
Identification of Dynamic Parameters for Gene
Networks

Jonathan Behaegel
Université Côte d’Azur, CNRS, I3S

Nice, France
behaegel@i3s.unice.fr

Jean-Paul Comet
Université Côte d’Azur, CNRS, I3S

Nice, France
comet@unice.fr

Marie Pelleau
Université Côte d’Azur, CNRS, I3S

Nice, France
marie.pelleau@i3s.unice.fr

Abstract—The study of gene networks allows us to better
understand some biological processes such as the adaptation of
the organism to a disturbance of the environment. In a discrete
modelling framework of gene networks, it has been shown that
the Hoare logic can help the modeller to identify the parameters
of the model, so that the latter exhibits the observed biological
traces. In this paper we present a hybrid modelling of gene
networks which pays particular attention to the time spent in
each state and we introduce an extension of the Hoare logic in this
hybrid framework. The weakest precondition calculus associated
with this modified Hoare logic makes it possible to determine
the minimal constraints on the dynamic parameters of a gene
network from an observed biological trace. These constraints
form a continuous CSP that can be solved using the AbSolute
continuous solver. The first experimental results show that the
obtained solutions are in agreement with the specification of the
Hoare triple coming from biological expertise.

Index Terms—Genetic networks, Hoare logic, Continuous con-
straints.

I. INTRODUCTION

The purpose of genetic regulatory network modelling is
to study and understand the molecular mechanisms that en-
able the body to perform essential functions ranging from
metabolism to environmental disturbance adaptation. Gene
networks are described by rules that can be classified into
two types: activations and inhibitions. The combination of
these regulations allows many behaviors and it can be shown
that the complexity of these systems comes from the posi-
tive and negative feedbacks commonly observed which lead
to multistationnarity and homeostasis (ability to maintain a
balance). The study of the dynamics of these systems opens
new perspectives with applications in pharmacology, medicine,
or toxicology. Different modelling frameworks (qualitative,
continuous, stochastic, hybrid) are possible but regardless of
the chosen framework, a crucial point of the modelling process
relies on the determination of the parameters that govern the
dynamics of the model and their identification remains the
limiting step.

René Thomas’ discrete modelling framework [17] only
seeks to represent the sequence of qualitative events, and
formal methods (model checking, constraint programming,
Hoare logic) have been successfully used to automate the iden-
tification of the parameters governing the dynamics [4], [7],
[3]. However, some biological phenomena involve a temporal

component playing a primordial role: For example, the circa-
dian cycle allows the body to adapt to day/night alternation.
To model such timed phenomena requires at least a hybrid
modelling framework that adds to René Thomas’ approach a
measure of the time spent in each of the states. The parameter
identification step remains the bottleneck of the modelling
process but one can seek in such a hybrid framework for an
automation of this step to build a model in agreement with the
experimental observations (variations of protein concentration
of a biological system during the day which can be very hard to
obtain for many proteins). These observations are represented
by a biological trace which expresses an irregularly spaced
time series of qualitative events. For this, we modified the
Hoare logic as well as its associated weakest precondition
calculus to build a constraints system solved by the solver
AbSolute [14].

Constraint programming has already been used to solve
problems related to biological networks. In the discrete ap-
proach, it has been used to determine kinetic parameters [7],
or bifurcations [10]. It has also been used for the optimization
of flow modes in metabolic networks [13]. In the continuous
framework, the constraints approach has been used to verify
temporal properties of the model [5], or to identify the dy-
namic parameters of a differential system in the context of the
synthetic biology [15]. Our goal is here to address, for hybrid
models, the parameter identification problem whereas ad-
dressed problems are generally some verification problems [1],
[12] or model approximation ones [11].

This paper is organized as follows. Section II presents the
hybrid modelling framework allowing the description of the
dynamics of gene networks. Section III introduces the Hoare
logic and its associated weakest precondition calculus adapted
for this hybrid modelling framework. The AbSolute solver is
sketched in Section IV with an emphasis on symbolic rewriting
and the notion of a sure solution. Section V is dedicated to
the presentation of our experimental results. Finally, section
VI is devoted to conclusion.

II. MODELLING A GENE NETWORK

Many modelling frameworks dedicated to gene networks
can be used to represent their dynamics. One of the first
modelling frameworks that has been fully formalized was
introduced by René Thomas [17], [4] but the time separating

behaegel@i3s.unice.fr
comet@unice.fr
marie.pelleau@i3s.unice.fr

v1 v2

¬(v1 > 1)

(v2 > 1)

Fig. 1. Interaction graph representing a simple negative feedback loop.

two qualitative events has been totally abstracted. Here, we
sketch the hybrid modelling framework based on the Thomas’
discrete approach presented in [2].

A. Representation of a Gene Network

The gene networks are represented by labelled graphs, see
Figure 1. The two types of vertices allow the description on
the one hand of the entities (abstraction of genes and their
associated proteins, represented by circles) and on the other
hand of the regulations between these entities (represented by
rectangles) called multiplexes. The entities, together, form a
finite set denoted V . Arcs pointing to a multiplex (dashed
arcs) specify the entities involved in the regulation and all
predecessors of an entity v ∈ V are denoted R−(v). Arcs
coming out of a multiplex (solid arcs) specify the entities that
are positively regulated by the multiplex. Since the regulations
are not always active, each multiplex is associated with a
formula describing the conditions under which the regulation
associated with the multiplex takes place.

