
Graph Transformation for Topology Modelling

Mathieu Poudret1,2, Agnès Arnould2, Jean-Paul Comet3,
and Pascale Le Gall1,4

1 Programme d’Épigénomique, Génopole, F-91000 Évry
pascale.legall@epigenomique.genopole.fr

2 XLIM-SIC UMR 6172 CNRS, Univ. de Poitiers, F-86962 Futuroscope
{poudret,arnould}@sic.univ-poitiers.fr

3 I3S, UMR 6070 CNRS, Univ. de Nice-Sophia-Antipolis, F-06903 Sophia-Antipolis
comet@unice.fr

4 MAS, Ecole Centrale Paris, Grande Voie des Vignes, F-92195 Châtenay-Malabry

Abstract. In this paper we present meta-rules to express an infinite
class of semantically related graph transformation rules in the context
of pure topological modelling with G-maps. Our proposal is motivated
by the need of describing specific operations to be done on topological
representations of objects in computer graphics, especially for simulation
of complex structured systems where rearrangements of compartments
are subject to change. We also define application of such meta-rules and
prove that it preserves some necessary conditions for G-maps.

Keywords: topology-based geometric modelling, graph transformation,
generalized map.

1 Introduction

Simulation of complex structured systems is a specialised area of topology-based
modelling (or topological modelling for short). Topological models deal with the
representation of the structure of objects (their decomposition into topologi-
cal units: vertices, edges, faces and volumes) and with the neighbourhood rela-
tions between topological units. Thus topological structures are specific graphs.
Among numerous topological models, generalized maps [Lie89, Lie94] (or G-
maps) constitute a mathematically-defined model. Intuitively, edges between
nodes indicate which nodes are neighbours and edge labels indicate which kind
of neighbouring is concerned (i.e. connection of volumes, faces or edges). G-maps
are thus a particular class of graphs with labelled edges defined by constraints
ensuring that neighbouring relations are consistently organised. Topology-based
modellers and simulators aggregate a large number of operations to edit objects.
Most operations are designed to be dedicated to some application scopes. More-
over, they are usually implemented by a dedicated algorithm finely tuned in
order to optimise its efficiency.

Using the framework of graph transformations [Roz97, EEPT06], we propose
in this paper to model topological operations with transformation rules. Thus,

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 147–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 M. Poudret et al.

we will be able to develop a simulator as a simple engine of rules applications. In
a previous work, we defined transformation rules adapted to G-maps [PCG+07]
using the algebraic approach of graph transformation based on labelled graphs
and the double-pushout approach. Our first framework contains classical rules
defined on an explicit pattern and a first class of meta-rules defined on pat-
terns that carry isomorph topological units (volume, face, edge, vertex). This
first proposal was satisfactory in the sense that we defined the four basic opera-
tions of G-maps (those from which all others can be defined) in terms of graph
transformation rules. Even if we have already used our framework for the simu-
lation of complex biological structured systems [PCLG+08], this first framework
was not powerful enough to directly define complex topological operations. How-
ever, to facilitate the derivation of efficient simulation algorithms from high-level
transformation rules, it becomes essential to be able to describe a large class of
complex topological operations directly in term of transformation rules, instead
of the composition of elementary topological operations. Indeed, we take advan-
tage of such an approach both by ensuring for free some constraints of G-maps
and by directly defining efficient algorithms by means of dedicated coverages of
G-maps driven by the form of the considered high-level transformation rules.

In this paper, we present a more general class of meta-rules for G-maps which
allows one to directly define a large class of topological operations. Intuitively,
our meta-rules are built over graphs whose edges are labelled by new symbols
playing the role of variables. The name of the symbols will indicate by which
kind of topological units they can be substituted. So, our variables may be per-
ceived as typed variables, each type representing a class of topological units
of similar nature as volumes, faces or edges within the framework of G-maps.
Thus, our meta-rules are more abstract and expressive than simple transforma-
tion rules over G-maps and take advantage of variables to generate a large family
of basic transformation rules sharing the same effect according to a topological
point of view. The use of variables to abstract graph transformation rules has
been previously addressed [Hof05], in particular to model software transforma-
tions for refactoring purpose [HJE06]. In [Hof05], variables can be graph vari-
ables, attribute variables and cloning variables. In particular, cloning variables
are mechanisms for duplicating some scheme extracted from the variable-based
transformation, according to a given cardinality. The application of a transfor-
mation rule with cloning variables can then be expressed in term of application
of simple transformation rules. In a similar approach, the application of our
meta-rules will imply a mechanism of scheme cloning. However, our meta-rules
will be specialised with respect to the underlying class of graphs on which they
are applied, that is, the class of G-maps. Cloning mechanism will allow us to
capture the class of all topological units of same nature (as volume, face, ...)
which are of different size according to the considered 3D-object. Moreover, as
G-maps are strongly constrained graphs, we will give some simple conditions
on our meta-rules, ensuring both the dangling condition on all underlying ba-
sic transformation rules issued from the meta-rules and some of the constraints
characterising G-maps among all labelled graphs.

