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Abstract The modeling of gene networks plays a crucial role for the comprehension and control of gene
regulatory networks, and the extraordinarily wide range of its applications reinforces the craze for systems
biology. This is a transdisciplinary field where the cross-fertilization of disciplines aims at providing tools
for helping the modeling activity. Whatever the modeling framework, the bottleneck of the modeling pro-
cess remains the identification of parameters. Even in discrete abstract modeling frameworks such as the
R. Thomas one, the combinatorics of parameter settings make unrealistic the brute force approach con-
sisting in enumeration of all parameterizations. Snoussi introduced in the late 80’, a constraint allowing
the discrete model to be consistent with a continuous one. In this article, we show that this constraint is
not sufficient and propose an extension to the Snoussi constraints.

Introduction

The study of biological systems aims to understand complex biological interaction mechanisms in-
volved in a wide range of functions, from cell division to circadian rhythms. The modeling of these
systems relies heavily on graphical representations that aim to provide a global, static view of the var-
ious elements involved in the interactions. From such a representation, variousmodeling techniques
allow the computer to simulate molecular mechanisms at different scales, providing an overview of
a variety of plausible behaviors of the biological processes under study.
One of the classes of biological systems, the Genetic Regulatory Networks (GRNs), aims at captur-
ing the temporal succession of system regulations and is a central aspect of systems biology [1,2].
To represent gene regulations, modelers classically distinguish two types of interactions: activations
(when a source gene is on, it tends to activate the target) and inhibitions (when a source gene is on,
it tends to inhibit the target). The combinations of such basic blocks (activations and inhibitions) are
sufficient to study a wide range of GRNs, and their computer simulation allows the modeler to pro-
vide predictions of various non-obvious biological behaviors.
For simulating these GRNs, one needs a so-called "modeling framework" which explains how the
different elements of the system evolve according to the regulations they are subject to. Multiple
mathematical frameworks exist [3,4] and each of them highlights a particular aspect of GRNs: dis-
crete models highlight the qualitative nature of the regulations [5,6], stochastic models emphasize
the non-determinism [7], differential equations often aim to base the simulations on the concentra-
tion of chemical species [8], and hybrid models try to mix some qualitative aspects with continuous
ones [9,10]. While each of them has its own benefits and limitations, they share a common concern:
the dynamic of the model depends on a parameter setting which is mandatory for animating the
model. And unfortunately, whatever the modeling framework, the identification of parameters con-



stitutes the main bottleneck when modeling complex biological systems.
In this article, we focus on a hybrid modeling framework, the one introduced by H. Snoussi [9] com-
bining R. Thomas’ discrete modeling of GRN [11] with continuous differential equations. To make a
long story short, the phase space is sliced into several parts (each corresponding to a region where
all genes are constantly regulated) and inside each part, a differential equation system describes the
evolution. This modeling framework is named piecewise linear differential equations. The strength of
thismodeling framework is to emphasize the qualitative nature of the regulations (the different parts
of the phase space) while preserving a precise notion of time, which is often easily measurable. This
cohabitation of discrete aspects with time allows to envision computer-aided techniques for helping
biologists reason on these systems as they do in the classical completely discrete R. Thomas model-
ing framework, but with time information. Unfortunately, this is possible at the cost of introducing
new continuous parameters which are to be determined.
The entanglement of discrete and continuous parameters of this model has been explored in the
past [9] and led to the expression of constraints on discrete parameters if one wants to make co-
herent the discrete model and the piecewise differential equation one. Snoussi demonstrated that
the more numerous the predecessors of a gene promoting the expression of the target gene, the
greater the value of the parameter associated with the gene. This article introduces finer constraints
that make it possible to better prune the combinatorics of the parameter settings to be considered.

The methodology section begins by introducing the modeling framework, starting with a discussion
on R. Thomas’ discretization of Gene Regulatory Networks (GRNs) followed by an exploration of the
piecewise linear differential equations approach. Then, in the results section, we examine the links
between the parameters in the discrete framework and those in the corresponding differential equa-
tions, and we give a theorem showing the constraints that the discrete parameters must satisfy in
order to be compatible with a differential model. Using the above theorem in various scenarios, we
demonstrate in the discussion section the usefulness of these novel constraints, which are partic-
ularly beneficial when dealing with scenarios where the number of predecessors exceeds two. In
particular, in the context of an abstract cell cycle model, these constraints effectively divide the num-
ber of parameterisations to be considered by a factor of between 8 and 9. Finally, concluding remarks
are given in the last section.

