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Abstract—Real-world applications of artificial intelligence of-
ten require the decision-maker to choose between multiple
optimal solutions at hand before making a final decision. Since
there is no guarantee that an increase in the budget or several
independent executions will yield different solutions, classic
mechanisms are not suitable for identifying multiple solutions. In
the context of sequential decision-making problems, Monte Carlo
Tree Search (MCTS) is a state-of-the-art online planning algo-
rithm. It is responsible for the improvement of many computer
games but also for real-world problems involving continuous
action spaces. MCTS has recently been successfully applied to the
diverse planning problem in the discrete setting. In this work, we
propose different diverse planners based on MCTS (DP-MCTS)
to be relevant in the continuous setting. The solution to a diverse
planning problem is a Pareto set between diversity and quality of
plans. Therefore, we suggest considering a multi-objective setting
in which the vectorial reward integrates the diversity measure
as an additional objective. In addition, we propose two types of
inhibition strategies disregarding the optimal plans to enforce the
exploration of the search space during the tree construction. The
three different contributions are assessed independently against
a diverse multi-armed bandit policy, and the comparison is held
on a real-world biological problem involving continuous action
and state spaces.

Index Terms—continuous MCTS, diverse planning, inhibition
strategies, diverse multi-objective, chronotherapy, hybrid GRN

I. INTRODUCTION

Reinforcement learning [1] addresses sequential decision
problems in the Markov Decision Process (MDP) framework.
In this context, MCTS is a search method for finding optimal
decisions by taking random samples in the decision space
and building a search tree according to the statistics obtained.
In such trees, nodes denote states, whereas edges represent
actions leading from one state to another. MCTS has not
only been designed for making computer players in Go [2],
it also proved its effectiveness in a wide variety of settings,
including General Game Playing (GGP), and is not limited
to games [3], [4]. The most popular algorithm is Upper
Confidence bounds applied to Trees (UCT) [5] using the UCB
formula [6] as a selection function that aims at maintaining
a proper balance between the exploration of not well-tested
actions and exploitation of the best actions identified so far.
The all-moves-as-first (AMAF) [7], [8] enhancement heuristic

updates statistics for all actions selected during a simulation
as if they were the first action applied. Rapid Action Value
Estimation (RAVE) [9], [10] is a generalized idea of AMAF
to search trees where action values are shared among subtrees.
GRAVE [11] generalizes the RAVE algorithm to have more
accurate estimates near the leaves. The resulting algorithm
outperformed RAVE on multiple games, such as Go, Knight-
through, and Domineering, without any specific knowledge.

All these successful variants are designed for finite and
discrete action spaces. They require trying every action once,
which is impossible in continuous spaces. Recent advances
address this limitation: progressive widening [12], [13] (PW),
also known as progressive unpruning [14] can handle con-
tinuous action spaces by considering a growing set of sam-
pled actions. cRAVE [15] combines the PW strategy with a
modification of the RAVE heuristic to do information sharing
by generalizing from similar actions and states. Recently,
cGRAVE [16] has been proposed to expand the GRAVE
heuristic in the continuous action and state spaces. Many
real-world problems involve selecting a sequence of actions,
i.e., a plan, from a continuous space of actions. Examples
of continuous applications are control tasks in OpenAI Gym
environment [17], robotic planning [18], action selection in an
Olympic Curling simulator [19], and identifying parameters of
hybrid gene regulatory networks [16].

On top of that, in some real-world applications, a decision-
maker prefers to seek multiple solutions at hand before making
a final decision. If one solution is not suitable, an alternative
can be proposed immediately rather than being pursued it-
eratively. The Second Toyota Paradox [20] is a well-known
example illustrating the interest of such a strategy. The goal
of searching for multiple solutions in a single run differs from
the traditional single-solution-seeking mechanism. Indeed, it is
by no means guaranteed to produce different solutions across
multiple runs or by simply increasing the budget.

In the context of classical planning problems, the generation
of sets of plans has been extensively studied in previous
research such as top-k [21], top-quality [22] and diverse
planning [23]–[25]. In the context of offline and single-player
sequential decision problems, in which no symbolic model of
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the problem instance is required, this area has been recently
covered in [26] for discrete state spaces.

