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Abstract. The hybrid modelling framework of gene regulatory networks
(hGRNs) is a functional framework for studying biological systems, tak-
ing into account both the structural relationship between genes and the
continuous time evolution of gene concentrations. The goal is to identify
the variables of such a model, controlling the aggregated experimental
observations. A recent study considered this task as a free optimisation
problem and concluded that metaheuristics are well suited. The main
drawback of this previous approach is that panmictic heuristics converge
towards one basin of attraction in the search space, while biologists are
interested in finding multiple satisfactory solutions. This paper inves-
tigates the problem of multimodality and assesses the effectiveness of
cellular genetic algorithms (cGAs) in dealing with the increasing dimen-
sionality and complexity of hGRN models. A comparison with the second
variant of covariance matrix self-adaptation strategy with repelling sub-
populations (RS-CMSA-ESII), the winner of the CEC’2020 competition
for multimodal optimisation (MMO), is made. Results show evidence
that cGAs better maintain a diverse set of solutions while giving better
quality solutions, making them better suited for this MMO task.

Keywords: cellular genetic algorithm ⋅ epistatic and multimodal
optimisation problem ⋅ RS-CMSA-ESII ⋅ hybrid GRN ⋅

chronotherapy ⋅ real-world application

1 Introduction

Studying the dynamics of gene regulatory networks (GRNs) aims to understand
the various cellular processes and pathways that empower a living organism to
carry out essential functions, such as metabolic processes and the ability to adapt
to environmental disturbances. Modelling such GRNs allows novel and better cog-
nisance of disease initiation and progression, opening new perspectives in phar-
macological fields such as chronotherapy, which can be viewed as the practice of
administering medication at specific times during the day, taking into account
the body’s natural rhythms and the varying effects of the treatment. By logically
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following the activation or inhibition of genes and proteins under different con-
ditions, biologist modellers can create models of these complex systems based on
actual knowledge. That led to numerous modelling GRN frameworks such as dif-

ferential, stochastic or discrete ones [22], each of them presenting its advantages
and drawbacks. Whereas it is not too difficult to enumerate the different genes
playing a role in a particular context as well as the known regulations between
them, the common impediment remains the identification of the variables that
govern the GRN dynamics.

In the present work, we consider hybrid frameworks [7] called hGRNs. They
add to the discrete ones the time spent in each discrete state, allowing experimen-
tal observations to be represented as irregularly spaced time series of observable
events. It has been shown that the hybrid model can exhibit these events in
the same order and at the right time only if the dynamic variables that con-
trol the model behaviour satisfy a set of constraints. The design of these min-
imal constraints on the hGRN variables has been automated. An attempt has
been made to use a continuous Constraint Satisfaction Problem (CSP) solver to
extract solutions but faced difficulties when the number of variables increased [8].
Recently, [17] showed that the CSP, exhaustively characterising the set of solu-
tions, can be expressed as a free optimisation problem (FOP) by indirectly han-
dling constraints thanks to metaheuristics. The CSP was transformed into a
non-separable, non-trivial, continuous, and single objective problem in which the
search space increases exponentially with the number of genes in the hGRN. One
limitation of this approach is that such algorithms are panmictic and can only
identify one basin in the search space. From a modelling perspective, exhibit-
ing a diverse sampling of biologically satisfactory solutions allows biologists to
reason not only on one possible identification but also on a set of sensible ones.
Therefore, this work focuses both on validating the previous approach on hGRNs
involving more genes and complex dynamics and on the multimodal aspect of the
identification problem. RS-CMSA-ESII is a new niching method for MMO that
emerged as the most successful available method when robustness and efficiency
are considered at the same time and does not make any assumptions such as
distribution, shape, and size of the basins [2]. This CEC’2020 top niching-based
algorithm is the logical choice to be tested as a baseline to gain more insights
on its ability to find a set of solutions without having any assumptions on the
modes. In the meantime, cGAs are well-known heuristics to tackle epistatic and
multimodal tasks [4,5] since the diversity maintenance is guaranteed thanks to
the structure and ratio of the population, unlike RS-CMSA-ESII which employs
mechanisms with different sub-populations running in parallel. So, this research
aims to address the problem of the hGRN variables identification to obtain a
diverse set of quality solutions for increasingly complex models while seeking to
identify the most suitable method for achieving these goals.