Graph Transformation for Topology Modelling 149

The paper is organised as follows. Section 2 briefly presents graph transfor-
mation rules. Section 3 presents the G-map topological model. In Section 4,
we introduce graph transformation meta-rules for modelling high-level topolog-
ical operations and their application is defined by means of some intermediate
cloning steps. In Section 5, we prove that some constraints of G-maps are pre-
served through the application of graph transformation meta-rules. Section 6
provides some concluding remarks.

2 Preliminaries

Let us first recall some notions and notations concerning graph transformations
extracted from [EEPT06].

A graph G with labels in ΣE is a couple (V, E) such that V is a set of vertices
and E ⊂ V × ΣE × V is a set of non-oriented labelled edges. A path in G is
a sequence (v0, l1, v1), (v1, l2, v2), ..., (vk−1, lk, vk) of E edges. We say that this
path links v0 to vk and is labelled by the word l1l2...lk ∈ Σ∗

E . If v0 = vk, the
path is called a cycle.

We introduce orbit graphs as particular sub-graphs, those which are generated
by a vertex and an identified subset of labels. Indeed, these orbit graphs are useful
to easily represent and manipulate topological cells (like faces or volumes) in the
context of topological modelling.

Definition 1 (orbit). Let us consider G = (V, E) a graph with labels in ΣE,
{l1, ..., lk} ⊂ ΣE(k ≥ 0) a set of labels and a vertex v of G.

We call orbit < l1, ..., lk > (v), the subset of V vertices reachable from v with
paths labelled by words of {l1, ..., lk}∗. The orbit < l1, ..., lk > (v) is said to be
adjacent to v.

We call orbit graph << l1, ..., lk >> (v), the subgraph of G with vertices in
< l1, ..., lk > (v) and with edges in {(v′, l, v”) ∈ E / v′, v” ∈< l1, ..., lk > (v) and
l ∈ {l1, ..., lk}}.
A graph morphism f : G → H between two graphs G and H with labels in
ΣE , consists of two functions fV from G vertices to H vertices and fE from
G edges to H edges, such that labelled edges are preserved1. Such a morphism
is injective (resp. bijective) if both fV and fE are injective (resp. bijective). A
bijective morphism is named isomorphism. G and H are said isomorphic if there
exists an isomorphism f : G→ H .

In the sequel, for our purposes, we only consider injective graph morphisms,
which formalise the classical inclusion relation. Thus, we present the algebraic
graph transformation approach and use the category Graph of graphs and graph
morphisms (see chapter 2 of [EEPT06]).

A production rule p : L ← K → R is a pair of graph morphisms l : K → L
and r : K → R. L is the left-hand side, R is the right-hand side and K is the
common interface of L and R. The left-hand side L represents the pattern of the

1 For each edge (v, l, v′) of G, fE((v, l, v′)) = (fV (v), l, fV (v′)).

150 M. Poudret et al.

rule, while the right-hand side R describes the production. K describes a graph
part which has to exist to apply the rule, but which is not modified. Intuitively,
L\K is the removed part2 while R\K is the added part.

The rule p transforms G into a graph H , denoted by G⇒p,m H , if there are
a match graph morphism m : L→ G and two square diagrams which are graph
pushouts as in the following figure.

L K R

G D H

l r

m (1) (2)

A direct graph transformation can be applied from a production rule p on a
graph G if one can find a match m of the left-hand side L in G such that m is
an (injective) morphism.

When a graph transformation with a production rule p and a match m is
performed, all the vertices and edges which are matched by L\K are removed
from G. The removed part is not a graph, in general, but the remaining structure
D := (G\m(L)) ∪ m(K) still has to be a legal graph (see following dangling
condition), i.e. no edges should dangle (source and target vertices of all remaining
edges should also remain). This means that the match m has to satisfy a suitable
gluing condition, which makes sure that the gluing of L\K and D is equal to G
(see (1) in the figure). In the second step of a direct graph transformation, D
and R\K are glued together to obtain the derived graph H (see (2)).

More formally, we use graph morphisms K → L, K → R, and K → D
to express how K is included in L, R, and D, respectively. This allows us to
define the gluing constructions G = L +K D and H = R +K D as the pushout3

constructions (1) and (2) in the figure, leading to a double pushout.
A graph morphism m : L → G from the left-hand side of a production rule

p : L ← K → R to a graph G satisfies the dangling condition if no edge of
G\m(L) is adjacent to a vertex of m(L\K). This dangling condition makes sure
that the gluing of L\K and D is equal to G. Intuitively, all edges of G incident
to a removed vertex are also removed.

Finally, a graph transformation, or, more precisely, a graph transformation
sequence, consists of zero or more direct graph transformations.

3 Generalized Maps

The generalized maps (or G-maps) introduced by P. Lienhardt [Lie89, Lie94] de-
fine the topology of an n-dimensional subdivision space. G-maps allow the rep-
resentation of the quasi-varieties, orientable or not. To represent cellular space
2 The substraction L\K between two graphs L = (VL, EL) and K = (VK , EK) is

defined from the set substraction on vertices and edges L\K = (VL\VK , EL\EK).
Thus L\K may not be a graph.

3 Let f : A → B and g : A → C be two graph morphisms, D = B +A C is the pushout
object of B and C via A, or more precisely, via (A, f, g).