In this paper, we present three different contributions to
the one presented in [26], where we tackle the problem of
diverse planning in a continuous setting. We exhibit diverse
and top-quality continuous plans on the problem of identifying
dynamic parameters of gene regulatory networks (GRNs). The
contributions of this paper are (i) the formulation of diverse
planning with MCTS as a multi-objective problem and (ii)
two different inhibition strategies enforcing diversity during
the construction of the search tree. Each of the three resulting
diverse planners is assessed independently against a diverse
multi-armed bandit policy introduced in [26].

The paper is organized into three remaining sections: Sec-
tion II introduces notations and related background. Sec-
tion III describes the proposed DP-MCTS variants. Section IV
presents the experimental validation of the different contribu-
tions to a real-world biological problem.

II. BACKGROUND

A. Deterministic Markov Decision Processes

In the context of deterministic single-agent planning, prob-
lems are usually formulated as a discrete-time and finite MDP.
In this setting, the agent and environment interact at each of
a sequence of discrete timesteps t ∈ J1, nK. At each timestep,
the agent receives some representation of the environment’s
state st and, in accordance with this information, selects
an action at. Consequently, in the next timestep, the agent
receives a reward rt+1 and finds itself in a new environment
state st+1. A trajectory is the sequence of state, action, and
reward chosen by the agent: s0, a0, r1, s1, a1, r2, s2..., sl with
sl being a terminal state. An MDP is characterized by a tuple
(S,A, T,R) where S is the state space and A is the action
space, A(s) is the action space given a state s. Assuming a
deterministic transition function, T : S × A → S gives the
next state st+1, knowing the action at and the state st. The
reward function R : S × A → R gives the immediate reward
after transitioning from state st to st+1. In a deterministic
MDP, a plan, denoted π, is a sequence of actions leading to a
terminal node π = (a0, ..., al). An optimal plan is a sequence
of actions that maximizes the cumulative reward.

B. Monte-Carlo Tree Search

a) Discrete MCTS: The basic algorithm involves itera-
tively building a search tree until some predefined computa-
tional budget is reached (usually time, memory, or iteration).
An action at is represented as an edge starting from st to
st+1, both depicted as nodes. Four steps are applied for each
iteration search:
• Selection: starting at the root node s0, a node selection

function is recursively applied to descend through the tree
until a non-terminal leaf node is reached,

• Expansion: one or more child nodes are added to the built
tree according to the set of legal and available actions.
Along with the selection step, they form the tree policy,

• Rollout: a simulation is played from the expanded node
according to the default policy (usually, random actions)
until a terminal state sl. This step results in a cumulative
reward,

• Backpropagation: the cumulative reward is backed up
through the nodes selected in the first step, and the
statistics are updated. These statistics are used in the
selection function for future decisions.

In the baseline MCTS, an action is uniformly sampled from
the action space. When dealing with a large action space, this
raises the problem of exploration versus exploitation trade-off.
The Upper Confidence bound for Trees (UCT) treats this issue
as a multi-armed bandit problem with the Upper Confidence
Bound (UCB): the value of each action is their expected
reward calculated by the Monte Carlo simulations, and the
rewards are the random variables with unknown distributions.
UCT chooses the action at ∈ A(s) from st with the UCB
formula:

argmaxat(meanat + c×

√
log(N(st))

N(st, at)
) (1)

where meanat is the empirical mean of rewards obtained
when at was chosen during the selection step, N(st) the
number of times the state st has been selected, N(st, at) the
number of times the action at has been chosen after st was
selected, and c ∈ R+ is the exploration parameter that balances
exploration and exploitation (tuned for each problem).

AMAF is an enhancement of UCT. The strategy takes place
during the backpropagation step. The statistics of the actions
chosen during the selection step are updated, as well as the
ones involved in the default policy. The name all-moves-at-first
comes from the fact that the actions chosen during a simulation
are treated as if they were the first action applied.

