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Abstract. In the course of apprehending of biological system, the mod-
eling process of gene interactions plays a crucial rocketing role. Unfortu-
nately, the main bottleneck of the modeling process is always the deter-
mination of the model parameters. This study focuses on the problem
of identifying Gene Regulatory Network (GRN) variables in a discrete
framework, represented by gene product concentration thresholds, that
separate discrete states of genes contained in the GRN. We propose to
compute thresholds from graphs representing interactions between bio-
logical genes, gene product concentrations experimentally measured by
biologists, and observable behaviors. In this setting, we have developed
some adaptations of bio-inspired methods to assist modelers and to pro-
pose compatible models to biologists. Since the parameter identifica-
tion problem is constrained, in this article we focus on adapting and
comparing three different heuristics of the CEC’2020 competition for
solving single-objective constrained problems using the aforementioned
bio-inspired methods by defining a dedicated fitness. To validate our
approach, we used an abstract model of the cell cycle and found the
performances of the three heuristics consistent with the results of the
CEC’2020 competition. This serves as a proof of concept for the devel-
opment of methods to identify parameters of GRN models using available
data and relying less on biological expertise.

Keywords: Single-objective constrained optimization · Biological net-
works · CEC’2020 competition

1 Introduction

The modeling of biological systems is a fundamental approach to understand
complex behaviors at different scales, providing new insights into basic biology,
pharmacology and medicine. In particular, GRN is a model of molecular mech-
anisms that aims to represent interactions between genes and is used as a tool
to understand the temporal sequence of system regulations. These regulations
are represented by directed graphs where nodes correspond to genes, edges are
regulations, and labels indicate whether the regulation is an activation or an
inhibition with a + and − label respectively (fig. 1a). The combination of these
two basic types of interactions is sufficient to describe the diversity of biological
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systems, many of which give rise to complex behavior. In particular, homeosta-
sis (stability properties) can be obtained by a cycle with an odd number of
inhibitions, and multistationarity (coexistence of different stable states) can be
obtained by a cycle with an even number of inhibitions. Multiple mathematical
frameworks and paradigms can be used to apprehend the functioning of GRN.
There are four main categories: discrete models highlight qualitative nature of
the regulations, stochastic models consider transitions between states as non-
deterministic, differential equations use rather precise values of concentrations
of gene-associated chemical species, and hybrid models combine aspects of pre-
vious categories. Each model has its own strengths and limitations but they
all share a main problematic of finding good parameters to accurately match
the model dynamics to complex biological behaviors. Previous behaviors are
analyzed by biologists through experiments that measure the concentration of
gene product of each gene involved in the model (GRN). While a considerable
amount of research is done on inference of GRN from expression data [12], here
we rather consider the problem of parameter identification on a given GRN. In
this work, we focus on a discrete framework where the gene product concen-
tration is discretized into multiple states. Our main issue is to define transition
values (thresholds) between all states of all genes by analyzing raw data obtained
during biological experiments. However, it is subject to constraints, for example
the second threshold of a given chemical species cannot be lower than the first.
In this paper, we propose to consider threshold identification as a constrained
optimization problem. To solve this problem, we decided to use and compare
the first three evolutionary algorithms that won the CEC’2020 competition [9]
on real world single-objective constrained optimization.

The article is organized as follows: section 2 is devoted to the description of
the modeling framework for GRN. Section 3 describes the optimization problem
and how constraints are automatically derived from the framework. Three algo-
rithms used to solve this new problem are briefly presented in section 4, focusing
on how they handle constraints, and compared through a statistical campaign
in section 5. Finally, section 6 concludes.