Graph Transformation for Topology Modelling 151

A

B C

D E

(a)

α2

(b)

α2

α1

α1α1

α1

α1α1

α1

(c)

α2 α2

α0

α0α0

α0

α0

α0

α0

α1

α1 α1

α1α1

α1 α1

d1 d2
d3

d4d5

d6

d7 d8

d9

d10d11d12d13

d14

α2 α2

α2

α2

α2

α2

α2

α2

α2

α2

(d)

Fig. 1. Decomposition of a 2D object

subdivisions, we can choose other topological representations like combinatorial
maps [Tut84]. Nevertheless, G-maps have the advantage of providing a homoge-
neous definition for all dimensions. Thus, operation specifications are simpler.

Intuitively, the main idea of G-maps is to decompose an object into basic
elements, also called darts (graph vertices), which are connected together (with
graph edges). The decomposition of a 2D object is shown in Fig. 1. The 2D
object is displayed on Fig. 1(a). In Fig. 1(b), the object is split in order to focus
on the two faces (topological 2-cells) which compose it. In an n-G-map, n + 1
kinds of labelled-edges (from α0 to αn) allow one to recover the knowledge about
neighbourhood relations between the topological cells. Thus, in Fig. 1(b), an α2

edge makes explicit the adjacency relation which previously exists between faces
ABC and BCDE. On Fig. 1(c), the faces are decomposed into lower dimension
elements: the 1-cells. In the same manner, α1 edges makes explicit the adjacency
relations between the 1-cells. Finally, in the 2-G-map of Fig. 1(d), edges are
split into α0-connected 0-dimensional darts (represented with black dots). We
notice that the index i of αi labelled edges gives the dimension of the considered
adjacency relation.

Definition 2 (G-map). Let n ≥ 0. An n-dimensional generalised map (or n-
G-map) is a graph G with labels in ΣE = {α0, . . . , αn}, such that:

– The following CG(ΣE) condition is satisfied:
each vertex of G has exactly one adjacent l-edge for each label l ∈ ΣE.

– The following consistency constraint is satisfied:
for each pair of labels αi, αj ∈ ΣE such that i + 2 ≤ j, there exist a cycle
labelled αiαjαiαj from each vertex v of G.

The first condition of this definition (which is denoted by C for short, in the
sequel) ensures that each vertex of an n-G-map has exactly n+1 adjacent edges
labelled by α0, ..., αn. For example, in Fig. 1(d), the vertex d4 is α0-linked with
d5, α1-linked with d3, and α2-linked with d8. On the border of the objects, some
darts do not have all of its neighbours. For instance, on Fig. 1(d) the vertex d1

is α0-linked to d6 and α1-linked to d2, but d1 is not linked to another vertex
by an α2-edge, because d1 denotes the top corner of the object of Fig. 1(a) and
thus is on the border of the 2D object. However, according to the C condition all

152 M. Poudret et al.

vertices must have exactly one adjacent label for each dimension. Thus, there is
an α2-loop adjacent to vertex d1.

The second point of the n-G-map definition expresses some consistency con-
straints on the adjacency relations denoted by the labelled edges. Intuitively, in
an G-map, if two i-dimensional topological cells are stuck together then they
are stuck along a (i − 1)-dimensional cell. For instance, on Fig. 1(d), the 2-cell
defined by {d1, ..., d6} is stuck with the 2-cell defined by {d7, ..., d14} along the
1-cell defined by the four vertices {d5, d4, d8, d7}. The consistency constraint re-
quires that there is a cycle α0α2α0α2 starting from each vertex of {d5, d4, d8, d7}.
Thanks to loops, this property is also satisfied on object borders. For example,
on the bottom of the object of Fig. 1(d), we have the cycle α0α2α0α2 from d11

and d12.
The following definition explains the notion of i-cell in terms of G-map orbits.

Definition 3 (i-cell). Let us consider G an n-G-map, v a vertex of G and
i ∈ [0, n]. The i-cell adjacent to v is the orbit graph (see definition 1) of G
<< α0, ..., αi−1, αi+1, ..., αn >> (v). The i-cell adjacent to v is noted i-cell(v).

Let us illustrate this definition on the Fig. 1. The 2D geometric object Fig. 1(a) is
composed of 0-cells (the geometric points A, B, C, D and E), 1-cells (the geomet-
ric segments AB, BC, AC, BD, DE and CE), and 2-cells (the two geometric
faces ABC and BCDE). The corresponding 2-G-map Fig. 1(d) contains the
same cells denoted by the following sub-G-maps. The geometric triangle ABC
is denoted by 2-cell(d1), i.e. the orbit graph << α0, α1 >> (d1) which contains
all vertices reachable from d1 using α0 and α1 labelled edges. The geometric seg-
ment BC is denoted by the 1-cell(d5), i.e. the orbit graph << α0, α2 >> (d5)
which contains the four vertices d4, d5, d7 and d8. The geometric points are
denoted by 0-cells and their numbers of vertices depend on their numbers of
adjacent segments. For example A (denoted by 0-cell(d1), i.e. the orbit graph
<< α1, α2 >> (d1)), contains the two vertices d1 and d2.