Figure 1 shows an interaction graph with 2 entities v1 and
v2: v2 activates v1 above the threshold 1 and v1 inhibits v2

under the threshold 1 (the inhibition is represented by the
negation of the formula). This graph forms a negative feedback
loop since each of both entities has an indirect negative action
on itself.

B. Dynamics of a Gene Network

The hybrid modelling framework [2] relies on the discretiza-
tion of the concentrations of the biological entities, while
including the time spent between two successive events. Let
us suppose that the entity v acts on several entities at different
thresholds and that the total number of different thresholds is
bv . Then the ordering of these thresholds leads to the definition
of the qualitative levels of the entity v. Level 0 represents
the interval of concentrations lower than the first threshold,
level bv represents the range of concentrations higher than
the largest threshold, and the level k represents the range of
concentrations between the k-th and the (k+1)-th threshold
(k ∈ K0, bvJ). A qualitative state of the system is a set of data
giving a qualitative level to each entity.

With each qualitative state is associated a “temporal space”
which can be seen as the hypercube [0, 1]n where n is the
number of entities, see the squares of the Figure 2. The
precise position of the system at a particular time is thus
characterized not only by the qualitative state, but also by
the precise position within the temporal space. These states
are thus called hybrid states and are defined by a pair of
vectors h = (η, π) where η ∈ (J0, bv1K × · · · × J0, bvnK),

v1

v2

ηv1 = 0 ηv1 = 1

ηv2 = 0

ηv2 = 1

πv1

πv2

h1

h2

h=

((
ηv1
ηv2

)
,(

πv1
πv2

))

Fig. 2. A possible dynamics associated with the interaction graph of Figure 1.

called discrete state, is the vector of the qualitative levels of
entities and π ∈ [0, 1]n, called fractional part, is the vector of
the exact positions inside the temporal space associated with
this discrete state, see Figure 2. By convention, ηv (resp. πv)
denotes the qualitative level (or the fractional part) of entity
v. Two discrete states are called neighbours if they differ only
by one component and if this component differs only by one.

The evolution within each qualitative state is represented
by continuous transitions which are governed by celerities to
identify, and transitions from one discrete state to another,
called discrete transitions, are only possible under certain
conditions.

Figure 2 shows a possible evolution of a model associated
with the interaction graph of Figure 1 starting from the point
h inside the discrete state (ηv1 , ηv2) = (0, 0). In this discrete
state, the concentration of v2 increases. When v2 cannot in-
crease anymore, the discrete state changes (ηv1 , ηv2) = (0, 1).
In this new state, v1 and v2 increase until v2 is saturated.
v1 then keeps on increasing, and the discrete state (1, 1) is
reached... In Figure 2 the trace is represented only until its
entering into the discrete state (0, 0) where πv1 = 1 and
πv2 = 0 but it could be extended in a similar way.

A multiplex is active at a hybrid state h if its associated
formula is evaluated to true after substitution of the entities
by their qualitative levels. The active multiplexes are called
resources and the set of resources of v at state h is denoted
ρ(h, v). For example, in Figure 2 we have ρ(h, v1) = ∅
because the formula of the unique multiplex regulating v1 is
evaluated to false at this state, and ρ(h, v2) = {v1} because
the formula of the unique multiplex regulating v2 is evaluated
to true at this state. Note that the resources of a hybrid state
h depend only on the qualitative levels of the entities: the
resources do not vary within a “temporal space”.

The different entities do not evolve at the same speed in
each of the “temporal spaces”. Similarly, the speed of an
entity depends on its resources and on its qualitative level.
The dynamics of the entities are thus controlled by celerities
Cv,ω,k ∈ R, indexed by entity v, ω the set of resources of

v in the current discrete state, and by the qualitative level
k of entity v. For example, in the discrete state (0, 0) of
Figure 2, the celerity controlling the entity v1 is Cv1,∅,0 and
the celerity which controls the entity v2 is Cv2,{v1},0. A null
celerity indicates that the entity has reached an equilibrium.
To reach this equilibrium, it is mandatory that the celerities of
the same entity having the same regulations head towards this
equilibrium, leading to the following constraints:

∀v ∈ V, ∀ω ⊂ R−(v), ∀n ∈ J0, bvK,

Cv,ω,n = 0⇒
{
∀i ∈ Jn+ 1, bvK Cv,ω,i < 0
∀i ∈ J0, n− 1K Cv,ω,i > 0

(1)

In all cases, the celerities of the same entity with the same
resources in neighbouring discrete states move in the same
direction and therefore have the same sign. This is transcribed
into the following constraints:

∀v ∈ V, ∀ω ⊂ R−(v), ∀k ∈ J0, bv − 1K,
Cv,ω,k × Cv,ω,k+1 ≥ 0

(2)

In a discrete state, if the celerity of v is positive (resp. nega-
tive), we say that v faces an external wall when the maximum
qualitative level (resp. minimum) is reached ηv = bv (resp.
ηv = 0). Thus, v cannot continue to increase (resp. decrease).
In other cases, if ηv < bv (resp. ηv > 0), the entity v faces an
internal wall when the celerities of v in the current state and
in the neighbour state where v would tend, are of opposite
signs.