To meet these objectives and based on the research hypotheses set out above,
the article is organised as follows: Sect. 2 describes the hGRN continuous optimi-
sation problem by detailing: (i) the definition of the hybrid model along with its
dynamics, (ii) the experimental observations that serve as input, and (iii) how
this problem has been treated as an FOP. Section 3 encompasses an overview
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of RS-CMSA-ESII and cGAs from a multimodal perspective. Section 4 proposes
experiments comparing CMA-ES, GA, multiple cGAs with varying ratios and
structures, and RS-CMSA-ESII on three different hGRNs of increasing com-
plexity. Experimental results and statistical tests are presented and discussed.
Finally, conclusions are drawn in Sect. 5.

2 hGRN Variables Optimisation

2.1 Hybrid Gene Regulatory Networks

Hybrid modelling of gene regulatory networks (GRNs) aims to describe the
effect of regulations between genes in a biological system by taking into account
the continuous time component. Traditionally, a GRN is a directed graph in
which vertices express abstractions of one or multiple biological genes (v1, v2),
and edges that act as either activation (→) or inhibition (⊣) represent regula-
tions (Fig. 1a). This static representation seems of limited interest since it does
not integrate any dynamics. However, from Fig. 1a, the corresponding discrete
dynamics (Fig. 1b) can be built. First, grey boxes are obtained from the previ-
ous GRN by enumerating all possible states S: each grey square box identifies a
discrete state η ∈ S defined by the level of the GRN genes. If we suppose that
the maximum level of each gene vi is 1, then the top right box is the state where
each gene is expressed at its maximum level and is denoted by η = (ηv1

, ..., ηvn
).

In Fig. 1, this state is η = (ηv1
, ηv2

) = (1, 1). From this first step, transitions
between discrete states can be drawn (black arrows) and symbolise the discrete
evolution of the concentration of the gene products. Although the obtained dis-
crete state graph of Fig. 1b is deeply interesting for logical reasoning about regu-
latory changes, it disregards temporal information, which is nevertheless crucial,
for example, for optimising medical treatments by taking account of biological
rhythms.

Fig. 1. Example of a GRN depicted as a directed graph (a), its discrete state graph
(b), and a possible dynamic of its hybrid state graph (c) (taken from [17]).
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The hybrid modelling framework adds the notion of temporal continuous
evolution to the previous dynamics by adding linear continuous trajectories (red
straight lines) to the discrete transitions of a GRN (pictured with dotted red
lines in Fig. 1c). On a trajectory, a point is called a hybrid state and given by its
position π within a discrete state η. As an example, the initial hybrid state hi

in Fig. 1c has the coordinates ((ηv1
, ηv2

)t
, (πv1

, πv2
)t) = ((0, 0)t

, (0.25, 0.25)t).
To determine a complete trajectory through a set of discrete states, hGRN mod-
els require an initial hybrid state hi and a vector of the evolution of concentra-
tions in each discrete state, called celerity vector. This vector gives the direction
and celerity of each gene v ∈ V in a discrete state η ∈ S, e.g. the celerity of v1

in η = (0, 0) is denoted Cv1,(0,0). In the general case, the celerity of v in η is a
floated value defined as Cv,η.

The aim is to identify celerity vectors to generate valid hGRN models of the
biological system under study. Such a determination could help biologists make
new interpretations about the possible dynamics of the system.

2.2 Biological Knowledge

The identification process requires some input data, which allows the modeller
to validate or not a possible valuation of continuous variables. While much
work [10,18,20,21] is based on gene expression data, our approach takes into
consideration already-formalised information analysed by biologists derived from
both biological data and expertise.

The formalism abstracts the knowledge extracted from biological experiments
under the form of constraints on the global trajectory: it must (i) start from
an initial hybrid state hi = (ηi, πi), (ii) verify a triplet of properties in each
successive discrete state (∆t, b, e) where ∆t expresses the time spent; b delineates
the observed behaviours during the continuous trajectory; e specifies the next
discrete state transition, and (iii) reach the final hybrid state hf = (ηf , πf). Let
us detail the biological knowledge (BK) used for the example of Fig. 1c:

{hi}
⎛
⎜⎜
⎝

5.0

noslide (v2)
v1+

⎞
⎟⎟
⎠
;
⎛
⎜⎜
⎝

7.0

slide
+ (v1)

v2+

⎞
⎟⎟
⎠
;
⎛
⎜⎜
⎝

8.0

noslide (v2)
v1−

⎞
⎟⎟
⎠
;
⎛
⎜⎜
⎝

4.0

slide
− (v1)

v2−

⎞
⎟⎟
⎠
{hf}

hi = ((0, 0)t
, (πv1

, πv2
)t) represents both the initial and final state (hi = hf ).