2 Discrete model for GRN

A GRN is defined as a labeled directed graph G(V,E) where vertices correspond
to an abstraction of one or more biological genes, and edges depict activations
(+) or inhibitions (−) of gene production. For instance, gene ep may activate
gene b or inhibits gene a in the cell cycle GRN showed in fig. 1a. In this study,
we consider the R.Thomas’ modeling framework [14] which aims at describing
qualitatively the dynamics of gene networks by defining discrete states corre-
sponding to regions in the concentration space where all genes are constantly
regulated. More precisely, the concentration level of a gene x’s product is dis-
cretized in several states identified by a number (0, 1, 2 for instance in fig. 1b)
such that in state 1 the concentration level is above the concentration level of x’s
product in state 0 and below state 2. In order to characterize this discretization
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Fig. 1: R. Thomas GRN modeling.

and complete the GRN modeling, one needs to identify values of the transition
between states called thresholds. The threshold separating states n and n+ 1 of
a given gene x is denoted by θn+1

x in the sequel. R. Thomas formalism also adds
discrete values on edges e ∈ E, noted v1

+n−−→ v2 (resp. v1
−n−−→ v2), which means

that v1 activates (resp. inhibits) v2 only if the concentration of v1’s product has
reached at least the nth state concentration level. For instance, when the con-
centration level of gene sk exceeds θ2sk characterized by the increase of the curve
of a (green) in fig. 1b, concentration level of a increases and is represented by an
+2 edge between sk and a, noted sk

+2−−→ a. In this case, the interaction sk → a
is said to be active, and inactive otherwise.

Although not shown on the graph G, each gene product in the GRN is des-
tined to evolve and will change state over time. The new state towards which
a gene will evolve is called the target state. The target state of the gene x is
entirely determined by the predecessors of that gene in G. In the case of an
activation (resp. inhibition), we call resources the set of predecessors of x in
G, noted ωx, which have an active (resp. inactive) interaction on x. Moreover,
Kx,ωx

is the target state of x if its resources are ωx. Note that there are certain
constraints on the values of these parameters: when considering different sets of
resources ω1

x and ω2
x of gene x such as ω1

x ⊂ ω2
x, then Kx,ω1

x
≤ Kx,ω2

x
. This is

due to consideration that the concentration of a gene product will not decrease
when gaining resources.

A sequence of gene states in the graph observed by biologists is called a
trace. It partially describes the dynamics of the system and is formalized based
on Hoare’s logic [4]. This trace is composed of three elements: a vector of all
initial ((i1 · · · ik)T ∈ Nk) and final ((f1 · · · fk)T ∈ Nk) states of the genes in the
GRN and the sequence of state changes and represented by [v0 = i1; · · · ; vk =
ik]

T (v2+; v3−; · · · ; v1−)[v0 = f1; · · · ; vk = fk]
T . A state change is described by

the name of the gene changing state and a + (resp. −) sign representing the
increase (resp. decrease) of the state value by 1.
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3 Problem description

Finding the values of the thresholds is the main obstacle to efficiently applying
R.Thomas’ framework to biological data. To date, the determination of thresh-
olds is done by discussion with biologists and is not automated. Our aim is to
propose a way of placing these values with reasonable accuracy using (i) knowl-
edge of the GRN as depicted in fig. 1a, (ii) data representing concentration of
gene products over time as shown on fig. 1b named raw data and (iii) a trace (cf.
section 2) representing an observed interpretation of the raw data by biologists
named observed trace.

3.1 Modeling problem

To be able to set a threshold automatically, you need some way to derive infor-
mation from the three pieces of information listed above (GRN, raw data and
observed trace). Among the possibilities, one could try to evaluate changes in
concentration derivatives. These changes can only be a consequence of a change
in resources. For example, suppose that genes sk and ep activate a common tar-
get a and that the concentration derivative of a changes sign: this sign change
corresponds to a change in the concentration of the product of the predecessor
genes of a (sk and ep), which implies a change in state of at least one predecessor
of a (sk and/or ep), and thus a threshold crossing for the predecessor(s) that
have changed state. So, either θ2ep or θ2sk was crossed. As a consequence, either
θ2ep or θ2sk is close to the value of the concentration of the e or sk product at
the time of the sign change of the derivative of the concentration of the product
of a. Then, sk and/or ep become or cease to be resources of a. Since the set
of resources changes, the target state of a, denoted by Ka, changes. This new
target state explains why a’s product concentration derivative changes its sign.
Although this is a simple example, the actual complexity of GRNs means that
the previously explained reasoning cannot be used in practice due to the com-
putational explosion of possible resources that change. However, it is possible to
consider a set of thresholds and deduce whether it is consistent with the three
available data listed in the introduction paragraph.