We have already seen that applying a production rule on a graph requires
to find a matching morphism satisfying the dangling condition. The following
proposition shows that in case of graphs verifying the C condition (see defini-
tion 2), the dangling condition only depends on the form of the production rule,
and that the derivation then preserves the C property.

Proposition 1. Let p: L← K → R be a production rule, and m: L → G be
a match morphism on a graph G with labels in ΣE which satisfies the CG(ΣE)
condition.

1. m satisfies the dangling condition iff L\K satisfies the CL\K(ΣE) condition4.
2. Moreover, if the rule p satisfies the following Cp(ΣE) condition, then the

derived graph H produced by the direct graph transformation G ⇒p,m H
satisfies the CH(ΣE) condition.

4 The condition CG is defined for a graph G but can be extended for a structure which
is not a graph. In this case, adjacent edges can dangle.

Graph Transformation for Topology Modelling 153

Cp(ΣE): CL\K(ΣE) and CR\K(ΣE) are satisfied and each preserved vertex
of K has the same adjacent labelled edges in L and R (i.e. ∀v ∈ K, ∀l ∈ ΣE,
v has an l-edge adjacent in L iff v has an l-edge adjacent in R and if they
exist they are unique5).

Proof. Let us prove the first point. Let us suppose that m satisfies the dangling
condition. By hypothesis, G satisfies the CG(ΣE) condition, thus for each deleted
vertex v of m(L\K) and for each label l ∈ ΣE there exists a unique l-edge
adjacent to v in G noted (v, l, v′). Thus, thanks to the dangling condition, (v, l, v′)
is an edge of m(L). Because m is injective, L\K satisfies the CL\K(ΣE) condition.

Reciprocally, let us suppose that L\K satisfies the CL\K(ΣE) condition. Since
G satisfies the CG(ΣE) condition, each edge of G adjacent to a vertex of m(L\K)
is an edge of m(L\K). So, the dangling condition is satisfied.

Let us now prove the second point. Let us suppose that G, the removed
structure L\K and the created structure R\K satisfy, respectively, CG(ΣE),
CL\K(ΣE) and CR\K(ΣE) conditions and that each preserved vertex of K has
the same labelled edges in left-hand side L and in right-hand side R. Thanks
to the first point, the dangling condition is satisfied and thus the direct graph
transformation G⇒p,m H exists. Let v be a vertex of H and l ∈ ΣE a label:

– If v is not a matched vertex, i.e. v is a vertex of G\m(L). Thanks to the
CG(ΣE) condition, there exists a unique l-edge adjacent to v in G, noted
(v, l, v′). v′ may be a vertex of m(L) or not, but (v, l, v′) is not a matched
edge, i.e. (v, l, v′) is not an edge of m(L), because L is a graph. Thus thanks
to the direct graph transformation, (v, l, v′) is the unique l-edge adjacent to
v in H ;

– If v is an added vertex, i.e. v is not a vertex of G. Thanks to direct graph
transformation, there exist a vertex u of R such that the double pushout
produces v in H from u. However, thanks to hypothesis, R have exactly one
l-edge adjacent to u. Thus H have exactly one l-edge adjacent to v;

– If v is a matched vertex, i.e. v is a vertex of m(K). Thanks to the CG(ΣE),
there exists an unique l-edge adjacent to v in G, noted (v, l, v′). And thanks
to the m injectivity, there exists a unique vertex u in L such that mV (u) = v.
• If there does not exist any l-edge adjacent to u in L, thanks to hypothesis,

there does not exist any l-edge adjacent to u in R. Thus, (v, l, v′) is an
edge of G\m(L) and thanks to direct graph transformation, (v, l, v′) is
an edge of H . Moreover, thanks to the CG(ΣE) condition, (v, l, v′) is the
unique l-edge adjacent to v in H ;
• If there exists an edge (u, l, u′) in L, thanks to hypothesis, it is the unique

l-edge adjacent to u in L and there exists an unique l-edge adjacent
to u in R noted (u, l, u′′). Moreover, thanks to the CG(ΣE) condition,
the unique l-edge adjacent to v in G is mE((u, l, u′)). Thus the double
pushout of the direct graph transformation produces an unique l-edge
adjacent to v from the (u, l, u′′) edge.

5 We suppose, without loss of generality, that the morphisms l and r of the double-
pushout figure (see section 2) are the identity.

154 M. Poudret et al.

Consequently, there exists a unique l-labelled edge adjacent to v in H . In other
words, H satisfies the CH(ΣE) condition. �

The proposition 1 ensures that all derivations with an adequate production rule
preserve the C condition of G-maps (see definition 2). Let us notice that like
in classical operation definitions (mathematical definitions, algorithms or formal
specifications), the G-map consistency constraint (second point of definition 2)
has to be verified individually for each production rule.

4 Topological Operations in Terms of Graph
Transformation

The set of basic topological operations for G-maps has been defined [Lie89] and
includes different operations, namely vertex addition, vertex suppression, sew
and unsew. In previous works [PCG+07], we have shown that first and second
operations can be directly translated into transformation rules satisfying the C
condition and moreover the consistency constraint of G-map (see definition 2).