Starting from hi, the time spent by the trajectory inside the discrete state
η = (0, 0) is approximately 5 h (∆t = 5.0). Within this state, the celerity should
move towards the next discrete state of v1 (v1+) so as to increase the concentra-
tion level of gene v1 until it reaches the right border without touching either the
top or the bottom border (noslide(v2)) and then jump into the neighbour state
η = (1, 0). In this new discrete state, the trajectory evolves for 7 h (∆t = 7.0)
in the direction of ηv2

= 1 (v2+) but, this time, the trajectory reaches the
right border, which corresponds to the maximum admissible concentration of v1

(slide
+(v1)). This process continues until the trajectory reaches hf . Any valua-

tion of dynamic variables, i.e. celerity vectors, leading to a trajectory satisfying
this BK is considered admissible.
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2.3 Single Objective and Multimodal Optimisation Problem

Searching for celerity values that satisfy BK initially led to characterising the
problem as a CSP and solving it by constraint-based programming [8]. On the
one hand, this constraint-based programming method was able to exhaustively
find the over-approximated sets of solutions, but as the number of dimensions
increased, such a method was unable to extract even one particular solution.

A recent attempt [17] has recently formulated the problem as being single-
objective by proposing an adequate fitness function consisting of three criteria
and testing this approach on the hGRN model of Fig. 1c (only two genes). In
this preliminary study, the decision vector to be optimised consisted of finding
the initial hybrid state hi and all celerity values of all discrete states:

hi, {Cv,η∣v ∈ V, η ∈ S} (1)

Thus, for example, finding an admissible valuation of Fig. 1c satisfying BK was
equivalent to finding the optimal parameter set of:

x = (hi;Cv1,(0,0);Cv2,(0,0);Cv1,(1,0);Cv2,(1,0);Cv1,(1,1);Cv2,(1,1);Cv1,(0,1);Cv2,(0,1)).

In this previous work, the fitness function is defined as the sum of three distances,
each corresponding to one of the criteria associated with BK:

f(x) = ∑
η
d∆t(tr, BK) + db(tr, BK) + de(tr, BK) (2)

where d∆t(tr, BK) is the distance between the expected time given by BK (∆t)
and the time spent in the current state by the considered trajectory; db(tr, BK)
represents the distance between the trajectory behaviour inside the discrete state
and the property of BK; and de(tr, BK) compares the expected next discrete
state according to BK with the discrete state into which the considered trajectory

enters. The function domain is (∏v∈V [0, bv]) × [0, 1]n
× R

∣C∣
where n is the

number of genes and ∣C∣ is the total number of celerities to identify, i.e. the
length of the decision vector. The codomain is R

+
.

Minimising these three criteria led to the identification of admissible celerity
values. However, the optimisation problem becomes increasingly complex when
considering hGRN models with many genes. It implies more celerity values to
identify and more complex interactions, leading to harder implicit constraints.
The continuous CSP solver was unable to extract even one particular solution
when considering a model with five genes, leading to 240 variables in the decision
vector. Furthermore, the task is multimodal: it is interesting to find diverse solu-
tions to provide biologists with evidence for different interpretations of hGRN
dynamics. The approach proposed by [17] did not address this issue. The pecu-
liarities of this optimisation problem are: (i) there is an infinite number of solu-
tions that satisfy the BK constraints, and (ii) the optima solutions lie on a neutral
landscape, i.e. a plateau. Indeed, solutions form a measure zero set due to the
equality constraints on the time criterion in the fitness function. Therefore, the
optimisation procedure requires the ability to sample, in a continuous landscape,
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global and local optima plateaus of measure zero. These considerations specific
to this optimisation problem cannot be addressed only by panmictic schemes.
Therefore, the limits of the mentioned approach are tested by introducing exper-
iments with well-known multimodal heuristic algorithms on higher dimensional
hGRNs.