RAVE is a popular AMAF enhancement that blends the
UCT score with the AMAF score. The idea is to minimize
the problem of early estimations: when there are not many
samples, RAVE aims at a more robust assessment of actions
by sharing the rewards gathered along different subtrees of the
search tree. To select an action at, the RAVE formula involves
the AMAF value of the action at (AMAFat ):

argmaxat((1.0− βat)×meanat + βat ×AMAFat)

and a weight βat :

βat =
pAMAFat

pAMAFat + pat + bias× pAMAFat × pat
pAMAFat is the number of rollouts containing action at, pat
is the number of rollouts starting with action at, and bias is a
problem-dependent parameter controlling the exploration bias.

The principle of GRAVE is to use AMAF values of a state
higher up in the search tree than the current state (commonly
named tref ). Even if the statistics of an ancestor state refer to
some actions made earlier, a state upper in the tree has better
accuracy because it has more associated rollouts. GRAVE
shows how using ancestor statistics when the number of



simulations is too low is more accurate than using statistics of
the actual node.

b) Continuous MCTS: A fundamental assumption for
applying these selection functions is that they require each
action to be tried at least once. They are not applicable in
cases where the cardinality of the action space is very large
with respect to the number of iterations (|A| � n). Progressive
widening (PW) is a widely employed solution limiting the
number of actions of a state st based on its number of visits
(restricted by the power of pw). A new action at is sampled
from st each time the visitation counter of st (N(st)) is greater
than or equal to its number of actions :

N(st)
pw ≥ |C(st)| (2)

where pw is a problem-dependent parameter that restrains the
number of actions allowed in st, and C(st) is the set of actions
from st (C(st) ⊂ A(st)).
While the selection function ensures that the tree grows deeper
in the promising regions of the search space by balancing
exploration and exploitation, the PW strategy guarantees that
it grows wider in those regions.

cRAVE extends RAVE to the continuous action and state
spaces. As stated in [15], the state-action values are smoothly
estimated thanks to Gaussian convolutions: every tree-walk
in the subtree of s comprising state-action pair (si, ai) is
considered with a weight decreasing exponentially depending
on (i) the distance between the executed action at and the
considered action ai, and (ii) the distance between si and st.

In the same idea, cGRAVE has been recently proposed to
build upon GRAVE by using the smoothed state and action
values estimations of ancestors to increase the accuracy of the
estimates in leaf nodes.

C. Diverse planning with MCTS

Generating multiple solutions, instead of a single one, in a
planning problem is called top-k, top-quality or diverse plan-
ning. The choice of the planner depends on the characteristics
of the solutions set the user is looking for. Top-k planning
addresses the problem of finding a finite set of the k-best plans
according to some quality measure. Top-quality imposes that
the non-predetermined set of plans has a minimum quality
value. Diverse planning adds to the top-quality planner a
constraint on the plan similarity: it enforces obtaining both the
maximum quality and the most diversity between the plans.
As we are interested in diverse planning, only this type of
planner will be presented in detail below.

Diverse planning addresses the problem of generating sets of
plans that are significantly different according to some distance
measure. Significantly means that the set of plans must be
distant from one another with respect to a distance threshold.
Diversity is commonly defined as the average or minimum
pairwise distance within the set of plans. But it can also be
based on qualitative (specific to the domain) [27], quantita-
tive [25], [28] (domain-independent) measures, or both [29].

Following the definition of diverse planning in [26], we
consider the problem of maximising the quality of plans given
a bound on diversity :

Definition 1 (Diverse top-k-quality planning problem). Given
a planning problem (S,A, T,R), natural number k, measure
of plan quality Qplan(π), quality constraint q, measure of
diversity D(π, P ) between a plan π and a set of plans P ,
and a distance threshold d, find a subset P in the set of all
plans Pπ such that:

• there exists no plan ψ ∈ Pπ s.t. ψ /∈ P having diversity
D(ψ, P ) ≥ d and quality Qplan(ψ) ≥ Qplan(π),

• ∀π ∈ P , D(π, P \ {π}) ≥ d
• ∀π ∈ P , Qplan(π) ≥ q,
• |P | ≤ k

Thus, a solution to a diverse planning problem is a set of plans
P in which every plan is quality-optimal and P is diverse. In
other words, it is a Pareto set balancing diversity and quality.