Computing a trace from the thresholds. The first step in determining whether the
threshold placement is correct is to derive a discrete trace from these thresholds.
From these, each concentration measurement in the raw data can be framed
between thresholds and thus classified into discrete states for each gene. By
following this logic, one can infer all the state changes that occur in sequence,
and thus construct a global trace using the raw data, called the derived trace.
For example, let us consider a very simple case where a inhibits sk in state 1
(a −1−−→ sk). Let SK and A be the discrete states of sk and a respectively. If
the system is in state [SK = 0;A = 0] at a given time and changes states for
[SK = 1;A = 0] in the raw data, we can add (SK+) to the derived trace and
repeat until all the raw data is considered.
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Extracting K parameters from a trace. The discrete states of all genes in the
GRN can be derived from a trace. It is then possible to deduce the set of resources
for each of the genes and deduce which K parameters are used to describe the
target states. For example, if we consider gene a with resources ωa, then Ka,ωa

is the one that describes the target state of a. Furthermore, going from one state
to the next allows us to know which K has been used and the sign of the change
gives the information whether the K is higher or lower than the considered state.
For example, the trace [SK = 0;A = 0](SK+)[SK = 1;A = 0] gave us the
information that the target state of sk in the condition where [SK = 0;A = 0] is
greater or equal to 1. Since a inhibits sk (a −1−−→ sk), it is a resource of sk when
A is equal to 0 , so Ksk,a is greater or equal to 1. By using the same logic for
each step in the trace sequence, we can infer multiple K parameter values.

Evaluation of the derived trace. Since the set of thresholds is supposed to be
arbitrary, some inconsistencies may occur. There are two ways to detect them:
consistency between traces and consistency between θ and K. For the first one,
if the derived trace differs from the observed trace, we can exclude the proposed
thresholds because they do not give the same biological behavior. The second
type of inconsistency arises from the mismatch between the parameters describ-
ing the target states (K) extracted from the observed trace, and thoses extracted
from the deduced trace. If they are incompatible, there is an inconsistency be-
tween the observed trace, the proposed thresholds and the K. The proposed
thresholds can be rejected.

Constraints. Regardless of the previous deductions, both the thresholds values
and the K parameters are each constrained by nature. Thresholds for a given
gene must be ordered in increasing value. For instance θ1a must be inferior to
θ2a. The K parameters follow the fact that adding resources to a gene cannot
decrease the target state. This means that when considering two sets of resources
ω1
a, ω2

a of a gene a with one being a subset of the other (ω1
x included in ω2

x for
example) then Kx,ω1

x
is lower or equal to Kx,ω2

x
.

The total number of thresholds and K parameters can be derived from the
GRN. The number of thresholds associated with a given gene is equal to its
maximum state on the GRN (the maximum value of the label on an outgoing
edge). The number of K parameters for a given gene is equal to 2n, where n is
the number of predecessors. This number of parameters is usually larger than
the size of the trace, so reasoning on the trace is limited because the trace does
not necessarily go through every possible state of every gene. This means that
not all suggested threshold values will be used, and therefore several suggested
thresholds may be equivalent. The same reasoning applies to the K parameters,
not all possible states are encountered in the trace and therefore not all possible
K can be derived. However, it is still useful to consider them as constraints still
apply to them.
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3.2 Optimization problem

The interest of this work is to identify gene product concentration thresholds in
a GRN, given an interaction graph, raw data and a known observable behavior.
By considering thresholds and resources as a search space, as discussed in the
previous section, this identification can be viewed as a constrained optimization
problem thanks to numerous constraints that can be automatically derived. In
the following, we expect to use population-based metaheuristics to optimize this
problem. We first describe the representation of the individuals before expressing
the constraints and the fitness function in detail.