3 RS-CMSA-ESII and cGAs for MMO

RS-CMSA-ES [1] was designated the most successful niching method for the
CEC’2013 MMO test suite. In this initial version, several parallel subpopulations,
each following the evolution scheme of CMSA-ES [9], aim at finding distinct global
minima. CMSA-ES is an adapted version of CMA-ES [14], diminishing the com-
plexity of the adaptation process and implying fewer hyperparameters tuning. RS-
CMSA-ES gathers several techniques and encompasses them as a new algorithm
for MMO without making any assumption about the fitness landscape: taboo
points (points from which the offspring of a subpopulation must maintain a suffi-
cient distance, i.e. the centre of the fitter subpopulations and the previously iden-
tified basins), the normalised Mahalanobis distance, and the Ursem’s hill-valley
function [23]. The new variant RS-CMSA-ESII [2] introduces an update of the
adaptation schemes for the normalised taboo distances, new termination criteria
for subpopulation evolution, and an improvement of the time complexity thanks to
(i) a new initialisation strategy of subpopulations, and (ii) a more accurate metric
for the determination of critical taboo regions thanks to the properties of Maha-
lanobis distance. The RS-CMSA-ESII superiority over successful niching methods
in static MMOs made it an ideal candidate for this study.

cGAs are well-known methods for addressing multimodal and epistatic prob-
lems [4,5]. They are a subclass of GAs in which the population is structured in
a specified topology, allowing individuals to interact only with their neighbours.
The topological structure defines a connected graph where a vertex represents
an individual, and an edge represents the possibility of interaction between two
individuals: each individual, in this graph, can only mate with its neighbours.
Therefore, in a cGA, the choice of the population topology and the neighbour-
hood are two parameters that guide the search and control the solutions’ diffu-
sion speed along the graph. The radius introduced in [5] directs the dispersion
strength based on the chosen neighbourhood: the higher the radius, the more
spread out a neighbourhood’s pattern is, and so the easier a good solution will
reach other individuals of the population because there will be less intermedi-
ate individuals to the most distant individual. Furthermore, [19] introduced the
ratio measure controlling the balance between exploration and exploitation. It is
defined as a trade-off between the radii of the neighbourhood and the population
structure: reducing the ratio leads to the promotion of exploration. Overlapping
neighbourhoods also help to explore the search space because the slow diffusion of
solutions through the population allows exploration by preserving diversity [3,4].
On the one hand, this leads cGAs to find several optima compared to GAs and
to be well suited for complex problems. On the other hand, this is often at the
expense of slower convergence towards global optima.
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Fig. 2. Interaction graphs of the 2G (a), 3G (b), and 5G (c) hGRN.

Table 1. Description of hGRN models.

Name Nb. genes Decision vector len. BK

example cycle (2G) 2 8 Given in Sect. 2.2

circadian cycle (3G) 3 20 [7]

cell cycle (5G) 5 240 [6]

In the following section, tests have been set up to compare the RS-CMSA-
ESII performance along with cGAs to demonstrate which method is best suited
to our multimodal task. Different structure and ratio values for cGA are exper-
imented with to evaluate their performance. We compared all the results with
standard panmictic metaheuristics on three hGRN models of increasing com-
plexity to assess the suitability of their diversity mechanism for such MMO
problems.

4 Experimental Study

The three hybrid models of GRN are depicted in Figure 2 and described
in Table 1 in terms of (i) the number of genes, (ii) the length of the decision
vector to optimise, and (iii) constraints from BK utilised for evaluating candi-
date solutions.

4.1 Optimisation Methods and Parameters Search

The comparison is carried out between (µ+λ) GA, CMA-ES, six synchronous
cGAs with different ratios and neighbourhood structures, and RS-CMSA-ESII.

The two continuous metaheuristic implementations come from PyMoo [11],
and each of the hyperparameters chosen is identical to those detailed in [17].
Their population size is also 500. Since we were interested in observing the influ-
ence of the cGAs parameters to find those most suitable for solving the different
hGRN problems, multiple sets of parameters were tested (listed in Table 2). The
names of the neighbourhoods follow the classical notation: the label Ln (linear)
for the neighbourhoods composed by the n nearest neighbours in a given axial
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Table 2. Description of tested cGAs parameters.

Name Population Neighbourhood Ratio

cGAL5 5× 10 L5 0.279

cGAL9 10× 10 L9 0.367

cGAL29 15× 15 L29 0.719

cGAL41 21× 21 L41 0.851

cGAL13 7× 7× 7 L13 0.607

cGAC9 7× 7× 7 C9 0.408

direction (north, south, west and east) while the label Cn (compact) designates
the neighbourhoods containing the n − 1 nearer individuals to the considered
one (in horizontal, vertical, and diagonal directions). The population size and
the neighbourhood structure vary so that we can test (i) low ratio cGAs with a
small population size and, conversely, (ii) high ratio cGAs with a larger popu-
lation, both in a toroidal 2G square grid, and (iii) 3G neighbourhood structure.
To ensure fair results, their implementation is also based on the standard GA
implementation provided in PyMoo. RS-CMSA-ESII implementation is taken
from [2] with the control parameters set to their default values.

