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Abstract

In this article we present a modelling framework that links the well known
modelling framework of gene network introduced by R. Thomas and Markov
chains. In a first development we introduce a Markov chain having as state
space the set of all possible states of the R. Thomas models: we generate the
transition probabilities by examining all the possible parameterizations of the
interaction graph. The second development focuses on a stochastic framework
where several parameterizations of a same qualitative gene interaction graph
are considered and transition probabilities allow one to jump from a state to
another one which can potentially be in another parameterized model. The
idea is to consider only parameterized qualitative models of R. Thomas which
abstract biological knowledge, and to use transition probabilities to allow to
jump from one to another, if information coming from biological experiments
reinforces the belief in a particular model.

1 Introduction

Regulatory networks are models based on graphs which are used to obtain a
simpler view of gene regulation [6, p. 101]. Gene regulation is defined as
the process of turning genes on and off which is made possible by a network
of interactions that includes chemically modifying genes and using regulatory
proteins. Gene regulation guarantees that appropriate genes are expressed at
proper times specially during early development where cells begin to take on
specific functions; it also helps an organism respond to its environment [8].

The different frameworks for modelling gene networks can be classified
into three main groups. The systems of differential equations have been largely
used in order to represent a lot of systems with a lot of details (transcription,
traduction, transports ...). The second group consists of stochastic frameworks
like Markov chains. The Markov modelling framework supposes that, given
the past and the present, the future only depends on the present [9, p. 163].
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This framework is well adapted to biological systems but supposes a strong
effort in the enumeration of all entities (and interactions between them) that
play arole in the system. The third group of approaches consists of qualitative
frameworks in which details have been abstracted and only main causalities
have been taken into account. Two paradigmatic frameworks can be classified
in this group: the Boolean networks first introduced by Kauffman [5] and the
multi-valuated modelling framework first introduced by R. Thomas [13].

In this paper we present a modelling framework that links the well known
modelling framework of gene network introduced by R. Thomas and Markov
chains. In a first development we introduce a Markov chain having as state
space the set of all possible states of the R. Thomas models: we generate the
transition probabilities by examining all the possible parameterizations of the
interaction graph. Thus the Markov chain represents the possible behaviours
obtained by superposition of all parameterized models. We then extend this
stochastic framework to a Markov chain in which we distinguish the states
of each parameterized model and where the probabilities are computed on a
smaller set of parameterizations. The idea is to consider only parameterized
qualitative models of R. Thomas which represent well the biological knowl-
edge and to use transition probabilities to allow the system to jump from a
particular dynamics to another one.

The earliest qualitative model for a gene regulatory network was intro-
duced by Kauffman [5]. In Kauffman’s model, a gene is modelled as a binary
variable (0 or 1) which takes only one of the possible Boolean functions of its
inputs. When the gene is on it takes the value of 1, otherwise it takes 0. The
outputs of a gene at time ¢ 4 1 depends only on the activity at time ¢. In this
group of qualitative modelling frameworks, we can also cite the framework
of R. Thomas in which each gene can have several levels of expression [13].
Thomas’ model allows the gene to be represented as a multilevel logical vari-
able (0,1,2,...); the number of possible values depends on the number of
distinct actions it does on the network. In this case, the actions refer to a
gene acting as an activator or repressor of some of the genes in the network.
For each distinct action, a threshold value is assigned to specify from which
expression level the influence takes place. So a variable with n distinct actions
has n thresholds and this variable becomes an (n+ 1)-level variable. Allowing
multilevel logical variables guarantees that no two distinct actions can happen
simultaneously.

