we removed
REV-ERBα from our EDP model. In fact the action of REV-ERBα on bmal1
is hidden in the negative feedback from the PER-CRY complex in the nucleus



to the PER and CRY in the cytosol, see Figure 2. Lastly, we have represented
as a unique step both translation and traduction, leading to the removal of all
mRNA variables.

Figure 2: The 8 variable model contains a negative feedback loop (grey arrows)
where (1) the PER-CRY complex of the nucleus inhibits the proteins PER and CRY,
(2) PER and CRY form a complex in the cytosol and (3) this complex enters the
nucleus. Black arrows represent reversible phosphorylations.

So, the model of Figure 2 is described by a set of 8 kinetic equations with
28 parameter values. We have chosen similar parameter values to those of
Leloup and Goldbeter, with very few modifications.
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Variables PC and CC correspond to the amount of PER and CRY proteins
respectively in the cytosol, and PCC and PCN are the amount of PER-CRY
complex in the cytosol and in the nucleus respectively. The complexation of
PER and CRY follows the rate k3, with corresponding dissociation rate k4. The
use of Hill functions in equations (1) and (2) simulate the inhibition of PER-
CRY (PCN ) on PER (PC) and CRY (CC) with n as degree of cooperativity.

3.2 Model with 4 variables

In order to mathematically prove the existence of a limit cycle, we again
simplify the model of Figure 2: the model of figure 3 does not incorporate
the phosphorylation of the proteins and, consequently, contains four variables
instead of eight variables. The dynamics of cytosolic PER protein (PC) and

Figure 3: The 4 variable model in which the phosphorylation steps are omitted.

CRY protein (CC) and cytosolic PER-CRY (PCC) and nuclear PER-CRY
(PCN ) is governed by the following system of four kinetic equations:
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The next section is devoted to the investigation of the dynamics of the 4
variable model via numerical simulations and bifurcation diagram analysis.
Most results were obtained using MATHEMATICA.

4 Analysing the 4-variable EDP model

Not surprisingly, the existence of the cycle depends on the degradation rate
of the complex PER-CRY in the nucleus. Thus kd4 is the control parameter.
When all parameters are fixed except kd4, we observe that a Hopf bifurcation
takes place with disappearance of the limit cycle for kd4 crossing some value.
This implies that for a sufficiently small value of kd4 there exists one limit
cycle.

To study the stability of the equilibrium points we apply the Lyapunov’s
first (indirect) method [23]. If kd4 = 0.41, the system (9-12) has one fixed
point. The Jacobian matrix of the system (9-12) at the equilibrium point is

−0.277892 −0.162354 0.06 −11.1584
−0.227892 −0.212354 0.06 −12.2743
0.227892 0.162354 −0.19 0.06

0 0 0.08 −0.16− kd4


This matrix has 4 eigenvalues.

• Two of them are real eigenvalues with negative real part.

• The two others are complex conjugates and their common real parts:

– are positive when the parameter kd4 is less than the bifurcation
value, which is close to 0.42 in our case (see the figure 4(a), 4(b)
and 4(c))

– and become negative when the parameter crosses this bifurcation
value.
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Figure 4: 3D projections of some phase trajectories. Common parameters are K =
0.4, n = 15, v1 = 2, v2 = 2.2, k1 = 0.08, k2 = 0.06, k3 = 0.08, k4 = 0.06,
kd1 = 0.05, kd2 = 0.05 and kd3 = 0.05, with (1.5, 2, 1, 0.5) as initial condition. In
(a), kd4 = 0.25. In (b), kd4 = 0.35. In (c), kd4 = 0.42. In (d), kd4 = 0.55. We
observe a stable limit cycle for Figures (a), (b) and (c) only.

This computation can be made easily using the Routh-Hurwitz criterion [24]
applied to the characteristic polynomial of the Jacobian matrix.

It is also possible to get the same bifurcation schema with kd3 around 0.39,
where kd3 is the degradation rate of the complex PER-CRY in the cytosol.

Following Gérard, Gonze and Goldbeter in [25], we suspect that 3 vari-
ables are needed to observe the same bahaviour (this will be the object of a
future research).