Each experiment is run 50 times to obtain statistically significant results.
The termination criteria chosen is the number of function evaluations (NFE):
100, 000 for 2G and 3G and 200, 000 for 5G. These values were chosen based on
the relative complexity and the decision vector length.

4.2 Results

For each algorithm, problem dimension and at each generation, we compute the
best candidate solution so far, repeat executions 50 times, and compute the
Mean Best Fitness (MBF). The monotonic evolution of all algorithms is shown
in the left column of Fig. 3. It can be observed that (i), as expected, panmictic
metaheuristics perform worse than cGAs in all cases since they reach a plateau
faster and attain a higher fitness score after convergence; (ii) cGAL13, cGAL29,
and cGAL41 stand out among the algorithms tested since, on the one hand,
they have a slower convergence, and on the other hand, even when the maximum
budget is attained, their curves show that the search process could have pursued
its convergence; and (iii) RS-CMSA-ESII performs worse than CMA-ES.

In addition, Cumulative Distribution Function (CDF) curves are constructed
on the right side of Fig. 3 for each hGRN considered. Each CDF curve describes
the probability of finding a solution at, or below, a given fitness score. For
instance, in 3G, there is almost an 80% probability that a user will obtain a
solution with a fitness score less than or equal to 10

−4
with cGAL9 given 100,000

NFE. From these plots, (i) cGAs don’t often find the overall best solution (the
one with the lowest fitness score) but results are rarely unsatisfactory (>1), (ii) in
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all cases, CMA-ES can deliver top results (satisfactory and precise solutions) as it
is of poor performance (not solving the problem), (iii) RS-CMSA-ESII similarly
to CMA-ES has mixed performance and does not find any single satisfactory
valuation in 5G.

In MMO, the chi-square-like performance statistic and maximum peak ratio
are common measures to identify a maximum number of optima (local and
global). However, both of these measures assume the number and locations of
the global optima are known a priori. This assumption does not hold in our case,
so the scoring function used is introduced in [16] and defined as:

sc(P, θl, θu) = ∑
Bj∈Bink(clustσ(P ),θl,θu)

wj∣Bj∣ (3)

This alternative performance measure suggests the selection of a threshold
interval [θl, θu] covering all fitness score values considered interesting by an
expert. θl is the ideal point while θu is an upper bound below which fitness
values are judged satisfactory. In our case, θl = 0 and θu = 10

−2
. 10

−2
is a pre-

cision error coherent with biological expertise. For instance, a trajectory which
would slide in a state during a fraction of seconds (<θu) before going to the

Fig. 3. Monotonic evolution of MBF values (left) and CDF curves of overall best results
(right) for the three hGRNs.
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next discrete state is a satisfying trajectory despite BK stating noslide(v). The
score measurement uses density-based clustering with parameter σ to remove
redundancy between candidate solutions clustered closely around the same local
optimum. In this study, DBSCAN [13] is parametrised with σ = 10

−1
which is the

maximum Euclidean distance between two samples for one to be considered as
in the neighbourhood of the other. Equidistant binning is then used to adapt the
distribution weights: more emphasis is put on higher quality optima than lower
ones. The number of bins is kept at 16. This score assesses the combined quality
of the found candidate solutions while it is not prone to be misled by redundancy.
Table 3 shows numerical values for the mean scores where bold results highlight
the best performance for each model dimension. The comparison indicates that
small ratio cGAs (cGAL9 and cGAL5) are to be preferred for 2G, whereas cGAs
with a higher ratio perform better in the 3 and 5G cases, as shown by cGAL41
and cGAL29. It should also be noted that, in 5G, the extrema ratio values
(cGAL5 and cGAL41) are penalised for being too exploratory or exploitative.
cGAC9 has interesting results in all three cases but never stands out.

Table 4 summarises statistics of the last population clustered: it contains only
the fitness values of the best candidate solutions (<θu) gathered around each
distinct optima found by clustering. The best results (column by column) are
shown in bold. The average of the mean and standard deviation of the clustered
results is reported, as well as the overall minimum fitness scores (the reader can
refer to the leftmost point of each corresponding CDF curve). When considering
one particular run, it may appear that an algorithm did not find any solution
below θu. In such cases, the maximum value θu is considered: this results in a
normalised average with the ideal value being θl, and θu the nadir one. It can
be observed that cGAL9 finds, on average, higher quality optima than other
algorithms in 2 and 5G. In 3G, cGAL29 identifies satisfying solutions with a
lower fitness score on average.