In order to illustrate our modelling approach, we focus on the gene regula-
tory network of the pathogen Pseudomonas aeruginosa, more specifically on
the subsystem which is responsible for mucus production in the lungs of indi-
viduals with cystic fibrosis. Although the global gene regulatory network of
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Figure 1: Portion of the gene regulatory network of the pathogen Pseu-
domonas aeruginosa, responsible for the mucus production; an arrow indicates
activation or stimulation while a T-symbol represents repression [1, 2].

this pathogen consists of 690 genes and 1020 regulatory interactions between
their products [3], the subsystem controlling the mucus production consists of
some genes and proteins, see Figure 1. Because the mucus production worsens
the respiratory problem of the patients which is often the cause of death [2,
p.- 75], elucidating the behaviour of this subsystem may be of great help to
address this outcome.

The paper is organised as follows. Section 2 is devoted to sketch the
qualitative modeling framework of R. Thomas. Section 3 explains how to
build a Markov chain from the set of all possible parameterizations of an
interaction graph. We can then push this idea forward and propose, when
biological knowledge allows to reduce the set of possible parameterizations, a
unique stochastic model where it becomes possible to jump from one qualita-
tive model to another, see Section 4. Finally Section 5 is devoted to conclusion
and discussion.

2 Reminding of R. Thomas’ Modelling Framework

The biological regulatory network controlling the mucus production in Pseu-
domonas aeruginosa can be abstracted by the simple directed graphs of Fig-
ure 2 in which positive and negative signs indicate activation and repression,
respectively, following the direction of the edge they label. These interaction
graphs would suffice if we are only interested in applying Kauffman’s model
but if we want to apply Thomas’ model there must be a threshold indicator for
each distinct action of the gene as seen in Figure 2.

Such interaction graphs, as those in Figure 2, are called biological regula-
tory graphs [1, Definition 1] and are represented by graphs G = (V, E), where
V' is the set of genes in the network and E represents the set of interactions
between the genes in V. Each vertex v € V has a boundary b, that is less
than or equal to its out-degree (unless its out-degree is zero in which case we
take the boundary to be one) while each edge is labelled by an ordered pair
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Figure 2: Two simple interaction graphs representing the system controlling
the production of mucus in Pseudomonas aeruginosa (see Figure 1). The
variable x denotes the gene algU and the protein AlgU while y denotes the
gene mucB and the anti-AlgU. Both biological regulatory graphs differ by the
labelling of edges outgoing from node z: the thresholds are not the same.

In Figure 2, we have V = {z,y} and £ = {(z — ), (x = y),(y = x)}.
The interaction x — mucus is not taken into consideration since mucus has
no action backward toward x and y: it is a by-product of x which is produced
when z is at its highest level (the regulation (x — mucus) is labelled by the
threshold 2 since x has two distinct actions on y and on itself). The variable
y has a unique action (repression of ) so the only possible threshold of the
regulation (y — x) is 1. Lastly note that Figure 2 does consider two possible
biological regulatory graphs because the ordering between thresholds labelling
edges outgoing from node x is not well known: we have to consider the two
possible orderings.

In order to build the the dynamics of a biological regulatory graph, we
first introduce the states of the network. A state of a regulatory network is a
tuple denoted by (7., ...,n,,), where p denotes the number of genes and
for each n,, € N (natural numbers / non negative integers) n,, < b, [I,
Definition 3]. We have now to define the resources of a vertex v; with respect

to a state (ny,,...,7Ny,). Given a regulatory network, a state (1, ...,n,)
and an edge (v; — vj;) with label (¢, ¢), the vertex v; is a resource of v; if
and only if n,, > tand e = + orn,, < tand € = — [1, Definition 4]. The

intuition is that the absence of an inhibitor plays the same role as the presence
of an activator. Finally, a biological regulatory network refers to the biological
regulatory graph G = (V, E)) together with a set of parameters % = {k, .},
wherev € V,w C G7(v) = {u | (u — v) is an edge in G} and k., < b, [1,
Definition 2]. The parameter k, ,, gives the value towards which v is attracted
when the set of resources of v is w.