In the context of planning, MCTS is used to generate plans
by extracting action sequences from the search tree (a plan π
corresponds to any action path from a0 to an action leading to
a terminal node al). In the simplest case, generating an optimal
plan consists of recursively selecting the child node with the
maximum value until a terminal node is reached. However,
considering a generation of a set of plans requires comparing
the alternative plans of a search tree that, for instance, might
be of different lengths. And, unlike classical planning, in
standard MCTS, rewards are assumed to be received only in
terminal states. It is the main reason why a plan quality metric
(Equation (3)) and a diverse plan extraction algorithm have
been introduced in [26]. The plan quality metric is defined as
the product of the regret of suboptimal action choices. It helps
to evaluate a plan relative to the optimal one and allows one
to compare plans with different lengths:

Qplan(π) =

n−1∏
i=0

meanai+1

maxa′∈C(ai)meana′
(3)

The plan extraction algorithm takes as input a search tree
and outputs a set of optimal and diverse plans. It iteratively
collects and extends plan stems until a plan has reached a
terminal node. A plan stem πat is a sequence of actions from
a0 to the current action at (which does not lead to a terminal
node). A plan is added to the set of top plans if both quality and
diversity thresholds are satisfied. The algorithm stops when the
desired number of plans k has been generated. Therefore, the
algorithm guarantees generating a set of plans such that no
plan of greater quality exists outside of the returned set.

On top of that, diverse multi-armed bandit policies
(DMAB) [26] in MCTS have been introduced to search online
a diverse set of plans. The tree policy favours the actions with
the greatest potential value. Usually, this value is given by the
heuristic chosen, such as UCT, RAVE, or GRAVE. In DMAB,
the authors suggest biasing the selection function to promote



potentially good actions that are distant from the set of actions
saved in P :

argmaxat∈A(st)(UCB(at) +D(πat , P )) (4)

where UCB(at) relates to Equation (1) and D(πat , P ) is the
diversity of the plan stem πat to the saved set of plans P .

III. CONTRIBUTIONS

This section presents three new DP-MCTS variants dealing
with the problem of collecting diverse plans during a single
execution in a continuous or large-scale domain.

A. Inhibition strategies

First, we propose two strategies (Lock and Diverse PW)
enforcing the diversity of the final set of top-quality and
diverse plans P during the construction of the search tree.
The underlying idea of such strategies is to inhibit areas of the
search space that already lead to optimal plans, to reinforce
the exploration of promising areas. We call these strategies
inhibition strategies.

a) Lock: The first approach is simply to lock tree
branches in which a complete plan, a solution to the problem,
is stored in P . When a complete plan π is stored in P , its
selected actions (a0, ..., aT ) are locked. This means that the
tree branch (not just the plan) from the search tree is inhibited.

b) Diverse Progressive Widening (DivPW): Our second
approach suggests modifying the PW formula (Equation (2))
to promote additional action sampling. We add to PW the
constraint that the actions starting from st must not belong to
the set of actions saved in the complete plans of P at the same
depth (P.actions(t)). Instead of considering the number of
actions (|C(st)|), we only consider the subset of actions that
are not present in any of the complete plans: CDivPW(st) =
C(st) \ {at |at ∈ C(st) ∩ P.actions(t)}:

N(st)
pw ≥ |CDivPW(st)| (5)

During the construction of the search tree, this encourages
exploration at each depth, especially when a high number of
actions is already present. In addition, if the DivPW condition
(Equation (5)) is met, the selection function is only applied to
the subset of actions that do not belong to any saved plan in
P (inhibiting them). When the DivPW condition is not met,
we avoid resampling an existing action.

By inhibiting plans or actions, these heuristics encourage
exploration of unvisited or less promising areas of the search
space.