Individuals. The idea here is to define individuals as the concatenations of thresh-
old values and K values in the alphanumeric order. Let [x1, x2, ..., xn] be the
list of genes, ti be the number of thresholds of xi for i ∈ [[1, n]], [ri1, ri2, ..., riji ]
be the possible resources (predecessors) of xi for i ∈ [[1, n]]. The genotype Ψ can
be represented as [θ1x1

; θ2x1
; ...; θt1x1

; θ1x2
; θ2x2

; ...; θt2x2
; ...; θtnxn

;Kx1,∅;Kx1,r11
;Kx1,r12

; ...
;Kx1,r1j1

;Kx1,r11r
1
2
; ...;Kx1,r11 ...r

1
j1
;Kx2,∅; ...;Kxn,rn1 ...rnjn

]. Note that θ are floats,
while K are integers.

Constraints. In our problem we have the two types of constraints detailed in
section 3.1. Given a gene x, the constraint threshold violation is the sum of the
maximum values of θnx minus θn+1

x and 0, where n is the number of thresholds of
x minus 1. Constraint violations of K parameters are the sum of the maximum
value between Kx,ω2

x
minus Kx,ω1

x
and 0, for each set of resources of x, where ω1

x

is a subset of ω2
x. An individual’s constraint violation score is then calculated as

the sum of all previously explained constraint violation scores for each gene in
the GRN.

Fitness function. To evaluate the value of a set of thresholds in combination
with a set of K parameters, we consider a two-part cost function. First, an indi-
vidual’s thresholds are combined with the raw data to produce a derived trace,
as explained in section 3.1. This trace is compared to the observed trace. For
each state change in the derived trace, if the changes are different, we calculate
how much we should move the proposed threshold of each possible predecessor
to make the step identical. We take the smallest change as a value and repeat
this for the next step, then take the average of these values as a score. If the
sequence of states does not have the same length, we use the same reasoning to
find the value of the smallest threshold shift for the missing changes to occur
(or the unwanted change to not occur). This calculation will be referred to as
f1. The second part of the fitness, called f2, checks the coherence between the
individual’s K parameters and those obtained from the derived trace. If a value
is incoherent, the score is increased by one. The fitness function to be minimized
is the combination of these two criteria, which are equally weighted.
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Finally, threshold identification can be formalized by

x∗ = arg min
x ∈ Ψ

f(x) = 0.5× f1(x) + 0.5× f2(x)

subject to Kg, ω2 −Kg, ω1 ≤ 0, ∀ω1 ⊂ ω2 ∈ Ωg, ∀g ∈ V ,

θi+1
g − θig ≤ 0, ∀i ∈ [1, tg − 1], ∀g ∈ V

(1)

where Ωg is the set of possible resources of gene g and tg the number of threshold
of gene g.

4 Algorithms

To solve the problem presented in the previous section, we consider the first three
algorithms of the CEC’2020 competition [9]. A set of 8 algorithms was compared
on 57 real problems from different domains (chemistry, mechanics, power elec-
tronics... but not bioinformatics), where the number of decision variables varied
from 2 to 158, the number of equality constraints from 0 to 148 and the number of
inequality constraints from 0 to 91. The algorithms were ranked using a weighted
sum of the best, median and mean results obtained on the 57 problems, with
higher weights given to higher dimensions. The winner is Self-Adaptive Spheri-
cal Search algorithm (SASS) [7] followed by Constrained optimization with Lévy
flights Differential Evolution (COLSHADE) [3] and Modified Covariance Matrix
Adaptation Evolution Strategy (sCMAgES) [6].

Historically, the most common strategy for dealing with constraints in an
optimization problem is to convert the constrained problem into an uncon-
strained one by adding a penalty term to the objective function that evalu-
ates violations of equality and inequality constraints. Due to numerous limi-
tations of this strategy in defining penalty factors that combine the objective
function and the penalty term, several Constraint Handling Techniques (CHT)
have been proposed. The most popular CHTs are feasibility rules, self-adaptive
penalty function, ϵ−constraint handling, stochastic ranking, combination of sev-
eral CHTs [10,11], and more recently boundary updating [2]. The following sec-
tions briefly describe each of the 3 algorithms, emphasizing the CHT they use.