An easy way to represent the dynamics of a regulatory network is to as-
sociate with each state, the state towards which the system is attracted, when
considering that each variable v changes at the same time to its current attrac-



tion value k, ., (w being the current set of ressources of v). This defines the
so-called synchronous state graph . = (S, T): The set of vertices S contains
all possible states, and the edges of T" are of the form (n,,...,n,,) —
(k(vhwl), . ,k:(%wp)) such that for every ¢, w; is the set of resources of v; at
the state (ny,, . . . ,nvp) [1, Definition 5]. Unfortunately, the parameters k.,
are not measurable in vivo [1, p. 342] so we are left with several possibilities
which results to obtaining several synchronous state graphs.

The synchronous state graph is not well adapted to represent evolution
of the biological system because it is improbable that two (or more) genes
reach their thresholds exactly at the same time and because a gene cannot
directly jump two or more consecutive thresholds. To correct these drawbacks,
one has to desynchronize each transition. Each transition (n,,,...,n,,) —
(1,5 -+ -, My, ) is replaced by the set of its desynchronizations which are of the
form (1, ..y My~ 1, Mgy M 1+ -5 My ) = (Mg s -+ 5 Mgy 1, Moy 6, My 41,

., Ny, ) for i such that n,, # n;, and 6 = 1 when n,, < n;,, otherwise
6 = —1 [1, Definition 6]. The desynchronization step allows some states to
transition to more than one other state. Thus, the dynamics of the regulatory
graph is represented by the asynchronous state graph ./ = (S,T’) where
the set S of vertices is the set of states and the set 7" of transitions contains
all desynchronized transitions of the synchronous state graph [1, Definition
7]. Note that two different synchronous state graphs may lead to the same
asynchronous state graph since the desynchronization step can reduce two
distinct synchronous transitions to the same set of desynchronized transitions.
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Figure 3: A possible qualitative dynamics in the modelling framework of R.
Thomas (left). This asynchronous state graph can correspond to an inward
spiral (centre) or to an outward spiral (right).

The global modelling approach consists of identifying all variables of the
system, as well as their interactions and then the identification of parameters.
Unfortunately, sometimes, it is not clear which parameters to choose. Consider
the possible qualitative dynamics shown in Figure 3 (left) where we see that
the state (2, 1) is a stable state and that the system presents a counterclockwise
oscillation between states which have a level of x less or equal to 1. It is clear
that both the inward spiral (Figure 3 centre) and the outward spiral (right) are



represented by the same qualitative model. But it could be more convenient to
represent the inward spiral by the model where transition (1,0) — (2,0) does
not appear: the small part of the domain (1,0) from which the stable domain
(2,1) is reachable, is integrated in the domain (2,0), and when a grand tour
is done in the inward spiral, it become impossible to reach the stable domain
(2,1).

3 Markov Chains in Gene Regulatory Networks

When Kauffman proposed the Boolean model, the output of the genes at time
t + 1 were only dependent on the activity of its inputs at time ¢ [5, p. 441]
which resembles the Markov property where given the past and the present,
the future only depends on the present [9, p. 163]. In Kauffman’s model
a gene at time ¢ transitions only to exactly one state at ¢ + 1 while in a
Markov chain, the transition probabilities allows the system to go from a state
at time ¢ to more than one other state at ¢ 4+ 1. In this section, we discuss
briefly several ways of setting up Markov chains for gene regulatory networks
based on available literature (see the works of Skornyakov et al. [12], Kim et
al. [7] and Shmulevich et al. [11]) and then we give a basic Markov chain that
represents the asynchronous dynamics of the interaction graphs of Figure 2.

In these three articles [7, 11, 12], a state can be thought of as a snapshot
of the activity level of all the genes with respect to a given time. In [11], these
states were referred to as maps. The Markov chain was applied to Kauffman’s
Boolean model of a gene regulatory network but it requires that the cooperation
between interactions are well specified. In [7], the Markov chain allowed
each gene to take three states, namely -1 (under-expressed), O (equivalently-
expressed) and 1 (over-expressed) and it makes use of conditional probabilities
to compute the transition probabilities. The Probabilistic Boolean Network
(PBN) [11] addresses the deterministic nature of Kauffman’s Boolean model.
Both works [7, 11] can be easily extended to Thomas’ model. However, the
updates on all the genes in a PBN are done synchronously to simplify computa-
tion while preserving the generic properties of global network dynamics [11].