B. Diversity as an objective

We suggest formulating the problem of diverse planning
as a multi-objective reinforcement learning problem. In the
DMAB, diversity of solutions primarily serves as a necessary
property of online discovery processes and not as an objective
in its own right. In fact, with DMAB, diverse planning is
mostly regarded as an intermediate problem, being a linear
combination between the score and the diversity. Since the
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Fig. 1: Example of a hGRN model depicted as a directed
graph (a), and a possible hybrid state graph (b). The hGRN
continuous parameters are depicted as black arrows.

solution to a diverse planning problem is a Pareto set balanc-
ing diversity and quality, we consider using Multi-Objective
MCTS [30] (MO-MCTS).

MO-MCTS is the multi-objective extension of MCTS and
has been shown to outperform linear-scalarization approaches.
Instead of aggregating the objectives into one, MO-MCTS
considers a reward vector r ∈ Rd where d is the number
of objectives. During the search, an archive X maintains all
non-dominated vectorial rewards evaluated in previous tree
walks. Given X and the newly vectorial reward obtained at
the simulation step, the hyper-volume indicator [31] (HV) is
used to calculate the modified selection function:

MOa =

{
HV (X ∪ {rat}; z) if rat is non-dominated in X
HV (X ∪ {rat}; z)− ‖r

p
at − rat ‖2 otherwise.

where z ∈ Rd is the reference point of HV, rat is a d-
dimensional vector in which the selection function is applied
to at for each objective, and rpat is the perspective projection
of rat onto X .

In this context, we introduce the diversity score as an
additional objective: score = (Qplan(π), D(π, P )). The di-
versity score is calculated using the plan dissimilarity measure
provided by the user, such as the minimum distance from any
plan in the existing set P . It can also be based on quali-
tative (domain-specific) or quantitative (domain-independent)
measures. In the following, this variant of DP-MCTS will be
referred to as DPMO.

IV. APPLICATION

To evaluate our proposed MCTS diverse planners, we
consider the problem of identifying dynamic parameters in
hybrid gene regulatory networks (hGRNs). Our goal is to
generate a bounded set of top-quality plans that maximises
the diversity of continuous parameters found, meaning that
they are compliant with the biological knowledge (top-quality
criterion). This assessment is done on two problem instances:
the circadian clock (3G) and the cell cycle (5G).



A. hGRNs parameters identification

Hybrid modelling of GRNs [32] aims to describe the effect
of regulations between genes in a biological system taking
into account the continuous time component. Usually, a GRN
is represented as a directed graph in which vertices express
abstractions of one or multiple biological genes having the
same effect, and edges act as regulations. Regulations can

either be an activation ( +w−−→) or an inhibition (
+w

a ) of a target
vertex, only if the discrete concentration of the source vertex is
above its wth threshold (an unlabelled edge means w = 1). In
the context of Figure 1a, the maximum discrete level of both
genes is 1, leading to discrete levels of genes (ηv1 and ηv2 ) in
{0, 1}. This static representation is of limited interest since it
does not help the modeller to predict the temporal dynamics of
the system. Although a discrete dynamical framework has been
developed, we consider here a hybrid modelling framework
that adds chronometric aspects to the discrete framework,
because it is fundamental to observe and reason not only
about the discrete dynamics of a complex system but also
about its chronometric evolution. It is particularly important
in chronotherapy to optimise medical treatments by taking into
account biological rhythms.

The hGRN dynamics of Figure 1b can be built in two steps:
(i) first, each grey box representing a discrete state defines the
discrete concentration level of each gene, then (ii) the hGRN
dynamics are defined as piecewise linear continuous trajec-
tories (red lines). The trajectory starts from an initial hybrid
state hi, represented by both a discrete state η and a precise
position φ inside the discrete state. The initial state is defined
by hi =

(
(ηv1 , ηv2)

t
, (φv1 , φv2)

t
)

=
(

(0, 0)
t
, (0.25, 0.25)

t
)

.
Then, the temporal evolution inside each discrete state is given
by a so-called celerity vector (black arrows), which defines the
direction and celerity of each gene, e.g., the celerity of v1 in
η = (0, 0) is denoted Cv1,(0,0). More generally, the celerity
of v in η is denoted Cv,η. Identifying a valid set of celerity
vectors (dynamic parameters) could help biologists make new
interpretations of the possible system dynamics.

