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The main difficulty when modelling gene networks is the identification of the parameters
that govern the dynamics. Here we present a new approach based on Hoare logic and weakest
preconditions (a la Dijkstra) that generates constraints on the parameter values: Once proper
specifications are extracted from biological traces, they play a role similar to programs in the
classical Hoare logic. We firstly remind the discrete modelling for genetic networks defined by
René Thomas. Then, we define the Hoare/Dijkstra method extended to gene networks, that
extracts the weakest precondition on parameter values.

1 Thomas’ gene regulatory networks with multiplexes

Our formal framework [KCRB09] is based on the discrete approach of René Thomas [TK01]:
A gene network is a labelled directed graph (left part of Figure 1) in which vertices are either
variables (within circles) or multiplexes (within rectangles). Variables abstract genes or their
products, and multiplexes contain propositional formulas that encode situations in which a
group of variables (inputs of multiplexes) influence the evolution of some variables (outputs of
multiplexes). In the figure the multiplex µ2 expresses that the variable x can help the activation
of the variable y when it is at least equal to 1. In general multiplexes can represent combined
biological phenomena, one of the simplest being the formation of complexes (in which case the
formula would contain a conjunction). In the figure, µ1 reflects an auto-activation of x at level
2 which is controled by µ3. Because µ3 contains a negation, µ1 is inhibited by y.

yx

(x ≥ 2) ∧ µ3
µ1

µ2
x ≥ 1

µ3
¬(y ≥ 1)

y

x

1

1

0

0 2

Figure 1: (Left) Discrete gene network with variables x and y, multiplexes µ1, µ2 and µ3 with
associated formulas ϕµ1 ≡ ((x > 2)∧µ3), ϕµ2 ≡ (x > 1) and ϕµ3 ≡ ¬(y > 1). (Right) Its state
graph obtained when choosing parameters Kx,∅ = 0, Kx,{µ1} = 2, Ky,∅ = 0, and Ky,{µ2} = 1.

As shown in the right part of Figure 1, this gives rise to 6 qualitative regions in the phase
space, which we call (discrete) states. A state is an assignment of integer values to the variables.
Such an assignment allows a natural evaluation of any formula within a multiplex: By replacing
variables by their values we get a propositional formula whose atoms are the results of the
integer inequalities. Then, we say that a multiplex m, predecessor of a variable v in the graph,
is a resource of v iff its substituted formula is true: at the state (x = 2, y = 1), µ2 is the only
resource of y whereas ϕµ1 is false and consequently, the set of resources of x is empty.

At a given state η, each variable v evolves in the direction of a specific level that only depends
on the set of resources of v. This level is the integer value of a parameter Kv,ρ(η,v), where ρ(η, v)
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is the set of resources of v at η. Hence, at state η, v can increase if η(v) < Kv,ρ(η,v), it can
decrease if η(v) > Kv,ρ(η,v), and it is stable if η(v) = Kv,ρ(η,v). In the Thomas’ method, the
variables evolve asynchronously by unit steps toward their respective K.... The dynamics of a
gene network is then described by an asynchronous state graph (right part of Figure 1).

2 Hoare triples for gene networks

An assertion is a formula whose terms are sums or subtractions between integers, variables or
parameters K... of the gene network, predicates are equalities or inequalities, and connectives
are the usual ones of first order logic. A Hoare triple is an expression of the form “{P} p {Q}”
where P and Q are assertions (pre- and post-conditions) and p is a trace specification.

Trace specifications are indeed the key concept to formalize the observations of a biologist
during experiments. They are inductively defined as follows:

• For each variable v of the gene network, the expressions “v+”, “v−” and “v := n” (where
n ∈ IN) are trace specifications (increase, decrease or assignment of variable value).

• If e is an assertion then “assert(e)” is a trace specification.

• If p1 and p2 are trace specifications then so is (p1; p2) (sequential composition).

• If p1 and p2 are trace specifications and if e is an assertion, then so is (if e then p1 else p2).

• If p is a trace specification and if e and I are assertions, then (while e with I do p) is also
a trace specification. The assertion I is called the invariant of the while loop.

• If p1 and p2 are trace specifications then so are ∀(p1, p2) and ∃(p1, p2) (quantifiers).

Conventionnaly, we call the empty trace ε = assert(true).

For lack of space we do not define here the formal semantics of trace specifications [BCK+15].
Intuitivelly, “v+” (resp. “v−”, “v := n”) means that the expression level of variable v has been
observed as increasing by one unit (resp. decreasing by one unit, or set to a particular value n
by the experimental protocole). “assert(e)” expresses a property observed on the current state
without change of state. The sequential composition concatenates two specifications whereas
“if” chooses between two specifications according to the assertion e. The loop invariant I, as
in classical Hoare logic, facilitates proofs through while loops. Finally, the quantifiers ∀ and ∃
group together several specifications.

3 A Hoare logic for gene networks

We define our Hoare logic by giving the rule for each instruction of a trace specification. First,
let us introduce a few conventional assertions.

If ω is a subset of the set of predecessors of a variable v in the network, the assertion Φω
v

characterizes the states such that ω is the set of resources of v:

Φω
v ≡ (

∧
m ∈ ω

ϕm) ∧ (
∧

m 6∈ ω, m predecessor of v

¬ϕm)

Then, the formula Φ+
v and Φ−v characterize the states such that v can increase / decrease:

Φ+
v ≡

∧
ω⊂{predecessors of v}

(Φω
v ⇒ Kv,ω > v) Φ−v ≡

∧
ω⊂{predecessors of v}

(Φω
v ⇒ Kv,ω < v)
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Our genetically modified Hoare logic is defined by the following inference rules, where v is a
variable of the gene network.