Nevertheless, both sew and unsew operations are generic and cannot be de-
fined directly in terms of graph transformation rules because they depend on
the orbits. To overcome this limitation, we introduced in [PCG+07] a concept of
graph transformation meta-rules which abstracts a set of graph transformation
rules along an orbit. The idea is to propagate a local transformation pattern
(expressed on a few vertices) along an orbit of the graph, independently of the
form of this orbit. To specify which part of the local pattern is associated to the
elements of the orbit, we introduce an additional label, which denotes the orbit.
Graphically, these meta-labelled edges are noted with dotted lines. Thus the 3-
sew meta-rule (which aims at sticking two volumes along one face) of Fig. 2(a)

d1
α3

d1

d2

< α0, α1 >

d2
α3

< α0, α1 >

d1

< α0, α1 >

d2

< α0, α1 >

α3

(a) 3-sew meta-rule

α1 α1

α0

α1

α0

α0

α3 α3

α3

α3

α3α3
α1 α1

α0

α1

α0α0

α3

α3α3

α3

α3

α3

α3

a1 f1

e1

d1
c1

b1

a2

f2

e2

d2

c2

b2

α1 α1

α0

α1

α0

α0

α1 α1

α0

α1

α0α0

α3
α3

α3

α3

α3

α3

a1 f1

e1

d1
c1

b1

a2

f2

e2

d2
c2

b2

a1 f1

f2a2

e1b1
b2 e2

d2

c2

c1 d1

(b) 3-sew of triangular faces

Fig. 2. 3-sew rules

Graph Transformation for Topology Modelling 155

(a) Triangle (b) Tetrahedron (c) Square (d) Pyramid

Fig. 3. Cone operation

may be applied along a triangular face to define the classical rule of Fig. 2(b),
or along any other face orbit. More precisely, a meta-edge (d1, < α0, α1 >, d1)
of a meta-rule specifies a sub-graph labelled on {α0, α1} and thus matches an
orbit graph << α0, α1 >> (d1) in each classical rule (see Fig. 2(b)). The pat-
tern connected to d1, compounded of a α3 classical loop, must be repeated along
this orbit. Thus, Fig. 2(b) vertices a1, ..., f1, a2, ..., f2 have an α3 loop. Finally,
(d1, < α0, α1 >, d1) and (d2, < α0, α1 >, d2) must be expended in two isomorphic
orbit graphs. Thus, << α0, α1 >> (d1) and << α0, α1 >> (d2) are isomorphic
faces in Fig. 2(b).

This previous framework is enough to specify basic operations, and thus is
complete because all 3-G-map operations may be specified from the basic ones.
But, from a user point of view, to specify an operation as a large composition
of basic operations is less easy and efficient that specifying it directly. Unfortu-
nately, the previous framework is not general enough to directly specify most of
complex operations. Indeed, previous meta-rules are defined along a unique orbit,
thus every meta-edges are expended as isomorphic orbit graphs. For example,
the four meta-edges of sew rule Fig. 2(a) are expended to four isomorphic trian-
gular faces (see Fig. 2(b)). But, for most operations we need to match (and/or
to produce) different kinds of orbit graphs. In the cone operation (which aims
at producing a cone-shaped volume from one base face), different kinds of orbit
graphs are necessary to produce, for instance, a tetrahedron from a triangular
face or a pyramid from a square face (see Fig. 3). This operation cannot be
defined from several copies of the base 2-cell. But, it may be defined from copies
of base vertices linked together in the right manner. Especially, the top 0-cell of
a cone is dual6 of the base 2-cell. Intuitively, the 2-cells adjacent to the base are
also adjacent to the top. The classical rule of Fig. 4(b) defines the cone operation
on a face corner. Here, the top orbit graph << α1, α2 >> (d4) is a copy of the
base orbit graph << α0, α1 >> (d1) with a renaming of links. Thus, when a1

and b1 are α0 linked, a4 and b4 are α1 linked and when b1 and c1 are α1 linked,
b4 and c4 are α2 linked. Moreover, when a1 and b1 are α0 linked, a2 and b2 are
also α0 linked and when b1 and c1 are α1 linked, b2 and c2 are not linked. The α2

loop of the left-hand side of the rule figure 4(a), means that only isolated faces
(which are not linked to another one) can be matched in order to produce cones.

6 Two topological cells are dual if they are isomorphic up to a renaming of their labels.

156 M. Poudret et al.

d1d1
α2

< α0, α1>

d1

< α0, α1> < α0, _ > < _, α2 > < α1, α2 >

α2 α1 α0

d2 d3 d4

(a) Cone meta-rule

α2 α2
α2

α2

α2

α2

α0

α0

α0

α0

α0

α0

α1 α1

α1

α1

α1

α1

α1

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

b4

c4

a1

b1

c1

d1

α0

α0

α1

a1

b1

c1

d1

d4

a4

α0

α0

α2

α2

α2

α2

α1

α1

α1

α2

α2

α2

α1

α2

(b) Rule of a corner cone

Fig. 4. Cone rules

The following definition allows us to generalise graph and production rules
notions by adding meta-edges that denote isomorphic orbit graphs up to a re-
naming of their edges labels.