Finally, the transitions between two discrete states are
possible when the following two conditions are met: an entity
v must be on the border of the discrete state (πv = 0 or 1) and
this entity must be able to change its qualitative level (do not
face a wall). The definition 1 introduces the notion of sliding
entity:

Definition 1: Let us consider a gene network, an entity v ∈
V and a hybrid state h = (η, π).

1) v is said to face an external wall at state h if:(
(Cv,ρ(h,v),ηv < 0) ∧ (ηv = 0)

)
∨(

(Cv,ρ(h,v),ηv > 0) ∧ (ηv = bv)
)
.

2) Let h′ = (η′, π′) be another hybrid state s.t. η′v = ηv+
sgn(Cv,ρ(h,v),ηv) and η′u = ηu for all u ∈ V, u 6= v.
v is said to face an internal wall at state h if
sgn(Cv,ρ(h,v),ηv)× sgn(Cv,ρ(h′,v),η′v

) = −1, where sgn
is the classical sign function, and ρ(h, v) the set of
resources of v at h.

We note sv(h) the set of sliding entities, that is, entities which
face an internal or external wall at h.

In Figure 2, the entity v2 faces an external wall, it slides in
the discrete states (0, 1) and (1, 0).

For each entity, the time to reach a border is called the
contact delay, which depends on the speed of the entity and the
distance to be travelled in the temporal zone of h (definition 2)
. Let us note that when the speed of an entity is null, the
contact time is infinite.

Definition 2 (Touch delay): Let us consider a gene network,
an entity v ∈ V and a hybrid state h = (η, π). We note δh(v)
the touch delay of v at h for reaching the border of the discrete

state. More precisely δh is the function from V to R+∪{+∞}
defined by:
• if Cv,ρ(h,v),ηv = 0 then δh(v) = +∞;
• if Cv,ρ(h,v),ηv > 0 (resp. < 0) then δh(v) = 1−πv

Cv,ρ(h,v),ηv
(resp. −πv

Cv,ρ(h,v),ηv
).

We also introduce the notion of first changing entities. For
each hybrid state h, the set first(h) is the set of entities
reaching first their border (i.e. entities whose touch delay is
minimum starting from the current hybrid state), excluding
the sliding entities. Thus, the set first represents the set of
entities that are able to change their qualitative level and lead
to discrete transitions.

The previous definitions combined with the equations 1
and 2 can help to determine constraints on celerities when
one wants the model to exhibit a particular observed trace.
For example, along the continuous transition starting from
the current hybrid state, the celerity of the entity that first
changes its qualitative level is constrained by the time spent
by the system in the current discrete state, in other words
by its touch delay. Moreover and naturally because of the
discrete transition, this entity v doesn’t face a wall (otherwise
it could not be able to change its qualitative level) whereas the
other entities reaching their border before have to face their
own walls. The complete definition of the dynamics of a gene
network (continuous and discrete transitions) is given in [2].
The next part introduces a way to construct the constraints on
the dynamic parameters of a gene network.

III. HOARE LOGIC

The Hoare logic was developped to reason rigorously about
the correctness of computer programs [9]. It is based on
the Hoare triple of the form {Pre} p {Post} where Pre
and Post represent conditions on the state of the system
and p is a imperative program. From an intuitive point of
view, a triple is said correct if the execution of the program
p, from a state where the precondition Pre is satisfied, is
possible and leads to a state where the postcondition Post is
satisfied. The inference rules associated with the assignment,
the conditional statement, the program composition and with
the while statement, lead to a proof of the partial correctness
of any program: Whenever Pre holds at the state before the
execution of p, then Post will hold afterwards, or p does not
terminate.

In this paper, we modify the Hoare logic to be able to syn-
thesize the necessary constraints on the dynamic parameters of
the hybrid model ensuring that the model exhibits an observed
biological trace. This approach was developed in the discrete
modelling framework [3] and we present here the extension
to the hybrid framework presented in [2].

A. Modified Hoare Logic

As part of gene network modelling, the p imperative pro-
gram is replaced by an observed biological trace formally
written in the path language, and the conditions Pre and Post
express properties on departure and arrival hybrid states.

v2

v1

1

0 1

∆t1 ∆t2

h0 |= (D0, H0)

h′0
h1

h′1

h2 |= (D2, H2)

Fig. 3. Biological trace with continuous and discrete transitions. The pre and
postconditions are (D0, H0) and (D2, H2). ∆t1 and ∆t2 represent the time
spent in the qualitative states and the vectors represent the celerity vectors.

The pre and postconditions are expressed in the language
of property : a property is a pair of the form (D,H), where
the discrete condition D describes exclusively the discrete
state η of each biological entity, and the H hybrid condition
deals with the fractional parts π of these same entities. If no
knowledge about the condition D (resp. H) is available, the
latter is represented by the tautology True. Figure 3 shows a
path whose starting point h0 is defined by the precondition
(η(v1) = 0 ∧ η(v2) = 1, πv1 = 0.4 ∧ πv2 = 1).