Methods

The R. Thomas modeling framework [11,5] used in this article places the modeling activity at a very
high level of abstraction. For example, to represent that the product of gene X activates (resp. in-
hibits), directly or indirectly, the production of product of gene Y , one represents this interaction by
two nodes X and Y (for abstracting both genes and their products) and a directed edge from X to
Y labeled with "+" for activation (resp. "−" for inhibition).
Because our aim is to demonstrate that there exist some new constraints on discrete parameters of
a R. Thomas model for making it coherent with the underlying piecewise linear differential equation
system, we first introduce the R. Thomasmodeling framework and, afterwards, the hybrid differential
system.



R. Thomas’ Discrete modeling framework

The intuition underlying R. Thomas’ discrete modeling framework is that when one gene acts on
another, the curve of the target gene’s product concentration is often a sigmoid function of the source
gene’s product concentration. For instance, let us consider a GRN in which a geneX activates a gene
Y and inhibits a gene Z (Fig.1-Left). The curve showing the production rate of the products of Y
and Z versus the concentration of the product of X are both sigmoidal. The inflection points of
these sigmoids can be used to place thresholds (Fig.1-Right). Below the threshold, the production
rate of the target product is near zero, while above the threshold it is saturated. Thus, interaction
can then be represented by amulti-valued switch-like system: the interaction is viewed as inactive or
fully active depending on the position relative to the threshold. The intervals defined by the different
thresholds are numbered and viewed as discrete states of the gene. For example, in Figure 1-Right,
X can be in the discrete state 0 if under the first threshold, 1 if it is between the first threshold and
the second one, and 2 if above the second threshold.
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Fig. 1. (Left) Interaction graph: X activates Y and inhibits Z. (Right) Plot of the production rate of Y
and Z as a function of the concentration of the product ofX . The thresholds define the qualitative
states of the system.

In addition, experimental observations can be used to deduce discrete parameters of the R. Thomas’
model under construction. To be more precise, each parameter describes the discrete state that a
gene of interest is attracted to, under known conditions, those conditions being the discrete state of
the genes that are predecessors of the gene of interest. These parameters are denotedKX,ω where
X is the gene of interest and ω is the set of so-called resources, that is, eitherX ’s activators currently
activating X or X ’s inhibitors not currently inhibiting X . For instance, the knowledge of the graph
(Fig. 2a) determines the set of parameters to consider: there is a parameter for each gene and each
possible set of resources for the considered gene. Fig. 2b lists 4 parameters for X (because X has
2 predecessors, leading to 4 combinations of resources) and 2 parameters for Y (because Y has a
unique predecessor, leading to 2 combinations of resources). When a value is given to each of these
parameters (right column of Fig. 2b), we can associate with each possible discrete state of the model
(first and second columns of Fig. 2c), the set of resources (third and fourth columns of Fig. 2c) and
the state toward which the system is attracted (fifth and sixth columns of Fig. 2c). From the table
in Fig. 2c, it is possible to deduce the dynamics of the model. For example, when the system is in
the discrete state (1, 0), it is attracted toward (2, 0) (Figure 2c). When the state, toward which the
system is attracted, is equal to the current state, the state is stable (for example (2, 1)). Finally, when
the Manhattan distance between the targeted state and the current one is strictly larger than 1 (see



state (1, 1), in which X is attracted upwards and Y is attracted downwards), there is two possible
evolutions: eitherX increases or Y decreases.
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Discrete state Resources Targeted state
X Y X Y X Y

0 0 Y ∅ 1 0
0 1 ∅ ∅ 0 0
1 0 X,Y ∅ 2 0
1 1 X ∅ 2 0
2 0 X,Y X 2 1
2 1 X X 2 1

(c)

Fig. 2. (a) An interaction graph. (b) Possible set of of values for discrete parameters following the R.
Thomas’ framework. (c): Table describing the behavior of the model in each state

Piecewise linear differential equations

R. Thomas’ framework is a beautiful framework for reasoning on succession of states, for example
for confronting the built model with known temporal properties [12]. Nevertheless, it is not well
suited when modeling a biological system in which time plays a crucial role, such as the cell cycle or
the circadian clock [13,14] because it is not dedicated to manipulating the durations passed in each
discrete state of a trajectory.