Definition 4 (meta-graph and production rule). Let β = {α′
1, ..., α

′
k} ⊂

ΣE a subset of labels and Γβ be the set of all renaming functions γ : β → ΣE ∪
{ }. A renaming function γ is named meta-label and is said full if γ(β) ⊂ ΣE

(without “ ”)7.
A meta-graph on β, or meta-graph, is a graph with label in ΣE ∪ Γβ such

that each meta-labelled edge is a loop. A meta-graph is said full if all its meta-
labels are full. Graphically, a meta-loop γ is labelled by the renamed orbit <
γ(α′

1), ..., γ(α′
k) >.

A production meta-rule on β, or meta-rule, is a production rule p : L ←
K → R on the full sub-category of generalised meta-graph on β, such that the
meta-graph L is full.

The meta-rule Fig. 4(a) specifies the cone operation. In this example, we can see
four different kinds of orbits: a full orbit graph for the base (2-cell << α0, α1 >>
(d1)), two partial ones for the side faces8 (2-cells << α0, >> (d2) and <<
, α2 >> (d3)) and another full one for the top (0-cell << α1, α2 >> (d4)).

All of them are translated copies of matched 2-cell << α0, α1 >> (d1), using
respectively renaming functions γ1 : α0 �→ α0, α1 �→ α1, γ2 : α0 �→ α0, α1 �→ ,

7 Where γ(β) names the set {γ(l) | l ∈ β}.
8 Formally, this two subgraphs are not orbits in the sense of definition 1.

Graph Transformation for Topology Modelling 157

< α1, α2 >

v

< _, α2 >

u
α0

(a) G

α0

α0

α1

a

b

c

d

α1

α1

(b) O

(u, a)

(u, b)

(u, c)

(u, d)

(v, a)

(v, b)

(v, c)

(v, d)

(c)

α0

α0

α0

α0

(v, a)

(v, b)

(v, c)

(v, d)

(u, a)

(u, b)

(u, c)

(u, d)

(d)

α2
α0

α0

α1

α1

α0

α0

(v, a)

(v, b)

(v, c)

(v, d)

(u, a)

(u, b)

(u, c)

(u, d)

α2

α2

α2

α2

α2

(e) G × O

Fig. 5. Expansion of a meta-graph G on {α0, α1} along a graph O

γ3 : α0 �→ , α1 �→ α2 and γ4 : α0 �→ α1, α1 �→ α2. By lack of space, we do
not explain how by means of similar production rules, we can express other
topological operations like the extrusion operation (to create box from a face)
or the rounding operation (to round angular edges or vertices).

As seen on examples, the semantic of meta-graph patterns is given by expand-
ing the meta-patterns along an orbit on β.

Definition 5 (expansion). Let β = {α′
1, ..., α

′
k} ⊂ ΣE be subset of labels and

O be a graph with labels in β. The expansion of a meta-graph G on β along O
is the Cartesian-like product G×O such that:

– The set of vertices is the Cartesian product of vertex sets
{(u, a) | u is a vertex of G and a is a vertex of O};

– The set of edges is
{((u, a), l, (v, a)) | (u, l, v) is an edge of G and a is a vertex of O}∪
{((u, a), γ(l), (u, b)) | (u, γ, u) is a meta-edge of G, γ(l) ∈ ΣE and (a, l, b) is
an edge of O}.

The expansion of a morphism f : G → H along O, is the morphism f × O :
G×O→ H ×O which associates the vertex (fV (u), a) of H ×O to each vertex
(u, a) of G×O.

The expansion of a production meta-rule p : L
l← K

r→ R along O is the
production rule p×O : L×O

l×O←− K ×O
r×O−→ R×O.

In Fig. 5, we expand a graph G on {α0, α1} (see Fig. 5(a)) along a graph O
labelled in {α0, α1} (see Fig. 5(b)). Actually, G is extracted from the right-hand
side of the cone meta-rule (as shown in Fig. 4(a)) and O represents corner 2-
cell. The first step of the expansion process (see Fig. 5(c)) consists in copying
the vertices of G along O (computing VG × VO). The next steps consist in,
respectively, copying classical edges of G along O (see Fig. 5(d)) and copying
renamed edges of O along the G meta-edges (see Fig. 5(e)). Then, Fig. 4(b) is
obtained by expansion of cone meta-rule Fig. 4(a) along a face corner pattern.

Proposition 2. Let f : G→ H be a morphism between the two meta-graphs G
and H on β, and O a graph with label in β. The expansion f ×O always exists.

158 M. Poudret et al.

Proof. For each edge (u, l, v) of G and each vertex a of O, ((u, a), l, (v, a)) is an
edge of G×O and ((fV (u), a), l, (fV (v), a)) is an edge of H ×O.

For each meta-edge (u, γ, u) of G and each edge (a, l, b) of O, if γ(l) ∈ ΣE

then ((u, a), γ(l), (u, b)) is an edge of G × O and ((fV (u), a), γ(l), (fV (u), b)) is
an edge of H ×O.

G×O has no other edge. �

The following proposition shows that the expansion does not depend on β labels.
Its proof is left to the reader.