The path language allows the description of the biological
traces : it includes the empty path ε, the elementary paths
which are of the form (∆t, a, dpa) and the non-elementary
paths composed of a finite sequence of elementary paths. An
elementary path is defined by a triple (∆t, a, dpa) :

• The discrete path atom dpa, of the form v+ (resp.
v−), expresses the next transition towards a neighbouring
discrete state : the qualitative level of v is incremented
(resp. decremented).

• The a element allows the modeller to specify proper-
ties related to the dynamics within the current discrete
state. The modeller can characterize behaviors using
the following assertion language : a :== > | Cv�c |
(no)slide(v)|(no)slide+(v)|(no)slide−(v)|¬a|a∧a|a∨a
where � belongs to the set of comparison symbols.
The term slide+(v) (resp. slide−(v)) indicates that v
will slide along its upper (resp. lower) border, while
noslide+(v) (resp. noslide−(v)) prevents this sliding. The
term slide(v) (resp. noslide(v)) denotes the disjunction
(resp. conjunction) of slide+(v) and slide−(v) (resp.
noslide+(v) and noslide−(v)). Let us note that, in an
elementary path, the same entity cannot appear in the dpa
and in a slide term. To express that the trace of Figure 3
goes through a sliding of entity v1 in the discrete state
where ηv1 = 1 and ηv2 = 1, we can write slide+(v1). This
assertion language amends the language defined in [2] by
supplementing it with the atoms noslide±(v) which allow
a better description of experimental data.

• Finally, ∆t indicates the exact time spent in the current
discrete state.

Thus, the Hoare triple representing the trace of Figure 3 is

written : {
D0

H0

}∆t1
>
v1+

;

 ∆t2
slide+(v1)
v2−

{D2

H2

}
(3)

We say that a continuous transition h −→ h′ satisfies the
assertion couple (∆t, a) if the transition exists, if this transition
lasts ∆t and if it respects the assertion a (Cv � c is satisfied
if Cv,ρ(h,v),ηv � c, slide

+(v1) is satisfied if πv1 reaches 1 and
v1 faces a wall, etc.)

Each elementary instruction of the p path corresponds to a
continuous transition of a duration ∆t defined in the current
discrete state, followed by a discrete transition allowing the
entity of the dpa to increment or decrement its qualitative
level. Figure 3 shows that from the hybrid state h0 satisfying
the precondition of Equation 3, there is a continuous transition
h0 −→ h′0 with a duration of ∆t1 leading to a discrete
transition h′0 −→ h1. The process is repeated for the next
elementary instruction where a sliding of v1 (slide+(v1))
occurs, until it reaches the hybrid state h2 satisfying the
postcondition (D2, H2).

B. Weakest Precondition

Edsger Dijkstra introduced a predicate transformer seman-
tics [9] for imperative programming languages : with each
instruction of the considered programming language is associ-
ated a predicate transformer. For each elementary instruction,
the weakest precondition is a function that associates a Pre
precondition with each Post postcondition. By iterating the
process, the weakest precondition is built for a complete
imperative program. We similarly define the weakest precon-
dition for each elementary path :

Definition 3 (Weakest Precondition): Let p be a path rep-
resenting a biological trace and Post = (Df , Hf) be a post-
condition indexed by a final index f . The weakest precondition
attributed to p and Post is a property : WPif (p, Post) ≡
(Di,f , Hi,f), indexed by a fresh initial index i and by f and
whose value is recursively defined by:
• If p = ε is the empty path, then Di,f ≡ Df and
Hi,f ≡ Hf ;

• If p = (∆t, a, v±), then :

Di,f ≡ Df [ηv\ηv ± 1],

Hi,f ≡ Hf [ηv\ηv ± 1] ∧ Φ±v (∆t) ∧ F(∆t)

∧ ¬W±v ∧ A(∆t, a) ∧ Jv;

• If p = p1; p2 is a concatenation of paths :

WPif (p1; p2, Post) ≡WPim(p1,WPmf (p2, Post))

which is parameterized by a fresh intermediate index m;
where Φ±v (∆t), W±v , F(∆t), A(∆t, a) and Jv are sub-
properties detailed in [2].

Intuitively, each sub-property describes a condition that
must be satisfied to allow the continuous and discrete tran-
sitions associated with the elementary path (∆t, a, v±):

• Φ+
v (∆t) (resp. Φ−v (∆t)) is the constraint that allows the

entity v to reach its upper (resp. lower) border in ∆t time,
in other words, the touch delay of the entity v is ∆t;

• F(∆t) forces all entities except the entity v of the dpa
to reach their borders after v, or face a wall;

• ¬W±v forbids the presence of a wall for the entity v, thus
allowing it to change its qualitative level;

• A(∆t, a) translates the formulas of the assertion a into
specific constraints on celerities and fractional parts as-
sociated with the current state;

• Jv makes the junction between two successive states;
intuitively the touch delay of entity v is compared with
the touch delays of the other entities.