5 Simplified purely discrete model

The discrete modelling frameworks aim at providing a logical explanation
of the observed behaviours from a qualitative point of view. For biological



networks, René Thomas [26] established a framework where the continuous
phase space is partitioned into qualitative regions in such a way that, within
a region, the action of a species on other species is qualitatively constant.
Trajectories are then abstracted by transitions from a region to another one.
René Thomas has defined this abstraction in such a way that it is consistent
with the continuous framework [27].

5.1 Thomas’ discrete modeling framework

To define a Thomas’ model one has first to design an interaction graph whose
nodes are most of the time the molecular species of the biological network un-
der consideration, and whose edges are labelled with signs: “+” for activations
and “–” for inhibitions. For example, similarly to model of Figure 3, the genes
per and cry have a positive action on the complex PER-CRY in the cytosol,
which in turn has a positive action on the complex PER-CRY in the nucleus,
and lastly the former inhibits the genes per and cry, see Figure 5.

per

cry

PER-CRYC PER-CRYN

−

−

+
+
+

Figure 5: Thomas’ model with 4 variables.

René Thomas has remarked that, when a gene x acts on a gene y, there is
a threshold in the concentration space of x such that :

• if the concentration of x is below the threshold, x is unable to regulate
y, and the regulation is inactive,

• if its concentration passes the threshold, x is able to regulate y and the
regulation is active.

More generally, when x has an action on several targets y1, y2...yk, there are
k thresholds (one threshold associated each target). Then from a qualitative
point of view, x can have k+1 different behaviours: either it does not regulate
any target, either it regulates a unique target, either it regulates 2 targets, and
so on. Thus, the concentration space of the variable x can be divided into k+1
intervals where k is the number of targets. These intervals are called abstract
levels and are denoted by integers in [0, k].



The qualitative dynamics of the network is then defined by the successive
states of each variable, where a state is an interval number. Let us consider
a variable y regulated by x1, x2, ...xn. A qualitative state being given, there
is a subset ω of {x1, x2, ...xn} such that xi ∈ ω if and only if the qualitative
state of xi denotes an interval greater than the xi → y threshold. According
to René Thomas, the abstract level toward which y is attracted only depends
on ω. Consequently, if y has n regulators there are 2n different parameters
for variable y, which we denote by Ky,ω, one for each possible subset ω of
regulators of y.

A model of a gene network is consequently defined by

• an interaction graph G = (V,E) where edges are labelled with a sign
and an integer (which is the number of the interval immediately after the
threshold),

• the family of parameters {Ky,ω}, y being any member of V , and ω being
any subset of G−(y), the set of predecessors of y in the graph G.

A model of a gene network being given (in particular all parameter values
are known), we associate a state graph:

• a state is an assignment s that associates to each variable of the graph
an integer value representing a possible interval for this variable (see
above),

• a transition s → s′ from one state to another state is obtained by modi-
fying only one variable assignment as follows:

– the modified variable x must satisfy s(x) 6= Kx,ω where ω is the
set of active regulators of x according to the state s,

– if s(x) < Kx,ω, then s′(x) = s(x) + 1 and s′(y) = s(y) for all
y 6= x,

– if s(x) > Kx,ω, then s′(x) = s(x) − 1 and s′(y) = s(y) for all
y 6= x.

Thus the dynamics of the model is nondeterministic and asynchronous because
at a particular state, even if several variables are attracted towards a different
value, only one variable can change simultaneously (because there is no reason
that several variables reach their threshold exactly at the same time). Moreover
variables never jump several thresholds as the discrete model is an abstraction
of a continuous phenomenon.



5.2 Oversimplified circadian clock and introducing light influence

In first approximation the two negative cycles of Figure 5 are known to act
roughly in the same time sustaining the circadian oscillation. Moreover the
main role of per and cry is to produce the PER-CRY complex. it suggests that
if we wish to simplify again, the next step is to amalgamate per and cry into
an abstract “set of genes” that we denote G. Then we get a unique cycle with
three nodes in which the only role of PER-CRYC is to “produce” PER-CRYN .
So we remove the node PER-CRYC , leading to the model of Figure 6 (left)
where PER-CRYN is abbreviated as PC.

PCG LPCG

Figure 6: (left) A simplified model of the interactions in the mammalian
circadian clock. (right) Adding the light variable in order to take into account
the driving of the system by light/dark alternation.

Since light trains the rhythmicity of the mammalian circadian clock by
inhibiting the transport of PER-CRYC into the nucleus, it has an inhibitor
effect on complex PC in Figure 6 (right).