In Thomas’ modelling framework, there are several possible values for the
parameters £, .,,, where v; denotes the ith gene while w; denotes the ith gene’s
resources. The variability of these parameters results to potentially enormous
(exponential) number of synchronous state graphs, but this number can be
largely trimmed by considering the following constraints:

kpp=0andw Cw' = kyw < kyor- (D

When a gene v has no resources, its expression level is not supposed to in-
crease. Hence, a value of zero is assigned to k, 3. When a gene loses some of



its resources its expression level may drop while increasing its resources may
increase its expression level. Because of the constraints in (1), the number
of synchronous state graphs for each regulatory graph in Figure 2 is reduced
to 28 which is now a reasonable number of graphs to work with. These
synchronous state graphs can be obtained by playing with the different values
of the parameters of Table 1 with the previous constraints of inclusion of
resources in mind.
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Table 1: Tables giving the parameters of interaction graphs according to the
current state: Tables a) and b) correspond to Figures 2(a) and 2(b), respectively.

We now recall the foundations of Markov chains in discrete time on a
countable state space. Let p;; denote the probability that state j can be reached
from state 4 in n steps. If n = 1 we have the entries p;; of the transition matrix
P while the n-step transition probabilities p;; (n > 1) are contained in the
matrix P". If for any couple of states (i, j) we can find an n € NT (positive
integers) such that p;; > 0 and p7; > 0, then we say that the states communi-
cate with each other. This indicates that all the states belong to a unique class
(Markov chain is irreducible). A state ¢ has period d if p}; = 0 whenever
n is not divisible by d and d is the greatest integer with this property [9,
p- 169]. In an irreducible aperiodic Markov chain the states are either all
transient or null recurrent (finite number of visits) or positive recurrent (infinite
number of visits) with a unique stationary distribution {7;,j = 1,2,...},
where m; = limy, ;o p% > 0 [9, Theorem 4.3.3]. Note that an irreducible
Markov chain with a finite state space cannot have transient states because the
chain will eventually stop once it has visited all the states in a finite number of
time which should not be the case [9, p. 170]. Thus, in such a chain, all the
states must be positive recurrent.

Let 11; denote the expected number of transitions needed to return to state
J starting from j. When state j is positive recurrent ji;; < oo [9, p. 173] and
when the Markov chain is aperiodic and irreducible, we have lim,,_, p?j =
1/pj; [9, Theorem 4.3.1]. It follows that in such a Markov chain, we have
mj = 1/p;;. An aperiodic irreducible positive recurrent Markov chain is called
ergodic [9, p. 177]. In an ergodic Markov chain we have a limiting matrix



IT = lim,, . P" with all rows having the same vector m = (71, m2,...)
of positive probabilities with sum equal to 1; the probability 7; denotes the
long-run proportion of time that the Markov chain stays in state ¢

A 00 OH 1,0 1,) 20 (@D ®) | 0O O 1,0 1,1H 20 @D
00 12 0 6 0 0 0 00 12 0 16 0 0 0
01| 28 0 0 0 0 0 on| 28 0 0 0 0 0
(LO)| 9 0 5 95 45 0 (L,0)| 2 0 8 0 18 0
(1LD] 0 21 7 0 0 0 1Ll o 6 19 0 0 3
2.0/ 0 0 75 0 9 115 20| 0 0 75 0 9 115
@n| o 0 0 165 85 3 @n| o 0 0 165 85 3

Table 2: Sum of the probabilities assigned to each possible transition over
all asynchronous state graphs. (A) and (B) are built from Tables 1(a) and 1(b)
respectively. These numbers take into account the multiplicity of asynchronous
state graphs.