4.1 COLSHADE

COLSHADE [3] is based on L-SHADE, a Linear population size reduction and
Success History based parameter Adaptation Differential Evolution (DE) algo-
rithm. This means that L-SHADE maintains a historical memory of entries for
the control parameters CR and F of the DE algorithm, which are adapted at each
generation. The initial population size is set as large as possible to encourage
wide exploration and is reduced linearly to speed up convergence and exploit the
best solutions found. COLSHADE alternatively combines the levy/1/bin muta-
tion operator, chosen for achieving larger exploration of the search space, with
the current-to-pbest/1/bin mutation operator used by L-SHADE chosen for its
exploitation ability.
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COLSHADE is adapted to constrained optimization by separating the ob-
jective function from the constraints and using the feasibility rules (FR) where
no hyperparameters are needed. FR is based on comparisons between pairs of
individuals and is therefore well suited to DE-based algorithms when comparing
target and trial vectors. In FR, feasible solutions are always considered better
than infeasible ones. Two infeasible solutions are compared based on their over-
all constraint violations only, while two feasible solutions are compared based
on their objective function values only. This mechanism aims to push infeasible
solutions to the feasible region.

4.2 SASS

Spherical Search (SS) [8] is a recent technique that outperforms the state-of-the-
art algorithms for bound-constrained non-convex real-world optimization prob-
lems thanks to a smaller number of hyperparameters, a better balance between
exploration and exploitation during the search, rotational invariance, and, ac-
cording to its authors, mapping the contour of the search space. SS has similar
characteristics to DE, but differs in the generation of the trial vector by using
a spherical boundary on which this vector lies. It also uses a symmetric matrix
for the linear transformation from the search space to itself.

SS is adapted to constrained optimization, called SASS [7], by combining the
ϵ−constraint (EC) CHT and a gradient-based repair mechanism (RM). In EC,
constraints are relaxed under the control of the ϵ parameter, which is adjusted
over the evolution process until it reaches 0 at the end of the run. Since solving
a constrained optimization problem becomes tedious when many constraints are
present, proper control of the ϵ parameter is essential to obtain high quality
solutions for problems with equality constraints. The selection of individuals in
EC is similar to FR (section 4.1), except that in EC an individual is considered
feasible if its total constraint violation is less than ϵ.

The main idea of RM is to use the gradient information derived from the
constraint set to systematically repair the infeasible solutions. The gradient in-
formation is used to guide the infeasible solutions towards the feasible region.
The problem with RM is that it has to be designed for a specific problem, and
repairing infeasible solutions can sometimes be as complex as solving the orig-
inal problem. In SASS, RM is represented as a matrix and is applied with a
probability of 0.2 after every D iterations, where D is the number of decision
variables.

4.3 sCMAgES

Covariance Matrix Adaptation Evolution Strategies (CMA-ES) is a well-known
derivative-free optimization algorithm, mostly dedicated to non-convex continu-
ous search spaces. The algorithm uses only the ranking of individuals to learn the
distribution of samples over the fitness landscape. Recently, ϵMAgES has been
proposed as a simplified version of CMA-ES for constrained fitness landscapes.
sCMAgES [6] improves the time complexity of the sampling scheme and adds
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EC and RM strategies to ϵMAgES. In addition, sCMAgES includes a multiple
restart scheme to improve performance for multimodal constrained optimization
problems. For repairing infeasible individuals in the RM scheme, the same ma-
trix1 is used for sCMAgES and SASS (section 4.2). This matrix is constructed
from a Jacobian matrix of constraints and three other diagonal matrices used
to weight the repair process according to the minimum and maximum values of
individuals and their constraint values. The repair method used here follows the
one in [13].

5 Experiments and Results

In this work, we focus on a qualitative model of the cell cycle which is a series
of events leading to correct duplication of DNA of a cell and its division into
two genetically identical daughter cells. A 5-variable discrete model of the cell
cycle has been designed [1] dedicated for studying the notion of phases in the
cell cycle. This GRN (Figure 1a) is composed of 5 genes and has 8 thresholds,
60 K parameters and 222 inequality constraints.
Prior to the application of our approach to the discovery of the underlying thresh-
olds of as yet unknown biological systems, this article is devoted to a proof of
concept of our method on simulated raw data: knowing the chosen synthetic
parameters, it’s easy to assess the performance of our approach. To do so, and
keeping in mind that we focus on threshold identification, we systematically
generated a differential equation system in accordance with discrete K param-
eters proposed by D. Boyenval [1], that generate a trace of 11 steps and try to
re-identify the chosen thresholds from a numerical solution of the differential
equation system.