These 5 sub-properties are described in detail in [2].
In Figure 3, in the discrete state (1, 1), v1 reaches a wall

first and a sliding is observed until v2 reaches its lower
border. The weakest precondition associated with the path

p =

 ∆t2
slide+(v1)
v2−

and the postcondition post =

{
D2

H2

}
is given

by:

D1 ≡ D2[ηv2\ηv2 − 1],

H1 ≡ H2[ηv2\ηv2 − 1] ∧ Φ−v2(∆t2) ∧ F(∆t2)

∧ ¬W−v2 ∧ A(∆t2, a) ∧ Jv2 ;

where the sub-properties involve the fractional parts of the
input state h1 (π1

v1 and π1
v2) as well as the fractional parts

from the output state h′1 (π1′

v1 and π1′

v2), and are expressed
after simplification as follows:

• v2 reaches its lower border:
Φ−v2(∆t2) ≡ (π1′

v2 = 0) ∧ (Cv2,ρ(h′
1,v2),1 < 0)

∧(π1
v2 = π1′

v2 − Cv2,ρ(h′
1,v2),1 ×∆t2)

• v2 does not reach a border: ¬W−v2 ≡ Cv2,ρ(h2,v2),0 ≤ 0
• v1 reaches a wall because of slide+(v1):
F(∆t2) ≡ Cv1,ρ(h′

1,v1),1 > 0

A(∆t2, a) ≡ (π1
v1 > π1′

v1 − Cv1,ρ(h′
1,v1),1 ×∆t2)

∧(π1′

v1 = 1)
• Junction between the states h2 and h′1:
Jv2 ≡ (π2

v2 = 1− π1′

v2) ∧ (π2
v1 = π1′

v1)
∧(Cv1,ρ(h′

1,v1),1 > 0)∧
(π1
v1 ≥ π

1′

v1 − Cv1,ρ(h′
1,v1),1 ×∆t2)

The set of these sub-properties makes it possible to describe
the constraints on the celerities and possibly to compare the
celerities of different entities between them. For the current
example, the assertions slide±(v1) and noslide±(v1) lead to
constraints between the celerities of entities v1 and v2 because
they are both connected to the time spent in the current discrete
state.

The strategy chosen for computing the weakest precondition
is the same as the one proposed by Dijkstra [9], starting from
the postcondition and going up the elementary paths until
the first one (Definition 3). The proof of soundness of the
Hoare logic adapted to the Hybrid modelling framework and
its implementation are given in [2].

C. Example of Constraints Obtained

From Figure 1, we can build the constraints on the celerities
allowing the model of the negative loop to be coherent with
an experimental biological trace. For this, let us consider the
following path and postcondition : 5.0

noslide(v1)
v2+

;

 7.0
slide+(v2)
v1+

;

 8.0
noslide(v1)

v2−

;

 4.0
slide−(v2)
v1−

 {
D4

H4

}
avec D4 ≡ (ηv1 = 0) ∧ (ηv2 = 0) and H4 ≡ True. We apply
the chosen strategy of the weakest precondition calculus on the

last elementary path ep =

 4.0
slide−(v2)
v1−

 using the postcondi-

tion
{
D4

H4

}
and we compute WP(ep, (D4, H4)) ≡ (D3, H3).

The time spent in the current state is 4.0 hours. The dpa
v1− indicates that the entity v1 reaches its lower border and
crosses it. The statement slide−(v2) indicates that the entity
v2 reaches its lower border before v1 reaches its one.

According to the definition 3, we can easily compute the
qualitative levels of all entities of the discrete condition from
the qualitative levels observed in postcondition :

D3 ≡ D4[ηv1\ηv1 − 1] ≡ ηv1 = 1 ∧ ηv2 = 0

The celerities used in the current state are then identifiable
thanks to the knowledge of these qualitative levels. None of
the multiplexes act on its target entity, so the celerities are
Cv1,∅,1 and Cv2,∅,0.

According to the definition of the weakest precondition, the
hybrid condition H3 is obtained by the following formula :

H3 ≡ H4[ηv1\ηv1 − 1] ∧ Φ−v1(4.0) ∧ F(4.0) ∧ ¬W−v1
∧ A(4.0, slide−(v2)) ∧ Jv1

After simplification of the constraints obtained for each sub-
property, we obtain :

H3 ≡ (Cv1,∅,1 < 0) ∧ (Cv2,∅,0 < 0) ∧ ¬(Cv1,∅,0 > 0)

∧ (π3′

v1 = 0) ∧ (π3′

v2 = 0) ∧ (π4
v1 = 1− π3′

v1)

∧ (π4
v2 = π3′

v2) ∧ (π3
v1 = π3′

v1 − 4.0× Cv1,∅,1)

∧ (π3
v2 < π3′

v2 − 4.0× Cv2,∅,0)

The same process is repeated successively for the three
remaining elementary paths in order to compute the constraints
on all the celerities of the model.

The obtained CSP includes 26 variables : 8 celerities (2
celerities for each of the 4 discrete states) defined on R and
18 fractional parts defined on [0, 1]. Indeed, the path has 4
elementary paths which defines 4 couples (Di, Hi)i∈[0..3] and
a final couple (D4, H4). For each of the 4 non final couples,
there are 2 fractional parts for the entry hybrid state and 2

others for the exit hybrid state, and for the final couple, there
are only 2 fractional parts for the output hybrid state. The
simplifications made on the fly make it possible to determine
6 exit fractional parts that correspond to the 4 exit positions of
each of the dpa and to the 2 slidings imposed by the biological
trace. Finally, the CSP contains 38 constraints including 6
assignments. On the processed examples, our approach deleted
trivial constraints and redundant constraints which represent
nearly half of the generated constraints.