We are interested in valid hGRN models of the biological
system under study, that is, into hGRN models consistent
with knowledge and observations. Our approach takes into
consideration already-formalized information analysed by bi-
ologists derived from biological data and expertise instead
of raw data, which are known to be subject to noisiness
and scarcity. The approach abstracts the knowledge extracted
from biological experiments under the form of constraints on
the global trajectory: it must (i) start from an initial hybrid
state hi = (ηi, φi), (ii) verify in each successive discrete
state a triplet of properties (∆t, b, e) where ∆t expresses the
time spent; b delineates the observed continuous behaviour
inside the discrete state (> means the absence of observed
behaviours); e specifies the next discrete state transition,
and (iii) reach a final hybrid state hf = (ηf , φf ). For the
interaction graph of Figure 1a, biological expertise can be
summarized as follows: there exists a behaviour starting from
specific coordinates (hi) going through four discrete states

and finishing at other specific coordinates (hf ) after 24 hours.
More precisely, the time spent in each of the four discrete
states is approximately 5 hours in (0, 0), 7 in (1, 0), and so
on. See the first properties of each event in the following
description of the biological knowledge (BK):

{
hi
} 5.0

noslide (v2)
v1+

;

 7.0
slide+ (v1)

v2+

;

 8.0
noslide (v2)

v1−

;

 4.0
slide− (v1)

v2−

{hf}
For the first triple, v1+ constrains the trajectory to reach the
next discrete state by increasing the concentration level of v1.
The second property noslide(v2) in (0, 0) expresses that the
trajectory has to reach the right border of the discrete state
without touching the upper or lower borders (expressing the
saturation). The continuous trajectory of Figure 1b satisfies all
properties of Section IV-A.

Any valuation of dynamic parameters leading to a trajectory
satisfying BK is considered a solution to the hGRN identifi-
cation problem.

B. Experimental validation

a) Problem specifications and instances: We consider the
problem of identifying continuous parameters in hGRNs as an
RL problem, more specifically, as an online decision-making
problem modelled as a deterministic MDP. We do not consider
classical planning algorithms since (i) no symbolic model of
the problem is available (a simulator is used), and (ii) the
quality of a plan is not defined by the sum of action costs but
is only rewarded in terminal states.

In this MDP, a state st is defined as an incoming hybrid state
(the first point in each discrete state following the piecewise
linear trajectory evolution) and its corresponding time, and an
action at is a celerity vector. In each timestep, an action is
composed of d continuous variables, where d is the number
of genes in the system. Since an optimal plan must satisfy
every triplet of BK, its length must equal the number of
triplets. Thus, a reward for a simulation equals the length of
the simulated trajectory (the number of discrete states it goes
through) before ending in a terminal state. A terminal state is
either a final state (maximum length) or an intermediate state
which does not respect the BK constraints (at ε = 1e−2). For
instance, in the hGRN presented in Figure 1, a reward of 4
means that the plan is optimal because the trajectory satisfies
each 4 triplets of BK (described in Section IV-A) and is valid.
While a reward below 4 corresponds to a trajectory being stuck
(not valid). Details are provided in [16].

The experimental validation is held on two real-world
hybrid models of GRN. They are depicted in Figure 2: the
circadian clock (with 3 genes, in short 3G) and the cell
cycle (with 5 genes, in short 5G). Each hGRN parameters
are described in terms of (i) the number of genes d (the
cardinality of an action), (ii) the number of actions to find,
i.e., the maximum length of a plan, and (iii) constraints from
BK utilised for evaluating a simulation.

b) Experimental setting: In the following experiments,
we test four MCTS diverse planners: DMAB (the baseline),
Lock, DivPW and DPMO. They generate a set of plans for
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Fig. 2: Interaction graphs of the 3G (a), and 5G (b) hGRN.

name Nb. genes Nb. continuous params BK

circadian cycle (3G) 3 8 [32]

cell cycle (5G) 5 48 [33]

TABLE I: Description of hGRN models.

up to five solutions (k = |P | ≤ 5), enforce a minimum 100%
of the quality of the optimal plan (q = 1.0) and a minimum
plan distance of d = 1e − 1. The distance measure chosen
is the Euclidean action distance. This choice has been made
since a diverse set of actions always leads to a diverse set
of biological traces. A dissimilarity measure based on state
distance is not relevant since the measure could assign a
similar value for a newly discovered plan even if its sequence
of actions would have been different. Thus, the diversity metric
when considering a new plan π is the minimum distance from
any plan in P :

D(π, P ) = inf{||π, π′||2 | π′ ∈ P} (6)

We use the cGRAVE algorithm, where GRAVE is the selection
function in Equation (4), since previous research [16] showed
that it was the most relevant (among cUCT and cRAVE).