Table 3. Overview of the average performance measurement over 50 runs.

Algorithms 2G 3G 5G

GA 12.13 148.09 8.29

CMA-ES 3e-3 0.275 29.32

cGAL9 19.99 63.47 21.11

cGAL5 16.82 30.07 2.04

cGAL13 7.33 290.59 0.03

cGAC9 13.78 162.28 34.11

cGAL29 13.90 182.18 49.81

cGAL41 1.56 311.07 0.0

RSCMSAII 1e-2 0.275 0.0
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Table 4. Summary of clustered results.

Algorithms 2G 3G 5G

mean ± std min mean ± std min mean ± std min

GA 1e-3 ± 2e-4 4e-8 4e-4 ± 2e-6 5e-8 99e-4 ± 94e-4 6e-3

CMA-ES 98e-4 ± 96e-4 2e−11 7e-3 ± 2e-13 1e-13 9e-3 ± 9e-3 1e−5

cGAL9 8e−4±8e−4 3e-7 1e-4 ± 7e-6 8e−14 85e−4±7e−3 2e-4

cGAL5 1e-3 ± 9e-4 3e-7 9e-4 ± 2e-4 1e-9 95e-4 ± 94e-4 3e-3

cGAL13 6e-3 ± 2e-3 4e-4 3e-4 ± 4e-4 5e-6 1e-2 ± 98e-4 7e-3

cGAC9 1e-3 ± 1e-3 3e-6 1e-4 ± 8e-6 4e-9 9e-3 ± 8e-3 3e-4

cGAL29 3e-3 ± 2e-3 3e-5 9e−7±1e−5 1e-9 79e-4 ± 7e-3 2e-4

cGAL41 8e-3 ± 3e-3 2e-3 2e-3 ± 16e-4 5e-5 1e-2 ± 0 1e-2

RSCMSAII 8e-3 ± 1e-20 8e-8 7e-3 ± 2e-13 1e-13 1e-2 ± 0 1e-2

4.3 Statistical Analysis

A statistical validation campaign was conducted to evaluate the observed differ-
ences in the reported performance values of all algorithm pairs for each different
hGRN. We consider two null hypotheses H

1

0 which states that the observed per-
formance scores are equal, and H

2

0 which states that the average fitness scores
obtained by clustering are similar. These null hypotheses are duplicated for each
of the hGRN dimensions considered. To test them, we first employed the Fried-
man rank-sum test to assess whether at least two methods exhibit significant
differences. The p-values for the null hypotheses show, at a α = 5% confidence
level, that the differences are significant. The choice between parametric and non-
parametric tests is made according to the independence of the samples (seeds
are different), whether or not the data samples are normally distributed, and the
homoscedasticity of the variances [12]. As neither normality nor homoscedasticity
conditions required for the parametric tests application hold, the non-parametric
Wilcoxon signed-rank test was performed. In a complementary way, to reduce
the issue of Type I errors in multiple comparisons, the Bonferroni correction
method was applied. [15] gives the score +1 (resp. -1) for the superior (resp. infe-
rior) algorithm whenever the considered null hypothesis could be significantly
rejected. A score of 0 is assigned when neither algorithm is significantly better
than the other. Since we have three different case studies (2G, 3G, 5G), for each
pair of algorithms and each null hypothesis, we sum the three obtained scores
to estimate which one is globally better considering the three hGRNs. Table 5
(resp. Table 6) show these sums according to the pairwise Wilcoxon tests (resp.
Bonferroni correction): a positive number for algorithm in line l shows that it
was significantly better than the algorithm in column c (considering the three

hGRNs). For example, according to the Bonferroni correction applied on H
1

0 , we
can state that cGAL29 is significantly better than RS-CMSA-ESII for the three
study cases but compared to cGAL41, we can only say that it is globally better:
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Table 5. Pairwise Wilcoxon statistical tests of H
1

0 (left) and H
2

0 (right).

CMA-ES cGAL9 cGAL5 cGAL13 cGAC9 cGAL29 cGAL41 RSCMSAII

GA +2 +2 0 −2 0 +1 0 +1 −2 −1 −2 −1 0 +2 +2 +2

CMA-ES −2 −2 −2 −2 −1 −1 −2 −2 −2 −2 −1 −1 0 +1

cGAL9 +3 +2 +1 +3 0 +1 0 0 +1 +3 +3 +3

cGAL5 0 0 −1 0 −1 −1 0 +2 +2 +2

cGAL13 −1 −3 −1 −3 0 +2 +2 +2

cGAC9 −1 −1 +1 +3 +3 +3

cGAL29 +1 +3 +3 +3

cGAL41 +2 +1

Table 6. Bonferroni post-hoc analysis of H
1

0 (left) and H
2

0 (right) with bolded differ-
ences compared to Table 5.