IV. SOLVER

In order to solve this CSP we use AbSolute [14], a
continuous constraints solver based on abstract domains. For
efficiency reasons, we added in the solver a preprocessing
phase in which a symbolic rewriting of the constraints is
performed.

A. Symbolic Rewriting

In the same way as CPLEX, AbSolute performs a pre-
processing step. This step can simplify the constraints and
reduce the size of the problem by eliminating variables by
rewriting. During this step, only the linear equality constraints
are considered. In this section, the term equality refers to a
linear equality constraint.

First, we identify all the constants and keep them in a list.
A constant corresponds to a unary equality. The constants are
replaced throughout the CSP by their values, and this process
is repeated until reaching a fixed point.

In a second step, the binary equalities are removed from
the problem and kept in a list as variable views [16]. One of
the variables is chosen and replaced throughout the CSP by
its rewriting, and constraints on the bounds are added. This
process is also repeated until reaching a fixed point.

Let us consider the CSP with V = {v1, v2, v3} the contin-
uous variables taking their values in D = {D1 = D2 = D3 =
[−5, 5]}, and C = {c1 : v1 = 2, c2 : v1 = v2 + v3, c3 : v3 =
3 × (v2)2}. We can see that v1 is a constant, so we replace
it everywhere by its value. The second constraint becomes a
view, so we can replace v2 with 2 − v3. We thus obtain the
following CSP : V ′ = {v3}, D′ = {D3 = [−5, 5]} et C ′ =
{c1 : v3 = 3×(2−v3)2, c2 : 2−v3 ≥ −5, c3 : 2−v3 ≤ 5}. On
this small example, we transformed a CSP with three variables,
into a CSP with a constant, a view and a variable.

Let us now consider the example of Section III-C in
which the CSP contains 26 variables and 38 constraints. The
rewriting step leads to a new CSP which contains 16 constants,
5 views, 5 variables and 26 constraints (including 10 for the
bounds of views).

This step is transparent to the user, and if they exist, the
solutions are given for the initial variables of the problem.

B. Representation of a Solution

In a continuous solver, a solution is usually a Cartesian
product of intervals, called a box. Using the concept of
contractors [6], a solution is either a box containing only
solutions of the CSP, or a small enough box (for a given

Fig. 4. Comparison between sure and unsure solutions.

precision parameter) that can contain a solution of the CSP.
Figure 4 shows an example of solutions of a problem, the
green boxes contain only solutions and the pink boxes may
contain a solution.

AbSolute can return, if they exist, two types of solutions:
sure solutions, containing only solutions, and unsure solutions
that may contain a solution.

Every solution is represented by two lists. The first one
contains the domain of sure variables (for any value taken in
these domains, there is a solution). By abuse of language, we
call it the invariants list. The second list contains domains that
may contain a solution. By opposition, we call it variants list.

A solution is called sure if the variants list is empty and if
all the variables are in the invariants list. In contrast, an unsure
solution has at least one element in the variants list.

When a solution of the problem is found, the unknowns are
substituted by their values in the views. These new assign-
ments are added to the invariants or variants list depending on
whether the unknown was invariant or variant.

V. EXPERIMENTAL RESULTS

A. General Approach

The use of Hoare logic to constrain the parameters of
the model we are trying to build, aims to automate the
parameter identification and to minimize the intervention of
the modeller in the building of the model. The input data
are on the one hand the network of genes, and on the other
hand a postcondition and an experimental trace expressed in
the path language. Three main steps are to be distinguished :
construction of minimal constraints on the dynamic parameters
of the gene network, identification of a set of parameter values
satisfying these constraints, and simulation of the model which
can then be compared to the experimental biological trace.

The first step uses the weakest precondition calculus starting
from the given postcondition by going up the path describing
the observed biological trace, see subsection III-B. For models
with cyclic behaviour, it is possible to add complementary
constraints indicating that the initial hybrid state is identical
to the final hybrid state. These constraints are simplified and
reduced on the fly.

The second step uses the AbSolute constraint solver which
helps to identify a set of parameter values satisfying the con-
straints. A solution given by the solver AbSolute corresponds
to the data of a list of invariants and a list of variants. If

A)

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40 45
Time (hours)

v1
v2

B)

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40 45
Time (hours)

v1
v2

Fig. 5. A) Simulation obtained over 48 hours in cyclic behaviour. B)
Simulation obtained over 48 hours without imposing a cyclic behaviour. The
curve for each entity vi corresponds to the sum of its qualitative level and its
fractional part (η(vi) + π(vi)).

the variants list is empty, the solution is said to be sure and
parameter values can simply be chosen, variable by variable.
In most cases, several solutions can be generated, they can be
sure or not.