The ad-hoc and manual parameter tuning of the algorithms
is known to have multiple disadvantages, such as being biased
by experience, time-intensive and limited by the number of
problem instances. We use an iterated racing procedure for
automatic algorithm configuration: the irace package [34].
The best elite configuration obtained after 1000 iterations has
been kept to determine the values of the problem-dependent
parameters. For the cGRAVE heuristics, the parameter space
is bias ∈ {1e−15, 1e−14, ..., 1e−2, 0.1}, αstate ∈ J1, 100K,
αaction ∈ J1, 100K, and pw ∈ {0.3, ..., 0.89, 0.7}. The resulted
tuned values are bias = 0.1, αstate = 47, αaction = 81,
and pw = 0.61. ref is found among the values J1, 100K and
equals 15. The Euclidean distance is chosen for action and
state spaces. Each experiment is run 30 times to obtain sta-
tistically significant results. The diverse planner performances
are compared for the same computational budget, i.e., 50.000
tree-walks in 3G and 200.000 in 5G.

c) Results analysis: Firstly, we focus on analysing and
thus comparing the diversity of the set of solutions P gener-
ated by each DP-MCTS variant. Such performance is assessed
thanks to the sum of distances (SD) measure. It finds the

Alg
3G 5G

mean ± std max min mean ± std max min

DMAB 29.33 ± 3.41 34.9 24.19 93.29 ± 57.35 225.87 18.87
DPMO 23.12 ± 3.31 28.36 16.26 97.91 ± 16.85 115.14 77.02
Lock 33.95 ± 2.96 39.84 26.77 50.03 ± 48.68 226.61 15.91

DivPW 34.48 ± 2.42 39.35 29.59 126.4 ± 24.92 182.53 87.6

TABLE II: Diversity statistics (Equation (7)) of the set of plans
generated by the different planners on both problem instances:
3G and 5G. Bold values denote the best results column by
column.

dissimilarity between plans by calculating the square root of
the sum of their distances from one another:

SD(P ) =

√√√√∑
πi∈P

∑
πj∈P
j 6=i

||πi − πj ||2 (7)

where πi and πj are two distinct plans in P .
Table II represents the mean, the standard deviation and the

extrema of the SD measurements obtained by each diverse
planner on the two problem instances. The best results are
bolded. From this table, we can deduce that, both in 3G and
5G, DivPW maintains a more diverse set of solutions, and
Lock finds the best one (given the 30 executions). Neverthe-
less, the naı̈ve strategy employed by Lock is opportunistic:
average performances are lower than other planners for 5G.
DPMO and DMAB obtain similar statistics in both instances.
DMAB shows higher performance variability (visible thanks
to the standard deviation).

In the second stage, we focus on a different aspect: what if
the set of plans P was not bounded (k =∞ in Definition 1)?
In fact, from a modeller’s perspective, having the widest
choice possible can be instructive and a valuable feature. In
addition, the number of solutions is not necessarily known
in advance. For instance, in our context, exhibiting the largest
solutions sample is interesting for discussing with biologists to
identify the most relevant interpretations among the solutions
extracted: the larger the number, the better. It is the reason
why, during our experiments, a second set of plans P ′ has been
introduced to collect every plan that is both top-quality and
different (D(π, P ′) 6= 0), but this set was unbounded: it comes
down to a top-quality problem where the plans set is only
bounded on quality, and we assess the diversity performances
of each planner. In this context, we aim at obtaining the largest
and most diverse solutions set. We employed the following
performance measure, inspired from [35]:

sc(P ′) = |clustσ(P ′)| (8)

The score measurement uses density-based clustering with
parameter σ to remove redundancy between plans closely
clustered and returns the number of obtained clusters. Each
representative plan of the clusters found (with the higher
quality value) is kept as an optimal solution, while the others
are removed. In this study, OPTICS [36] is parametrised with
σ = d = 10−1.