Proposition 3. Let β and δ be two subset of labels, ι : δ → β a bijective func-
tion, G be a meta-graph on β and O a graph labelled in β.

Let H be the meta-graph on δ obtained from G by renaming each meta γ-loop
to a γ ◦ ι-loop and P be the graph labelled on δ obtained from O by renaming
each label of O along ι−1. Then we have G×O = H × P .

The previous proposition founds the graphical notation of meta-loops with im-
plicit renaming functions.

By definition, if there exist several meta-edges on the left-hand side and on the
right-hand side of a production meta-rule, the expansion replaces all these meta-
edges with distinct sub-graphs (each of them is isomorphic, up to a renaming of
their edges labels, to the β-labelled graph O).

Definition 6 (direct graph meta-transformation). Let G be a graph la-
belled on ΣE and p : L← K → R a production meta-rule on β.

The meta-rule p direct meta-transforms G into a graph H labelled on ΣE, de-
noted G⇒p,O,m H, if there are a graph O with labels in β and a match morphism
m : L×O → G such that G⇒p×O,m H is a direct graph transformation.

Classically, a graph meta-transformation, or more precisely, a graph meta-
transformation sequence, consists in zero or more direct graph transformations.
We should notice that, a production rule without any meta-edge can be seen
as a meta-rule on the empty set. Indeed, such production meta-rules and the
corresponding classical production rule allow one to produce the same direct
transformed graphs.

5 Consistency of G-Maps and Transformation Rules

We have already seen that applying a production meta-rule on a graph requires to
find a matching morphism which satisfies the dangling condition. The following
proposition shows that, as in proposition 1, in case of graphs in which each
vertex has exactly one adjacent l-edge for each label l (i.e. the condition C), the
dangling condition uniquely depends on the form of the production meta-rule,
and that the derivation then preserves the C property. Let us first define the
extension of condition C (see proposition 1) to meta-graphs and meta-rules:

CG(ΣE) Let G be a graph on β. For each label l ∈ ΣE , each vertex has exactly
one adjacent edge s. t. either it is l-labelled or it is γ-labelled with l ∈ γ(β);

Graph Transformation for Topology Modelling 159

Cp(ΣE) Let p be the rule L ← K → R on β, CL\K(ΣE) and CR\K(ΣE) are
satisfied and each preserved vertex of K has the same adjacent labelled
edges in L and R (in the extended way).

Proposition 4. Let p : L←K→ R be a production rule on β, O be a graph
with labels in β and m : L × O → G be a match morphism on a graph G with
labels in ΣE which satisfies the CG(ΣE) condition.

1. m satisfies the dangling condition iff O satisfies the CO(β) condition and
L\K satisfies the CL\K(ΣE) condition.

2. Moreover, if the rule p satisfies the Cp(ΣE) condition, then the derived graph
H produced by the direct graph transformation G ⇒p,0,m H satisfies the
CH(ΣE) condition.

Proof. Let us first prove the following lemma: for each vertex u of a meta-graph
G and each vertex a of O, vertices u in G and (u, a) in G × O have the same
labelled edges (in the extended way).

– If u has an adjacent l-labelled edge (u, l, v) in G, then (u, a) has an adjacent
l-labelled edge ((u, a), l, (v, a)) in G×O;

– If u has an adjacent meta γ-edge in G, and a has an adjacent l-labelled edge
(a, l, b) in O, such that γ(l) ∈ ΣE , then (u, a) has an adjacent labelled edge
((u, a), γ(l), (u, b)) in G×O; And by definition, G×O has no other edges.

The proof of the proposition lies directly in this lemma. �

The condition of the proposition 4 ensures that a full γ-edge in the left-hand side
of the meta-rule matches a complete < γ(β) >-orbit of the transformed graph
and respectively full γ-edges of right-hand side match complete < γ(β) >-orbit
of produced graph.

Thanks to proposition 4, a transformation of a G-map along the cone meta-
rule of Fig. 4(a) preserves the C property of G-maps. Since each vertex of the
cone meta-rule has exactly three links labelled by α0, α1 and α2 (in extended
way), the expanded rule (see Fig. 4(b) for example) has the same property.

Moreover, it is easy to prove that the consistency property of G-maps (see
second condition of definition 2) is preserved by application of the cone meta-
rule. Indeed, in the left-hand side, because d1 has a α2-loop, its α0-neighbour
has also an α2-loop. Moreover, in all expanded rules along a graph O, because of
CO({α0, α1}), each expanded vertex has an α2-loop and an α0-neighbour. And
thus, each expanded vertex has an α0α2α0α2 labelled cycle. For example, in the
cone expansion Fig. 4(b), a1b1 and c1d1 are two α0α2α0α2 labelled cycles.

In the right-hand side, since d1 and d2 are α2-linked together, their α0-
neighbours are also α2-linked together. Indeed, because of CO({α0, α1}), each
vertex of O has an α0-edge. And thus, each expanded vertex has an α0α2α0α2 cy-
cle. In the cone rule example Fig. 4(b), a1b1b2a2 and c1d1d2c2 are two α0α2α0α2

labelled cycles. In the same way, d3 and d4 are α0-linked together, thus their
α2-neighbours are also α0-linked together. In the cone rule example Fig. 4(b),
a3a4, b3b4c4c3 and d3d4 are three α0α2α0α2 labelled cycles.