CMA-ES cGAL9 cGAL5 cGAL13 cGAC9 cGAL29 cGAL41 RSCMSAII

GA +2 +2 0 0 +1 0 0 +1 0 0 −1 0 0 +2 +2 +1

CMA-ES −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 0 0

cGAL9 +1 +1 0 +2 0 0 0 +1 0 +2 +2 +2

cGAL5 0 +1 −1 −1 −1 0 0 +2 +2 +1

cGAL13 0 −2 −1 −3 0 +2 +2 0

cGAC9 0 0 0 +2 +2 +2

cGAL29 +1 +3 +3 +3

cGAL41 +2 0

cGAL29 may have scored +2 and cGAL41 +1 or cGAL29 may have scored +1
and cGAL41 0.

If we analyse the conclusions supported by the tests, based on the acceptance
or rejection of the above hypotheses, we arrive at the following findings: on the
different tasks, cGAL9 and cGAL29 are more competitive in finding more optima
than other algorithms with better fitness values on average. RS-CMSA-ESII lags
as the panmictic algorithms maintain greater diversity in their population across
different hGRN landscapes.

4.4 Visualisation

Figure 4 shows the diversity of solutions of cGAL9 tested on hGRNs with 2,
3 and 5 genes. Please note that three different graph types are modelled to
emphasize the same phenomenon: the evolution of gene products concentration.
In 2G (Fig. 4a) and 3G (Fig. 4b), the discrete states can be represented as squares
and cubes. However, in 5G (Fig. 4c), the choice has been made to represent the
evolution of concentration (in y-axis) as a function of the time spent (in x-axis)
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for the different genes. This visually confirms that the application of evolutionary
computation allows us to exhibit very different solutions, each consistent with
BK.

Fig. 4. Admissible trajectories obtained with cGAL9 on the 2G (a), 3G (b), and 5G
(c) hGRN.

5 Conclusion

hGRN variable identification is framed as an ideal tool to help biologists develop
hypotheses and facilitate the design of their experiments. This study proposes
an improvement to [17] since (i) it shows that evolutionary computation can
outperform constraint-based approach by dealing with higher dimensional mod-
els, the 5G cell cycle in this study, and (ii) it is now able to find a diverse
set of optima solutions instead of a unique one. CGAs have shown superiority
over the best available niching-based algorithm (RS-CMSA-ESII) by maintaining
diversity within the population structure. Surprisingly, RS-CMSA-ESII does not
ensure diversity in the results: only one solution is found. In our case, optima are
located on a neutral landscape: there is an infinite number of solutions forming
a null set. Therefore, for sampling a continuous landscape with global and local
optima plateaus of measure zero, the mechanisms employed by RS-CMSA-ESII
are not suitable. Because the Ursem’s hill-valley test fails, it ensures that only
one subpopulation at a time evolves, leading to a single solution. That entails
the degenerate use of the metaheuristic, explaining the disappointing results of
RS-CMSA-ESII. In the case of cGAs, maintaining diversity through population
structure helps to preserve diversity in the parameter space and thus enables
us to obtain a diversity in the phenotype space. Future works will consider the
development of specific diversity mechanisms to better leverage the multimodal-
ity issue on a neutral landscape: the design of an appropriate self-adaptive cGA
to obtain quality results while maximising the number of optima. At the same
time, introducing larger biological systems will lead to applying large-scale opti-
misation.



144 R. Michelucci et al.

Acknowledgments. This work has been supported by the French government,
through the France 2030 investment plan managed by the Agence Nationale de la
Recherche, as part of the “UCA DS4H" project, reference ANR-17-EURE-0004.