To model the asynchronous dynamics by a Markov chain, we examine
all the possible asynchronous state graphs. Since different synchronous state
graphs may lead to an identical asynchronous state graph, the number of dis-
tinct asynchronous state graphs can be less than the number of distinct syn-
chronous state graphs. In that case, we also have to take into account the
multiplicity (number of occurrences) of each distinct asynchronous state graph.
In each asynchronous state graph, we assign appropriate probabilities to tran-
sitions (the transitions outgoing from a same state receive the same probability
if no knowledge contradicts this hypothesis). Once this is done for each asyn-
chronous state graph, we multiply the probabilities assigned to each possible
transition by the multiplicity of the asynchronous state graph and take the sum
of all such terms over all the possible asynchronous state graphs.

We now set-up the transition probability matrices for Tables 1(a) and 1(b)
which are obtained by simply dividing the entries of Table 2 by the total num-
ber of synchronous state graphs which is 28 as already mentioned. We have:
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The order of the entries in P, and P, follow the order given in Table 2.
These Markov chains are ergodic, which guarantees the existence of a unique
stationary probability m; which gives the long-run proportion of time in .



e Evaluating limy,_,o Py, we have m( gy = 0.339, m(g 1) = 0.096, 7(1 o) =
0.304, 1,1y = 0.128, w59y = 0.091, and 7(3 1) = 0.042. In the long-
run, the most visited states are (0,0), (1,0), and (1,1). Given the long-run
probabilities, we can also compute the average number of transitions
required to return to each state. Recall that u;; denotes the expected
number of transitions needed to return to state ¢ starting at state 7. For
this chain, the mean return times for the states (0, 0), (0,1), (1,0), (1,1),
(2,0) and (2, 1) are given by 11 = 2.949, pgo = 10.424, us3 = 3.285,
paa = 7.818, puss = 11.014, and pugg = 23.944, respectively.

e For P, we obtain lim,, ,, P} which gives the stationary distributions
7T(070) = 0073, 7T(071) = 0022, 7T(170) = 0285, 7['(171) = 0101, 7T(270) =
0.347, and (5 1) = 0.172. The most visited states are (2, 0), (1,0), and
(2, 1). For this chain, the mean return times are given by 117 = 13.592,
oo = 46.125, uss = 3.508, pgq = 9.884, pss = 2.883, and peg =
5.824.

Both chains show that 70% of the time in the long-run 4y = 0 which means that
x is not inhibited; we then expect that in the long-run z # 0 most of the time.
On one hand, this is true for P, since the most visited states in the long-run
are the states (2, 0) and (1, 0). On the other hand, in the case of P, these
both states are visited only close to 40% of the time. Moreover a drawback of
setting up a Markov chain this way is the inability to show the steady-states or
circuits of the asynchronous state graphs.

4 Probabilistic Gene Network (PGN)

In the previous model, the Markov chain comes from a superposition of all
the parameterized qualitative models. In order to distinguish the different
asynchronous state graphs, we introduce a Markov chain which memorizes
the asynchronous state graph a particular state is in. Because all asynchronous
state graphs can differ drastically, we limit this Markov chain to a set of asyn-
chronous state graphs that behave closely (see below).

In PGNs, we take into consideration attractors. The attractors of a network
are the smallest sets of states from which one cannot escape [10, Section 2.5].
This can be a stable state which is a state without successors or a group of states
that demonstrates sustained oscillations without exits. These latter attractors
are said to be cyclic and, naturally, it is not possible to reach a stable state
starting from a cyclic attractor. Note that every asynchronous state graph has
at least an attractor. The stable states of an asynchronous state graph results
to having absorbing states in the Markov chain built on it. The presence
of absorbing states may result to obtaining an absorbing Markov chain; this



happens when it is possible to eventually reach an absorbing state from every
state [4, p. 416]. To show a Markov chain is absorbing, we need to find an
n € NT such that all the entries of P” are non zero, P being the transition
probability matrix. An absorbing Markov chain give the expected times of
absorption and the probability of absorption from every transient state.