As mentioned above, we chose algorithms from the CEC competition where
the experiments considered 25 independent runs for each algorithm. Note that
in the CEC competition, the initial population size differs from each algorithm.
SASS starts with a population of 60 individuals, while sCMAgES starts with
4 + ⌊3 × ln(D)⌋ and COLSHADE with 18 × D where D corresponds to the
number of decision variables. COLSHADE’s population decreases linearly over
the run to 4 while population size does not change for SASS and sCMAgES.
The budget allocated to each algorithm was a maximum number of function
evaluations (NFE), depending on the number of variables in the problem to be
solved (D). For the sake of fairness, we decided to carry out 30 independent runs
for the 3 algorithms presented in section 4, with the same initial population size
of 100 individuals and a maximal budget of 3× 105 NFE.

The convergence curve and the percentage of individuals in the population
that satisfy the constraints over time are shown in Figure 2. The red horizontal
line represents the global optima that need to be identified. We observe that
COLSHADE quickly converges to feasible solutions and never considers infeasi-
ble solutions afterwards, while SASS and sCMAgES maintain a balance between

1 available at https://github.com/GuillaumeGtl/optimization_GNRmodeling
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Fig. 2: Average over time of 30 independent runs of the percentage of individuals
with no Constraint Violation (top) and the average of the best fitness (bottom).
The vertical error bars correspond to the standard deviation.

exploration and exploitation by considering feasible and infeasible individuals
throughout the run. It can also be observed that there is a sudden drop in the
number of feasible individuals in the population for sCMAgES around 15 000
NFE, probably due to a restart procedure in case of low convergence evolution
of the algorithm. This restart procedure discards the current population and ini-
tializes a new one, so it is expected that the percentage of individuals satisfying
the constraints in this new population will be low. The average best fitness of
sCMAgES and COLSHADE seems to stagnate around 0.5. This is explained by
the fact that if one of the K parameters of the individual does not correspond to
those derived from the trace (see fitness in section 3.2), it makes the second part
of the fitness gain a score of 1, thus making the fitness value gain 0.5. In addition,
COLSHADE quickly reaches a low fitness value, which is also reached by SASS
at a later stage, around 25 000 NFE. The standard devation of COLSHADE also
suggest broad differences in results of individual runs. This indicates that COL-
SHADE tends to stay in local optimum and might benefit from a larger starting
population thus encouraging exploration over exploitation in early stage of the
optimization. sCMAgES seems to obtain better results in the very beginning
but quickly converges towards a local optima. The results of COLSHADE and
SASS are very close, which may be due to the fact that they are both based
on the DE current-to-pbest/1/bin algorithm. To distinguish between them, we
constructed Cumulative Distribution Function (CDF) curves (fig. 3), which de-
scribe the probability of finding a solution at or below a given fitness score for
each algorithm. It can be observed that COLSHADE has a probability of 0.7 to
obtain a fitness just above 0.5, while SASS has a probability of 0.3 to obtain the
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Fig. 3: Cumulative Distribution Function on 30 runs with 3× 105 NFE.

same fitness. However, SASS algorithm may perform slightly better, but with a
probability below 0.2.

Statistical tests. In order to statistically validate our results, we first need to
assess whether we can use parametric tests. To do this we need the null hy-
pothesis H1

0 which states that the data are normally distributed, and H2
0 which

states that the variance are homogeneous. Using the Shapiro-Wilk test, H1
0 was

rejected with a confidence level of α = 5% for each algorithm, indicating that the
30 runs do not give normally distributed fitness values at 30 000 NFE. Although
Levene’s test did not reject H2

0 , the rejection of H1
0 means that we must use

nonparametric tests. To conclude on the statistical relevance difference between
the observed performance values of the three algorithms, we consider the null
hypothesis H3

0 which states that the performance scores are equal. To test H3
0

on the three algorithms, we first used Friedman rank-sum test with α = 5%,
which rejected the null hypothesis with a p-value of 1.01 × 10−4. This suggest
that the results are significantly different. Section 5 summarizes the results of
pairwise comparisons of algorithms using the Wilcoxon test: H3

0 was rejected
between SASS and sCMAgES and between COLSHADE and sCMAgES, but
not between SASS and COLSHADE (p-value > 0.05).