Moreover because of the natural alternance of day and night, the model has
to be able to produce an oscillation of light. This is done by adding a fictitious
auto-inhibition: light can be “on” or “off”, when it is “on”, it has an inhibitor
effect on itself and light tends to go “off” and conversely.

5.3 Identifying the discrete parameters

The interaction graph being given, it remains many possible parameter values
leading to a large number of possible models with different state graphs. Ob-
viously, a parameterization is valid if the corresponding state graph is coherent
with the biological knowledge about the dynamics of the system.

Let us first treat the parameters for the variable L (light). The fictitious
feedback loop must generate oscillations, thus KL,{} = 1 and KL,{L} = 0
(otherwise no oscillation on L could be observed).

We also know that the circadian clock oscillates in constant darkness (L =
O). So, the feedback loop G ↔ PC generates oscillation and we must have
KG,{} = 1 and KG,{PC} = 0 (otherwise no sustained oscillation on L could
be observed).
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Figure 7: Qualitative dynamics of a simplified model.

It remains to identify the parameters associated with PC. Four situations
have to be studied :

1. When G is off and light is on, there is no transcription of PC and
existing complexes PER-CRY are kept outside the nucleus by light.
Then PC (in the nucleus) cannot increase nor stay at 1. This property
exactly means KPC,{L} = 0.

2. When G is on and light is on, there is transcription of PER-CRY in the
cytosol but light prevents these complexes to enter the nucleus. In other
words KPC,{G,L} = 0.

3. When G is off and light is off, there is no transcription of PER-CRY
complexes in the cytosol and a fortiori they do not enter the nucleus,
leading to KPC,{} = 0.

4. When G is on and light is off, then PER-CRY complexes accumulate in
the cytosol and in the absence of light, they can enter the nucleus. So,
KPC,{G} = 1.

The parameters being identified and following section 5.1, we build the state
graph of Figure 7. Green transitions stand for alternation of days and nights
whereas blue ones represent the evolution of genes G and complexes PC.
Thick transitions sketch the common path for a regular day-night alternation;
let us start from the state (L,G, PC) = (1, 0, 1) :

• During the day, complexes PC (in the nucleus) are first degradated
(transition (1, 0, 1) → (1, 0, 0)) and genes are transcripted (transition
(1, 0, 0)→ (1, 1, 0)).



• Then night falls (transition (1, 1, 0)→ (0, 1, 0)).

• During the night, the concentration of complexes PC grows and be-
comes sufficient to inhibitG (transitions (0, 1, 0)→ (0, 1, 1) and (0, 1, 1)→
(0, 0, 1)).

• At dawn, the transition (0, 0, 1)→ (1, 0, 1) closes the circadian cycle.

Notice that, whatever the state, one can switch light ad libitum. This re-
sults from the negative auto-inhibition of L that, within the standard logical
approach of René Thomas, cannot be temporized (all vertical transitions of
Fig. 7).

6 Discrete model with delays

Clearly, a valuable model of the circadian clock needs to integrate chronomet-
ric information to predict behaviours which could usefully be confronted with
experimental data. The idea developed in this section is to manually associate
with each transition of the qualitative state graph, a delay which represents
the time spent to go from a state to a neighbour state along a transition. This
simple solution is made possible by the small number of transitions in our state
graph. For bigger models more elaborated hybrid frameworks are required:
Siebert and Bockmayr proposed an automaton product which allows to handle
time [28], Batt and co-workers used verification tools on timed automata to
learn about the possible qualitative behaviors of the network under a whole
range of uncertain delay parameters [29]. We also proposed such sophisti-
cated frameworks [30, 31, 32] where one of our motivations was to take into
consideration small successive accumulations.

6.1 Labelling the state graph with delays

In Figure 8 we label each transition of the state graph with a delay. For
example, if we consider that days and nights last the same duration, each of
vertical transitions are labelled with 12 hours (others transitions require some
more elaborated reasoning).