160 M. Poudret et al.

6 Conclusion and Perspectives

In this paper we focus on the formalisation of complex topological operations on
G-maps. Pursuing previous works, we propose a general class of meta-rules for
G-maps which allows us to directly define a large class of topological operations,
helpful in the context of modelling of complex structured systems, as the cone
operation taken as illustration in the paper. We prove that thanks to strong
G-maps constraints concerning edge labelling, the dangling condition of a meta-
rule can be statically verified independently of the G-map on which it is applied.
We will search for sufficient syntactical conditions on rules to ensure G-map
consistency constraints.

This rule-based approach to specify topological evolution of objects will be
useful for coupling transformations of objects with more classical rule-based ap-
proaches for simulating complex systems. In the context of modelling of complex
biological systems, such a simulation paradigm has been broadly considered lead-
ing to an enormous amount of successfull applications [CFS06, RPS+04, Car05].
In these models, the compartmentalisation captures a static topology (focusing
on exchange between compartments and molecular interactions) or simple topo-
logical modifications (resulting, for example, from endocytosis or exocytosis).
Nevertheless, although biological systems are composed of molecules, the struc-
ture of the system and components both play essential roles in the biological
functions of the system. Indeed the understanding of biological systems needs
to take into account molecular phenomena (possibly abstracted by continuous
concentrations), communication channels and space structuring of the cells at
a same accuracy level. Thus it is an important challenge to understand the ef-
fects of spatial structure on the different concentrations, and reciprocally, the
consequences of the evolution of concentrations on the spatial structure.

A general framework for rule-based simulations taking into account both
molecular phenomena and subcellular compartment rearrangments would han-
dle embedded G-maps. In previous work [PCG+07], we sketched out embed-
ded G-maps by associating labels with vertices to represent geometric aspects
(shapes of objects, distances between them, etc.) and by associating other la-
bels to represent biochemical quantities (protein concentrations, protein fluxes
through a subcellular wall, etc.). We have already used such topological trans-
formation rules to simulate the evolution of biological subcellular compartments
[PCLG+08]. To apply topological transformation rules, we have first to match
the left-hand side of a rule. The pattern-matching problem is recognised as dif-
ficult in the general case of general graphs (without any constraint). In the
particular case of G-maps, we have applied heuristics derived from usual G-map
coverage involved in classical computer graphics operations. Our future works
will then focus on the definition of embedded G-maps, and of associated graph
transformation rules. Then it will be mandatory to study the conditions which
ensure that the application of a transformation rule leads to another embedded
G-maps in a coherent way.

Graph Transformation for Topology Modelling 161

References

[Car05] Cardelli, L., Calculi, B.: Interactions of biological membranes. In: Danos,
V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–
280. Springer, Heidelberg (2005)

[CFS06] Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for mod-
eling biological systems and formalizing experimental knowledge. Bioin-
formatics 22(14), 1805–1807 (2006)

[EEPT06] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Alge-
braic Graph Transformation. In: Monographs in Theoretical Computer
Science. Springer, Heidelberg (2006)

[HJE06] Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and expanding
graph transformation rules for refactoring. Electr. Notes Theor. Comput.
Sci. 152, 53–67 (2006)

[Hof05] Hoffmann, B.: Graph transformation with variables. In: Kreowski, H.-
J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal
Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 101–
115. Springer, Heidelberg (2005)

[Lie89] Lienhardt, P.: Subdivision of n-dimensional spaces and n-dimensional
generalized maps. In: SCG 1989, pp. 228–236. ACM Press, New York
(1989)

[Lie94] Lienhardt, P.: n-dimensional generalised combinatorial maps and cellu-
lar quasimanifolds. In: IJCGA (1994)

[PCG+07] Poudret, M., Comet, J.-P., Le Gall, P., Arnould, A., Meseure, P.:
Topology-based geometric modelling for biological cellular processes.
In: LATA 2007, Tarragona, Spain, March 29 - April 4 (2007),
http://grammars.grlmc.com/LATA2007/proc.html

[PCLG+08] Poudret, M., Comet, J.-P., Le Gall, P., Képès, F., Arnould, A., Meseure,
P.: Topology-based abstraction of complex biological systems: Applica-
tion to the Golgi apparatus. Theory in Biosciences (2008)

[Roz97] Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by
Graph Transformations, Foundations, vol. 1. World Scientific, Singapore
(1997)

[RPS+04] Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.:
Bioambients: an abstraction for biological compartments. Theor. Com-
put. Sci. 325(1), 141–167 (2004)

[Tut84] Tutte, W.: Graph Theory. Encyclopedia of Mathematics and its Appli-
cations, vol. 21. Addison-Wesley, Reading (1984)

http://grammars.grlmc.com/LATA2007/proc.html

	Graph Transformation for Topology Modelling
	Introduction
	Preliminaries
	Generalized Maps
	Topological Operations in Terms of Graph Transformation
	Consistency of G-Maps and Transformation Rules
	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