This means that there is a significant difference in results between sCMAgES
and the other two algorithms, but not between SASS and COLSHADE. Finally,
although we only performed 3 pairwise comparisons, we used Bonferroni cor-
rection as a post-hoc procedure to avoid false positives. The p-value has been

Fail to reject H0 Reject H0 (p < 0.05)

(a)
SASS 6.4e-5

COLSHADE 6.3e-1 3.3e-3
SASS sCMAgES

SASS 1.9e-4
COLSHADE 1.0e-0 9.9e-3

SASS sCMAgES

(b)

Table 1: Paired Wilcoxon rank-sum test (a) and Bonferroni post-hoc analysis (b).
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changed to adjust for multiple testing (section 5), but the result is the same,
i.e. the difference in results between SASS and COLSHADE is not statistically
robust, while the results of sCMAgES are considered significantly different. As a
result, we can conclude from these tests that SASS and COLSHADE have sim-
ilar performance, while sCMAgES is considered worse because it converges less
than the other two algorithms. The previous results are consistent with those
obtained in the CEC competition ranking.

Regarding the thresholds values and "K" parameters found, some are very
close to the desired value and others are much further away. This observation is
to be expected, since some of the parameters are concerned only with constraints
and are very free. Furthermore, as long as a threshold placement proposal gener-
ates a trace identical to the expected one, the fitness component that compares
the traces (f1) will be equal to 0. This implies that the value that doesn’t pe-
nalize fitness is only constrained by respecting the order of state changes. So if
we consider 3 successive changes of state in the trace, called c1, c2 and c3, if c1
and c3 are very far apart in time, then c2 has a large time interval during which
it can take place. Consequently, the threshold associated with c2 can take on
any concentration value of the gene product concerned by this change of state
between c1 and c3.

6 Conclusion

In the race to understand biological systems, the modeling of regulatory networks
plays an important role, as the underlying idea is to reason on the model in
order to deduce unobservable functioning of the living system. Unfortunately, the
bottleneck of the modeling approach lies in the determination of the parameters.
Even in the case of discrete models, this question is limiting, but it also depends
on certain fundamental thresholds. In this article, we show that the problem of
identifying these thresholds coupled with dynamic parameters can be tackled as
an optimization problem by considering the underlying GRN combined with a
collection of real concentration measurements and a target trace corresponding
to events observed by biologists.

In this context, the problem can be expressed as a constrained optimiza-
tion problem: some constraints express that thresholds are ordered, and others
that the kinetic parameters must satisfy some inequalities. Naturally, we have
adapted several single-objective constrained optimization algorithms, selected
from among the best of the recent CEC competition, by defining a specific fit-
ness function and repair matrix. We then compared them to our problem of
identifying thresholds and kinetic parameters of a 5-gene cell cycle model from
which over 200 constraints can be derived. The results show that COLSHADE
and SASS are both equivalent approaches and that sCMAgES performs less
well. Although the statistical analysis concluded that there was no significant
difference between the final results of COLSHADE and SASS, it appears that
COLSHADE is more likely to achieve good fitness, although SASS is likely to
achieve better fitness, but with a much lower probability.
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There are several ways in which this work could be continued. First, it is clear
that the problem presented is an optimization problem under constraints with
integer and continuous variables. It would therefore be natural to consider spe-
cialised mixed-integer algorithms [5]. Secondly, from a modeling point of view,
we need to help the modeler to identify the thresholds, but without the infor-
mation of the observed discrete trace. On the one hand, this information is not
necessarily available, but above all, it requires the biologist’s expertise on the
raw data. It is therefore necessary to modify the fitness function in order to have
an evaluation of each individual that requires only the GRN and the raw data.
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