Let us first remark that in the setting of René Thomas, at any state and
consequently at any time, it is impossible to have two opposite transitions. If a
variable can evolve, then it can either increase or decrease. We consequently
introduce a set of clocks, one clock per variable. When active, the clock of a
given variable measures the time elapsed since that variable can increase (resp.
decrease). Within one state, if there are several outgoing transitions, the next
triggered transition will be the one which is associated with the variable whose
clock reaches its delay.
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Figure 8: A qualitative model with delays remaining unknown

When a transition is fired, the clock of the involved variable, say x, is of
course reset to 0. But some other clocks have also to be reset: When a variable
is directly influenced by x, its possibility of variation may change, in which
case the corresponding clock has also to be reset to 0.

6.2 Identification of delays for the mammalian circadian clock

The goal of this subsection is to identify the parameters a to g of Figure 8 using
standard knowledge about the circadian cycle:

• During the night, the time necessary for firing transitions associated with
delays c and d is equal to 12:

c+ d = 12 (13)

A shorter sum would lead to trigger the transition labelled by a before
the up light transition of the figure. Conversely a longer sum would lead
to trigger the up light transition before the end of the transition labelled
by d.

• The trajectory from (L = 1, G = 0, PC = 1) to (L = 1, G = 1, PC =
0) is performed during the day. Thus,

e+ f ≤ 12 (14)

A longer sum would lead to trigger the down light transition before the
end of the transition labelled by f . On the contrary, a sum shorter than 12
hours will lead to the state (l = 1, G = 1, PC = 0), which is stable in
the plane L = 1 and consequently the trajectory will stay there, waiting



for the down light transition without modifying the discrete trajectory in
the state graph.

• In constant night, the mammalian circadian cycle stabilizes around 24
hours, see [33, 34]. Thus,

a+ b+ c+ d = 24 (15)

• The transcription of genes G does not depend directly on the light L.
Then

b = f (16)
d = h (17)

• When light is on, PC is inhibited. Thus a is notably smaller than e:

a > e (18)

The resulting constraints (13-18) admit an infinity of solutions. The fol-
lowing delays satisfy these constraints and seem sensible with respect to cur-
rent knowledge:

a = 7 b = 5 c = 7 d = 5
e = 1 f = 5 g = ? h = 5

The delay g is not valuated. Indeed, for the purpose of this chapter, the interest
of the transition labelled by g is only that it induces a stable state in the plane
L = 1, whatever the actual value g.

6.3 Robustness to day length

The parameters values proposed in the previous subsection are remarkably
robust to day length variations. The previous model imposes a constant and
equal durations of nights and days. Indeed, it reflects the durations of nights
and days during the periods of equinoxes. In the northern hemisphere at the
latitude 50 degrees north, the duration of night increases up to 16 hours in the
winter, see Figure 9-left, and it decreases down to 8 hours in the summer, see
Figure 9-right.

To illustrate the clock manipulation in our dynamics, let us consider the
winter model (left part of the figure).

1. Let us start from the beginning of the night with a state where (L,G, PC) =
(0, 1, 0) and all clocks are set to 0. Because c = 7 is smaller than 16,
the next state is (L,G, PC) = (0, 1, 1). The clock of PC is of course
reset to 0 and the clock of G is also reset to 0 because PC now inhibits
G. And it remains 9 hours for light to go up.
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Figure 9: Influence of seasons on the qualitative model of the mammalian
circadian cycle. (left) during the winter. (right) during the summer.

2. From (0, 1, 1), because d = 5 is smaller than 9, the next state is (0, 0, 1).
The clock ofG is reset to 0 and the clock of PC is also reset to 0 because
G does not activate PC anymore. And it remains 4 hours for light to go
up.

3. From (0, 0, 1), because a = 7 is greater than 4, the next state is (1, 0, 1).
The clock of L is reset to 0 and the clock of PC is not reset to 0
because it continues to decrease. However, e = 1 and a = 7 and in
first approximation we can consider that 4

7 of PC have been degradated.
Consequently, the clock for PC becomes 4×e

a = 4
7 . It remains 3

7 of an
hour for PC to become equal to 0.

4. From (1, 0, 1), because 3
7 is smaller than 8, the next state is (1, 0, 0). The

clock of PC is reset to 0 and the clock of G is also reset to 0 because
PC now activates G. And it remains 8 − 3

7 = 7 + 4
7 hours for light to

go down.

5. From (1, 0, 0), because f = 5 is smaller than 7 + 4
7 , the next state is

(1, 1, 0). The clock of G is reset to 0 and the clock of PC is also reset
to 0 because (G,PC) = (1, 0) is a stable state in the plane L = 1 and
consequently, PC does not decrease anymore. And it remains 2 + 4

7
hours for light to go down.