Let .4~ = {Njy,...} denote a subset of Thomas’ networks (asynchronous
state graphs). This set can correspond to all asynchronous state graphs that are
coherent with some biological knowledge, in that sense, the set is supposed to
be largely smaller than the total number of asynchronous state graphs. This
set can result e.g. from a filtering step which selects only asynchronous state
graphs which are coherent with behavioural properties expressed in a formal
language [1]. We introduce an ordering relation between Thomas’ networks:
for distinct networks N and N’, we have N > N’ if and only if N’ is a sub-
graph of N. This ordering relation leads to consider the set of models equipped
with this relation as a lattice with possibly several minimal elements. Denote
by S = {si1,s2,...} a set of states (this set is common to all asynchronous
state graphs).

The intuition is the following. A biological system can be represented
by a set of different dynamics (asynchronous state graphs). In a particular
environment, the biological system can behave exactly as one of these dynam-
ics but according to some changes of the environment, the behaviour of the
biological system can adopt the dynamics of another asynchronous state graph.
It becomes natural to allow the Markov chain to jump from one asynchronous
state graph to another. But it is unlikely that the biological system jumps
from a state of a certain network toward another state in another network with
a very different dynamics from the initial network. This is the reason why
the jumps are possible only under some conditions on the ordering relation
between Thomas’ networks.

A probabilistic gene network (PGN for short) on .4 satisfies the following
conditions:

i. For each N € .4 and each transition s — s’ on the asynchronous state
graph N a probability of Py (s — s) is attached in such a way that for
every s, > cg Pn(s — §') = 1.

ii. For each pair of networks N, N’ € .4 such that N > N’ and there
exists no other network N” such that N > N” > N’, a probability is
attached to (N — N’) in such a way that the sum of all such probability
for a given N is less than 1.

Once a probabilistic gene network has been established, we define its cor-



responding probabilistic state graph. Let (N, s) denote the set of nodes of
the probabilistic state graph, where N € .4 and s € S. The set of edges
(transitions) is defined by (N, s) — (N, s') if and only if s — s’ (with s’ # s)
is a transition of N and P(N — N’) # 0. The probability P((N,s) —
(N',s")) is defined by

P((N,s) = (N',s"))
W(N")1sssnen)(N)Pri(s — §)

D D W)L emnsen (V) Py (s = 57)°
N*eN s*eS

2

where 14(-) is the indicator function and W (NN) denotes the weight of the
network N which pertains to its multiplicity in the set of all possible asyn-
chronous state graphs of .#". When the transition does not involve a change of
network, we replace N’ by N to compute for the corresponding probability.

The probabilistic state graph is used to set up a Markov chain that would
hopefully give a better representation of the dynamics of a gene regulatory
network. More precisely the probabilistic state graph allows one to walk inside
the set of considered asynchronous state graphs. Thus, a probabilistic gene
network gives information not only on the state of each genes but also the
network containing the state.

We present an illustration of a Probabilistic Gene Network by considering
the networks of Figure 4. For N = Nj (resp. Na), the value of Py (s — s) is
computed making the assumption that in the network NV the probability of tran-
sitioning from s to any of its successor is equally likely which is 1 divided by
the number of transitions outgoing from s in N. Moreover we suppose that ./
contains twice N7 and once N2, which can be interpreted as: staying in N is
more likely than jumping from Ny to IN. The transition probability matrix is:

Ni,(0,) /1 0 0 0 0 0 0O O 0 0 0 0
Ni,(0,1)(2/3 0 0 0 0 0 1/3 0 0 0 0 O
Ni,(1,o)[2/3 0 0o O O 0 1/3 0 0 0 0 O
N,(L1)[ 0 1/31/3 0 0 0 0O 1/6 1/6 0 0 O
Ny,200l 0 o 0o 0o 1 0 0 0 0 0O 0 O
N,21)[ 0o o o 1/31/30 0 0 0 0 1/3 0
Nyy0,0l 0 o0 o 0 0 0O 1 0O 0O O 0O O
Ny, 0 0o o o 0 0 1 0 0 0O 0 O
Npy(Loyl o o o o o0 0 1 0 0 0O 0 O
NpyLt)l o 0o 0o o0 0 0O 0O 1/2 1/2 0 0 O
Nyy(200l 0 o o o o 0 0 O 0O O 1 0
Npyy21)\0 0 0 0O 0 0 0O O 0 0 1 0




We can note that it is not possible to escape from (N1, (0,0)) and (N, (2,0)).
This is due to the fact that to jump from an asynchronous state graph to an-
other one, it is mandatory to be in a state which is not stable in the initial
asynchronous state graph. Thus stable states in non minimal asynchronous
state graphs (in the lattice) become absorbing states of the chain. In this
illustration, the resulting Markov chain is an absorbing Markov chain so we
can generate the expected time of absorption from each transient state and
its corresponding probability of absorption in the stable states as shown in
Tables 3 and 4, respectively.
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Figure 4: Two asynchronous state graphs (left) associated with interaction
graph of Figure 2(a) on which we illustrate the construction of the probabilistic
gene network (right). The numbers labelling the transitions (right) correspond
to the numerator of Equation 2.

When involved networks have only cyclic attractors, the resulting Markov
chain gets divided into several classes whose number would depend on the
number of networks in the subset and on the structure of the lattice. Because
the chain only allows a transition from a larger network to a smaller one, all
the states in a network form a class of transient states except the states in the
smallest networks (according to the lattice structure of the set of networks)
which constitute different classes of recurrent states.

Transient | Expected Time of Transient | Expected Time of
States Absorption States Absorption
(va(ov]-)) 1 (N27(071)) 1
(Nla(lvo)) 1 (N27(1a0)) 1
(N1,(1,1)) 2 (N2,(1,1)) 2
(N1,(2,1)) 5/3 = 1.666 (N2,(2,1)) 1

Table 3: Expected time of absorption (number of transitions) from any of
transient state to any of the absorbing states for the networks in Figure 4.



Transient Probability of Absorption
States (N1,(0,0))  (N1,(2,0)) (No,(0,0)) (Na,(2,0))
(N1, (0,1)) 2/3 0 173 0
(N1, (1,0)) 2/3 0 1/3 0
(N1, (1,1)) 4/9 0 5/9 0
(N1,(2,1)) 427 1/3 5127 1/3
(N2, (0,1)) 0 0 1 0
(N2, (1,0)) 0 0 1 0
(N2, (1,1)) 0 0 1 0
(N2, (2,1)) 0 0 0 1

Table 4: The transient states in the smaller network can only be absorbed in its
own steady states because it is not allowed to leave the network. The transient
states in the bigger network can be absorbed by any of the absorbing states of
the networks under consideration, see Figure 4.

5 Discussion and conclusion

In this article we mixed two different frameworks of gene networks allowing to
take advantage of the formal framework of R. Thomas modelling theory and
to use transition probabilities of Markov chains to change the parameterized
model. According to Figure 3, the modelling framework of R. Thomas leads
to a single unique model, both the inward spiral and the outward spiral. In
a natural way, it could be more efficient to represent the inward spiral by the
model where transition (1,0) — (2, 0) does not appear. In such a case, it could
be interesting to consider in a unique framework both discrete state graphs and
to allow the trajectory to jump from one to another, if information coming
from biological experiments reinforces the belief in a particular model. For
example, longer are the observed traces around the qualitative cycle, bigger
the belief in the model representing the inward spiral.

In such a way, it becomes natural to consider each asynchronous state
graph as the dynamics of the biological system in a particular context. When
the environment changes the context, the qualitative dynamics can also change.
Probabilistic Gene Networks presented in this article, constitute a first frame-
work allowing to jump from a qualitative dynamics to another one.
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