References

1. Ahrari, A., Deb, K., Preuss, M.: Multimodal optimization by covariance matrix
self-adaptation evolution strategy with repelling subpopulations. Evol. Comput.
(2017). https://doi.org/10.1162/evco_a_00182

2. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., Coello, C.A.C.: Static and dynamic
multimodal optimization by improved covariance matrix self-adaptation evolu-
tion strategy with repelling subpopulations. IEEE Trans. Evol. Comput. (2021).
https://doi.org/10.1109/TEVC.2021.3117116

3. Alba, E., Dorronsoro, B.: Solving the vehicle routing problem by using cellu-
lar genetic algorithms. In: European Conference on Evolutionary Computation
in Combinatorial Optimization (2004). https://doi.org/10.1007/978-3-540-24652-
7_2

4. Alba, E., Dorronsoro, B.: Introduction to cellular genetic algorithms. In: Cellular
Genetic Algorithms (2008). https://doi.org/10.1007/978-0-387-77610-1_1

5. Alba, E., Troya, J.M.: Cellular evolutionary algorithms: evaluating the influence
of ratio. In: International Conference on PPSN (2000). https://doi.org/10.1007/3-
540-45356-3_3

6. Behaegel, J., Comet, J.P., Bernot, G., Cornillon, E., Delaunay, F.: A hybrid
model of cell cycle in mammals. In: 6th International Conference on Com-
putational Systems-Biology and Bioinformatics (2015). https://doi.org/10.1142/
S0219720016400011

7. Behaegel, J., Comet, J.P., Folschette, F.: Constraint identification using modified
Hoare logic on hybrid models of gene networks. In: Proceedings of the 24th Int.
Symposium TIME (2017). https://doi.org/10.4230/LIPIcs.TIME.2017.5

8. Behaegel, J., Comet, J.P., Pelleau, M.: Identification of dynamic parameters for
gene networks. In: Proceedings of the 30th IEEE International Conference ICTAI
(2018). https://doi.org/10.1109/ICTAI.2018.00028

9. Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited - the cmsa evo-
lution strategy. In: International Conference on PPSN (2008). https://doi.org/10.
1007/978-3-540-87700-4_13

10. Biswas, S., Acharyya, S.: Neural model of gene regulatory network: a survey on sup-
portive meta-heuristics. Theory Biosci. (2016). https://doi.org/10.1007/s12064-
016-0224-z

11. Blank, J., Deb, K.: pymoo: Multi-objective optimization in python. IEEE Access
(2020)

12. Eftimov, T., Korošec, P.: Statistical analyses for meta-heuristic stochastic opti-
mization algorithms: GECCO Tutorial (2020). https://doi.org/10.1145/3377929.
3389881

13. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD (1996)

14. Hansen, N., Auger, A.: Cma-es: evolution strategies and covariance matrix adap-
tation. In: Proceedings of the 13th Annual Conference Companion on Genetic And
Evolutionary Computation (2011). https://doi.org/10.1145/2001858.2002123



cGAs for Identifying Variables in hGRNs 145

15. Kronfeld, M., Dräger, A., Aschoff, M., Zell, A.: On the benefits of multimodal
optimization for metabolic network modeling. In: German Conference On Bioin-
formatics (2009)

16. Kronfeld, M., Zell, A.: Towards scalability in niching methods. In: IEEE CEC
(2010). https://doi.org/10.1109/CEC.2010.5585916

17. Michelucci, R., Comet, J.P., Pallez, D.: Evolutionary continuous optimization of
hybrid gene regulatory networks. In: EA 2022. https://doi.org/10.1007/978-3-031-
42616-2_12

18. Mitra, S., Biswas, S., Acharyya, S.: Application of meta-heuristics on reconstruct-
ing gene regulatory network: a bayesian model approach. IETE J. Res. (2021).
https://doi.org/10.1080/03772063.2021.1946433

19. Sarma, J., De Jong, K.A., et al.: An analysis of local selection algorithms in a
spatially structured evolutionary algorithm. In: ICGA, pp. 181–187. Citeseer (1997)

20. da Silva, J.E.H., Betnardino, H.S., Helio J.C., B., Vieira, A.B., Luciana C.D., C.,
de Oliveira, I.L.: Inferring gene regulatory network models from time-series data
using metaheuristics. In: IEEE CEC (2020). https://doi.org/10.1109/CEC48606.
2020.9185572

21. Sun, J., Garibaldi, J., Hodgman, C.: Parameter estimation using meta-heuristics
in systems biology: a comprehensive review. IEEE/ACM Trans. Comput. Biology
Bioinform. (2012). https://doi.org/10.1109/TCBB.2011.63

22. Tenazinha, N., Vinga, S.: A survey on methods for modeling and analyzing inte-
grated biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (2011).
https://doi.org/10.1109/TCBB.2010.117

23. Ursem, R.K.: Multinational evolutionary algorithms. In: Proceedings of CEC
(1999). https://doi.org/10.1109/CEC.1999.785470