6. After 2+ 4
7 hours, we leave the state (1, 1, 0) to go back to (0, 1, 0). The

clock of L is reset to 0, the clock of PC is also reset to 0, and the clock
of G is equal to 2 + 4

7 .



7. From (0, 1, 0), because c = 7 is smaller than 16, the next state is (0, 1, 1).
The clock of PC is reset to 0 and the clock of G is also reset to 0;
it remains 9 hours for light to go up and the circadian cycle is phased
again.

The summer model behaves similarly (right part of the figure) leading to the
observation that our model is robust to the alternance of seasons.

7 Discussion

The designer of a model in the context of genomics is often torn between two
options: to elaborate a rich model reflecting as much biological knowledge as
possible in a consistent way, or to design a simplified model dedicated to a
given family of questions in order to study the main causalities at a coarse-
grained scale. This chapter was inspired by the second philosophy.

This approach may induce drastic simplifications, however it provides chains
of causalities in the broad outlines, which make it possible to apprehend a
problem in its entirety. For example, it is frequently observed that a jet lag from
East to West induces less disorders than travels from West to East. Indeed:

• When one travels from East to West, one increases the awakening time,
thus one increases the time of exposure to light. In the simplified model
of Figure 7, we observe that a longer stay in the upper states (where
L = 1) does not change the trajectories because they reach the locally
stable state (L,G, PC) = (1, 1, 0), and when night comes, the cycle is
immediately synchronised again.

• When one travels from West to East, one does not feel like sleeping, the
model continuing its trajectory until the locally stable state (L,G, PC) =
(1, 1, 0). Since the full day duration is shorter, the night length (L =
0) is reduced. At night ((L,G, PC) = (0, 1, 0)), for a sufficiently
significative jet lag, the system does not reach the state (L,G, PC) =
(0, 1, 1) before light switches on again. And when light switches on,
the system is “prisoner” of the transition (1, 1, 1) → (1, 1, 0), unable to
cross the states (1, 0, 1) and (1, 0, 0) and the circadian cycle is conse-
quently strongly disturbed.

Of course, this explanation is crude. It nevertheless gives a good intuitive idea
of the main causality mechanisms involved in jet lag.

More generally, reducing the number of variables may help establishing
mathematical results, as illustrated in Section 4 where we have established the
existence of a limit cycle. Many other global properties can be established,
and, afterwards, studying how far the properties established on a simple model



can be propagated on a more detailed model, belongs to the scope of multilevel
modelling.
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Appendix

Theorem: Let x = x∗ be an equilibrium point of a nonlinear
system:

ẋ = f(x),

where f : D → Rn is continuously differentiable and D ⊂ Rn is
the neighbourhood of the equilibrium point x∗. Let λi denote the
eigenvalues of the Jacobian matrix A = δf

δx |x∗ then the following
are considered.

• If Reλi < 0 for all i, then x = x∗ is asymptotically stable.

• If Reλi > 0 for one or more i, then x = x∗ is unstable.

• IfReλi 6 0 for all i and at least oneReλj = 0, then x = x∗

may be either stable, asymptotically stable, or unstable.

Since A is only defined at x∗, stability determined by the indirect method
is restricted to infinitesimal neighborhoods of x∗.

To study the signs of the real parts of eigenvalues, we have the following
criterion [24].

Routh-Hurwitz Criterion:
Given the polynomial P (λ) = λn + a1λ

n−1 + . . . + an−1λ+ an , where the



coefficients ai, i = 1, 2, . . ., n are real constants, define the nHurwitz matrices

H1 =
[
a1

]
,

H2 =
[
a1 1
a3 a2

]
...

Hn =


a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 0 an

 ,

where ai = 0 if i > n.
All of the roots of the polynomial have negative real part if and only if the

determinats of all Hurwitz matrices are positive: detHi > 0, i = 1, 2, . . . , n.
Routh-Hurwitz criteria for n = 3 are a1 > 0, a3 > 0 and a1a2 − a3 > 0

and for n = 4 are a1 > 0, a2 > 0, a3 > 0, a4 > 0 and a1a2a3a4 − a2
1a

2
4 −

a2
3a4 > 0.