Fig. 3: Boxplots of average diversity score (Equation (8))
generated by each planner. The higher, the better.

From Figure 3, we can state that, in 3G, DivPW largely out-
performs other tested planners. DPMO and Lock obtain better
diversity performances than DMAB, and their performances
are not statistically different. In 5G, the DMAB baseline
also lags behind the other proposed strategies. However, the
DivPW strategy is surpassed by DPMO. Overall, Figure 3
demonstrates the interest of the newly proposed DP-MCTS
in both problem instances when searching for an unbounded
diverse set of plans.

d) Discussion: According to our experiments, the two
best planners standing out are DivPW and DPMO. As with
DMAB, one drawback of such heuristics-based planners is
that there is no evidence that the exploration biases the search
toward high-quality diverse plans. However, on the tested
problem, they have shown to exhibit a set of plans with higher
diversity than our baseline DMAB.

Following Figure 3, the results obtained by planners in
5G are lower than the ones displayed in 3G, but they are
not comparable since the dimensionality of the action space
is different (see Table I). In addition, the problem instance
complexity increases as the number of parameters to identify
increases exponentially with respect to (i) the number of
genes d, and (ii) the concentration levels of genes. Similarly,
from Table II, the SD scores naturally increase between the
two instances since there are a higher number of actions to
identify leading to a larger action space. This also explains the
results variability of the different heuristics-based planners.

It must be noted that MO-MCTS is known to suffer from a
higher computational cost due to the hypervolume computation
(which is then the case with DPMO): the user could prefer
obtaining a lower diversity set of plans for the benefit of faster
calculation by using DivPW.

C. Visualisation

Figure 4 and Figure 5 show the diversity of the set of
solutions found in the set of plans P of each planner tested
on the two problem instances. It exemplifies the solution set
generated by each planner given a single execution. Please
note that two different graph types are modelled to emphasize
the same phenomenon: the evolution of gene product concen-
tration. The 3G discrete states (Figure 4) can be represented as

(a) DMAB (b) DPMO

(c) Lock (d) DivPW

Fig. 4: Set of solutions extracted by the different planners in
3G.

(b) DMAB (c) DPMO

(d) Lock (e) DivPW

Fig. 5: Set of solutions extracted by the different planners in
5G.

cubes. In 5G (Figure 5), the graph represents the evolution of
concentration (in the y-axis) as a function of the time spent (in
the x-axis) for the different genes. Each vertical bar represents
a discrete state change.
The different diverse planners proposed helped exhibit top-
quality and diverse solutions, each consistent with BK. Be-
tween the different sets of plans displayed in 5G, DPMO’s
advantage in terms of diversity can be observed. In fact, the SK
and EP celerities better cover the solutions space, in particular:



(i) between 0 and 4 hours, EP slopes (yellow curves) are more
diverse, and (ii) between 6.30 and 10 hours, the same applies
to SK slopes (orange curves).

V. CONCLUSION

This paper compares the DMAB baseline with different
contributions to be applied with continuous MCTS. DPMO
considers diverse planning in a multi-objective setting, Lock
inhibits (locks) any new simulations for this plan, and DivPW
biases the progressive widening formula. All of those planners
are heuristics-based but showed that they help exhibit top-
quality and diverse sets of plans. The experimental study
has been conducted on a real-world problem in which the
goal is to identify parameters of gene regulatory networks.
Such identification is an ideal tool to help biologists develop
hypotheses and facilitate the design of their experiments in the
field of chronotherapy. This study is a continuation of [37] that
tackles this task as a multimodal optimization problem.

Future works consider hybridising the DivPW and DPMO
planners, while assessing their relevance on a more diverse
set of benchmark functions. Another suggestion is to bridge
the gap between optimization techniques employed for finding
multiple solutions and online diverse planning with MCTS.
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[4] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk, “Monte
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