The user specifies a desired number of solutions and the
solver displays as many as requested if it is possible. If
there are no sure solutions, we randomly choose an unsure
solution, a variable among the variants is randomly selected,
we assign an arbitrary value to it in its definition domain, and
this variable becomes constant (in the list of invariants). This
constraint is then added to the CSP, and the solver is called
again to compute the new solutions of this new constraint
system. This process is repeated until exhausting the list of
variants. When a sure solution exists and one of its invariants
has a definition domain whose boundaries are distinct, its value
is chosen randomly in its definition interval.

Finally, the last step is to simulate the dynamics of the gene
network according to the chosen parameter values.

B. Results

For the model of Figure 1, starting from the path and the
postcondition of the subsection III-C, the previously explained
approach leads to a set of parameter values that we have used
to simulate the evolution of the model, see Figure 5. In fact,
a sure solution is immediately given by AbSolute.
The entire processing chain, from constraint construction to
simulation, runs in 656 milliseconds.

The 4 elementary paths of the observed trace, see the
subsection III-C, are easily identifiable in the Figure 5A :
the incrementation of the qualitative level of v2 (resp. v1),
vertically observed on y-axis, occurs at 5.0 hours (resp. 12.0
hours), and the decrementing occurs at 20.0 hours (resp.
24.0 hours). The saturation phenomena slide+(v2) and total
degradation slide−(v2) are quite apparent before the qualitative

v1

v2

0 1

0

1

h3

h4

Fig. 6. Convergence of trajectories towards a possible limit cycle associated
with the graph of Figure 1.The limit cycle is represented in red, and the grey
and blue traces show the convergence of the traces towards the limit cycle.

level change v1+ and v1− respectively. Finally, the entity
v1 never slides, which is due to taking into account our
noslide(v1) constraints.

Simulation of Figure 5A assumes that the biological system
has a cyclic behaviour of 24 hours and this constraint has been
added to the CSP. Two 24-hour period can be distinguished in
the Figure. Nevertheless, at each period, the phase is shifted
by 0.53 seconds and this shift is due to the approximation
of the reals in the solver. However, this simulation is robust
since the time required to observed a phase shift equal to a
period exceeds 18 years. This precision is accurate enough for
biological problems.

When we don’t impose cyclic behaviour, the used approach
has some difficulties in precisely identifying the starting point
of the simulation : the variables of the CSP corresponding
to the beginning of the simulation belong to the variants
list. To obtain Figure 5B, we randomly chose values for the
fractional parts of the initial point, which considerably impacts
the evolution of entities. Nevertheless, the simulations starting
from different initializations lead after a certain time to a cyclic
behaviour. Indeed, it was shown that any system built on an
interaction graph of two entities and whose dynamic contains
a sliding on an external wall has a cyclic behaviour called
limit cycle towards which all traces converge [8].

Intuitively, Figure 6 shows that when we start from the hy-
brid state h3, the upper border of v2 in the current discrete state
is reached and crossed, then a new continuous transition is
observed in the discrete state (0, 1). This continuous transition
arrives at the upper border of v1 and the alternation between
continuous and discrete transitions pursues until it reaches the
hybrid state h4. The trajectory has approached the limit cycle
in red, and after several passes into the discrete state (0, 0),
the limit cycle is reached.

Finally, we increased the number of entities in the negative
feedback loop (up to 6), to compare the CPU time needed to
find the 10, 100, and 1000 first solutions.

Figure 7 illustrates the interaction graph for a negative
feedback loop for three or more entities.

v1 ¬(v1 > 1) v2 v2 > 1

. . .vnvn > 1

Fig. 7. Interaction graph representing a negative feedback loop for three or
more entities.

2 3 4 5 6

101

102

103

Number of entities

lo
g
(C
P
U
ti
m
e)

[m
s]

10
100
1000

Fig. 8. CPU time to find the 10, 100 and 1000 first solutions given the number
of entities in the negative feedback loop.

Figure 8 compares the CPU time (log scale) to find the
first 10 (in blue), 100 (in red) and 1000 (in brown) solutions.
We can see that the CPU time increases with the number of
entities. This shows that the resolution time is exponential with
respect to the number of entities in the interaction graph.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we propose to combine the weakest precondi-
tion calculus of the Hoare logic with the AbSolute constraint
solver. This approach allows us to generate parameter values
on hybrid models of gene networks leading to a dynamics
exhibiting the observed biological trace. From the biologi-
cal application point of view, the tool developped is very
promising because, on our first examples, it makes possible
to generate behaviours similar to the biological observations.
During our developments, we were confronted with the size
of the built formulas. The combinatorial explosion prompted
us to find a strategy to simplify and reduce on the fly the
constraints of the CSP. Moreover, taking into account symbolic
relations between the variables in the solver allows us to
reduce the number of variables to identify and thus to limit
the problems of uncertainty between dependent variables due
to the representation of the real numbers.