Rules encoding Thomas’ discrete dynamics:

{ Φ+
v ∧ Q[v←v+1] } v+ {Q} Incrementation { Φ−

v ∧ Q[v←v−1] } v− {Q}Decrementation

Rules for quantifiers:
{P1} p1 {Q} {P2} p2 {Q}
{P1∧P2} ∀(p1,p2) {Q} Universal

{P1} p1 {Q} {P2} p2 {Q}
{P1∨P2} ∃(p1,p2) {Q} Existential

Other rules, directly inspired by Hoare Logic:

{ Φ ∧ Q } assert(Φ) { Q }Assert {Q[v←k]} v:=k {Q}Assignment

{P1} p1 {P2} {P2} p2 {Q}
{P1} p1;p2 {Q} Sequential

{P1} p1 {Q} {P2} p2 {Q}
{(e∧P1)∨(¬e∧P2)} if e then p1 else p2 {Q}Conditional

{e∧I} p {I} ¬e∧I⇒Q
{I} while e with I do p {Q} Iteration

P ⇒ Q
{P} ε {Q}Empty trace

We have proved that this modified Hoare logic is correct, and complete assuming a proper
choice of the loop invariants [BCK+15]. More precisely, the classical backward strategy of Dijkstra
(where the Empty trace rule is never applied) computes the weakest precondition P0 such that
{P0} p {Q}. Similarly to classical Hoare logic which reflects a partial correctness of imperative
programs, the previous definition does not imply termination of while loops.

4 Example

In [Mt02] Uri Alon and co-workers have studied the most common in vivo patterns involving
three genes. Among them, the incoherent feedforward loop of type 1 is composed by a transcrip-
tion factor a that activates a second transcription factor c, and a is an activator of b whereas
c is an inhibitor of b (Figure 2). Uri Alon and many biologists consider that if a, b and c are
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Figure 2: Boolean variables: {a, b, c}. Multiplexes: {l, λ, σ} with φl≡(a > 1), φλ≡(¬(c > 1)),
φσ≡(a > 1). Unknown parameters: Ka,∅, Kc,∅, Kc,{l}, Kb,∅, Kb,{σ}, Kb,{λ} and Kb,{σ,λ}.

equal to 0, the function of this feedforward loop is to ensure a transitory activity of b that
signals when a has switched from 0 to 1: The idea is that a activates the productions of b and
c, and then c stops the production of b. This is specified by the Hoare triple {P} p {Q0} where
P ≡ (a = 1 ∧ b = 0 ∧ c = 0), p ≡ (b+; c+; b−) and Q0 ≡ (b = 0). The backward strategy using
our genetically modified Hoare logic on this example gives the following successive conditions.

The weakest precondition through the last instruction “b−” is (Decrementation rule):
Φ∅
b ⇒ Kb < b

Φσ
b ⇒ Kb,σ < b

Φλ
b ⇒ Kb,λ < b

Φσ,λ
b ⇒ Kb,σλ < b

b− 1 = 0

≡


(¬¬(c > 1) ∧ ¬(a > 1))⇒ Kb < b
(¬¬(c > 1) ∧ (a > 1))⇒ Kb,σ < b
(¬(c > 1) ∧ ¬(a > 1))⇒ Kb,λ < b
(¬(c > 1) ∧ (a > 1))⇒ Kb,σλ < b
b− 1 = 0

⇔


b = 1
((c > 1) ∧ (a < 1))⇒ Kb = 0
((c > 1) ∧ (a > 1))⇒ Kb,σ = 0
((c < 1) ∧ (a < 1))⇒ Kb,λ = 0
((c < 1) ∧ (a > 1))⇒ Kb,σλ = 0
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Then, the weakest precondition through “c+” is (Incrementation rule):

¬(a > 1)⇒ Kc > c
a > 1⇒ Kc,l > c
b = 1
((c+ 1 > 1) ∧ (a < 1))⇒ Kb = 0
((c+ 1 > 1) ∧ (a > 1))⇒ Kb,σ = 0
((c+ 1 < 1) ∧ (a < 1))⇒ Kb,λ = 0
((c+ 1 < 1) ∧ (a > 1))⇒ Kb,σλ = 0

⇔



c = 0
a < 1⇒ Kc = 1
a > 1⇒ Kc,l = 1
b = 1
a < 1⇒ Kb = 0
a > 1⇒ Kb,σ = 0

Lastly, through the first “b+” (Incrementation rule):

(¬¬(c > 1) ∧ ¬(a > 1))⇒ Kb > b
(¬¬(c > 1) ∧ (a > 1))⇒ Kb,σ > b
(¬(c > 1) ∧ ¬(a > 1))⇒ Kb,λ > b
(¬(c > 1) ∧ (a > 1))⇒ Kb,σλ > b
c = 0
a < 1⇒ Kc = 1
a > 1⇒ Kc,l = 1
b+ 1 = 1
a < 1⇒ Kb = 0
a > 1⇒ Kb,σ = 0

⇔ P0 ≡



a < 1⇒ Kb,λ = 1
a > 1⇒ Kb,σλ = 1
c = 0
a < 1⇒ Kc = 1
a > 1⇒ Kc,l = 1
b = 0
a < 1⇒ Kb = 0
a > 1⇒ Kb,σ = 0

Then, using the Empty trace rule to finish the correctness proof of the Hoare triple, we have
to ensure P ⇒ P0 and, after simplification, we get the correctness if and only if Kb,σλ = 1 and
Kc,l = 1 and Kb,σ = 0. So, under these three hypotheses and whatever the values of the other
parameters, the system can exhibit a transitory production of b in response to a switch of a
from 0 to 1.
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