The execution time of the AbSolute solver depends on the
one hand on the accuracy of the intervals of the variables of
the CSP, and on the other hand on the number of solutions
that the user wants. To address larger problems, especially
complex biological systems, it will be necessary to find the
best compromise between solution diversity and computation
time to obtain satisfactory results. Finally, our current goal
with therapeutic fallout is to model the coupling of the
circadian cycle (alternation sleep/wakefulness) with the cell

cycle (division of cells) to address questions of chronotherapy
of cancer (optimization of the time of drug administration).
However, the model of the cell cycle (5 abstract biological
entities) leads to a system of constraints containing 178
continuous variables, 65 discrete variables, 267 constraints
including certain disjunctions which considerably increases the
combinatorics. The coupling of these two cycles will lead
to a system of constraints that will require reviewing our
strategy of finding solutions. In particular, an improvement of
the rewriting system could greatly reduce the resolution time.

REFERENCES

[1] R. Alur (2011): Formal verification of hybrid systems. In: 2011
Proceedings of the Ninth ACM International Conference on Embedded
Software (EMSOFT), pp. 273–278, doi:10.1145/2038642.2038685.

[2] J. Behaegel, J.-P. Comet & M. Folschette (2017): Constraint Iden-
tification Using Modified Hoare Logic on Hybrid Models of Gene
Networks. In: Proceedings of the 24th International Symposium on
Temporal Representation and Reasoning (TIME), pp. 5:1–5:21.

[3] G. Bernot, J.-P. Comet, Z. Khalis, A. Richard & O. F. Roux (2018):
A Genetically Modified Hoare Logic. Theoretical Computer Science.
Https://doi.org/10.1016/j.tcs.2018.02.003.

[4] G. Bernot, J.-P. Comet, A. Richard & J. Guespin (2004): Application
of formal methods to biological regulatory networks: extending Thomas
asynchronous logical approach with temporal logic. Journal of theoret-
ical biology 229(3), pp. 339–347.

[5] A. Bockmayr & A. Courtois (2002): Using hybrid concurrent constraint
programming to model dynamic biological systems. In: International
Conference on Logic Programming, Springer, pp. 85–99.

[6] G. Chabert & L. Jaulin (2009): Contractor Programming. Artificial
Intelligence 173, pp. 1079–1100.

[7] F. Corblin, E. Fanchon & L. Trilling (2010): Applications of a formal
approach to decipher discrete genetic networks. BMC Bioinformatics
11, p. 385, doi:10.1186/1471-2105-11-385. Available at http://dx.doi.
org/10.1186/1471-2105-11-385.

[8] E. Cornillon (2017): Modèles qualitatifs de réseaux génétiques :
réduction de modèles et introduction d’un temps continu. Ph.D. thesis,
Université Côte d’Azur.

[9] E. Dijkstra (1975): Guarded commands, nondeterminacy and for-
mal derivation of programs. Commun. ACM 18, pp. 453–457,
doi:http://doi.acm.org/10.1145/360933.360975. Available at http://doi.
acm.org/10.1145/360933.360975.

[10] L. F. Fitime, O. F. Roux, C. Guziolowski & L. Paulevé (2017): Identifi-
cation of bifurcation transitions in biological regulatory networks using
Answer-Set Programming. Algorithms for Molecular Biology 12(1), pp.
19:1–19:14.

[11] A. Girard, A. A. Julius & G. J. Pappas (2008): Approximate Simulation
Relations for Hybrid Systems. Discrete Event Dynamic Systems 18(2),
pp. 163–179.

[12] T. A. Henzinger (2000): The Theory of Hybrid Automata,
pp. 265–292. Springer Berlin Heidelberg, Berlin, Hei-
delberg, doi:10.1007/978-3-642-59615-5-13. Available at
https://doi.org/10.1007/978-3-642-59615-5-13.

[13] M. Martin, P. Dague, S. Pérès & L. Simon (2016): Minimality of
Metabolic Flux Modes under Boolean Regulation Constraints. In: 12th
International Workshop on Constraint-Based Methods for Bioinformatics.

[14] M. Pelleau, A. Miné, C. Truchet & F. Benhamou (2013): A constraint
solver based on abstract domains. In: International Conference on
Verification, Model Checking, and Abstract Interpretation, Springer, pp.
434–454.

[15] G. Rodrigo, J. Carrera & A. Jaramillo (2008): Combinatorial Opti-
misation to Design Gene Regulatory Networks. In: 4th International
Workshop on Constraint-Based Methods for Bioinformatics.

[16] C. Schulte & G. Tack (2014): View-Based Propagator Derivation -
(Extended Abstract). In: 20th International Conference on Principles and
Practice of Constraint Programming, pp. 938–942.

[17] R. Thomas (1973): Boolean formalization of genetic control circuits.
Journal of theoretical biology 42(3), pp. 563–585.

http://dx.doi.org/10.1145/2038642.2038685
http://dx.doi.org/10.1186/1471-2105-11-385
http://dx.doi.org/10.1186/1471-2105-11-385
http://dx.doi.org/10.1186/1471-2105-11-385
http://dx.doi.org/http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://dx.doi.org/10.1007/978-3-642-59615-5-13
https://doi.org/10.1007/978-3-642-59615-5-13

	Introduction
	Modelling a Gene Network
	Representation of a Gene Network
	Dynamics of a Gene Network

	Hoare Logic
	Modified Hoare Logic
	Weakest Precondition
	Example of Constraints Obtained

	Solver
	Symbolic Rewriting
	Representation of a Solution

	Experimental Results
	General Approach
	Results

	Conclusion and Perspectives
	References