In such a case, it could be interesting to study the system in another framework where time is ex-
plicitly handled, such as piecewise linear differential equation systems. The parameters of such a
system are difficult to measure in vivo, but Artificial Intelligence learning can help identify such pa-
rameters [15]. Nevertheless, there exists a strong connection between the piecewise linear differ-
ential equation framework and the discrete R. Thomas’ parameters, and these relationships can be
helpful for deriving constraints on discrete parameters.

Let us first present the considered differential framework. As for the discrete framework, thresholds
define zones. In each of these zones, the evolution of the system is defined by a system of differential
equations: The value of the derivative of the concentration of a gene product is the difference be-
tween a synthesis term and a degradation rate [9]. The synthesis term is the sum of the contribution
to the synthesis rate of each of the predecessors that helps the rate grow (the resources). The equa-

tions are as follows:
d

dt
xi = F (x1, ..., xn)− γi × xi where t is the time, xi the concentration

of the product of gene i, γi the degradation rate of product of gene i and F the synthesis rate at the
current state. Introducing

— ki the basal synthesis rate (independent of the regulations) of xi,
— ωi(x1, ..., xn) the set of resources of i in the current state (x1, ..., xn) where n is the total

number of genes,
— kji the contribution of the regulation of j on the synthesis rate of i (only when j is an effective

activator, or an ineffective inhibitor),

the synthesis rate can be detailed: F (x1, ..., xn) = ki +
∑

j∈ωi(x1,...,xn)
kji is defined as the sum of

individual contributions over the set of resources of i (the set of resources ωi(x1, ..., xn) depends
on the concentrations of each product species because it is necessary to know the position of these
concentrations with respect to threshold in order to deduce if the regulation is effective). The analytic



solutions to these equations are: xi(t) =
F (xi)

γi
−
(
F (xi)

γi
− x0i

)
e−γi×t

with x0i the initial value of xi which can be identified using the initial conditions.

This expression of the concentration of a gene product over time allows us to link the discrete pa-
rameters of the associated R. Thomas’ model and the parameters of the differential system: F (xi)

γi

(which is equal to limt→∞ xi(t)) is the concentration value towards which the system is attracted
when i is under the control of the set of resources ωi(x1, ..., xk). In other words, if we want to have
a consistency between the discrete R. Thomas model and the differential one, the value of F (xi)

γi
has

to be in the interval denoted, in the discrete model, by the value ofKxi,ωi .

Results

The previous remark implies that for every possible set of resources, a sum of kij , is linked to a dis-
crete state of the discrete model. For example, in Figure 3, the consistency between the discrete R.
Thomas’ model and the piecewise differential system is insured only if ka

γa
is in the interval given by

the value ofKa,
ka+ka,a

γa
is in the interval given by the value ofKa,a and so on, following the table of

Figure 3b.
As a result, the knowledge of differential equation parameters can be used to deduce, by ordering
the different sums, the relative order of discrete parameters. Let us consider the example of Figure
3c where we suppose known the values of ka

γa
, ka+ka,a

γa
and ka+ka,b

γa
. The value of (ka+ka,a+ka,b)

γa
can

be deduced. Because ka
γa

has to be in the interval defined byKa,
ka+ka,a

γa
(resp. ka+ka,b

γa
, ka+ka,a+ka,b

γa
)

has to be in the interval defined by Ka,a (resp. Ka,b, Ka,ab), we deduce from the schema of Fig. 3c:
Ka ≤ Ka,a ≤ Ka,b ≤ Ka,ab. This puts the light on an intuitive first constraint: Whenever a set of re-
sources ω1 is included in another ω2 thenKi,ω1 ≤ Ki,ω2 . This constraint has already been described
by H. Snoussi [9].
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Fig. 3. (a) An interaction graph. (b) Relationships between the continuous and the discrete parame-
ters. (c) Display of possible arbitrary values of continuous parameters associated with a.

However, this constraint can be completed by others deduced from the same remarks. Let us con-
sider Figure 4a where the gene a has 3 predecessors b, c, d. Let us consider that the continuous
parameters ka, ka,a, ka,b and ka,d have been chosen as in Figure 4b. From these values, one can
deduce the sums of continuous parameters that correspond to discrete parameters, as in Figure 4b.
If one considers that a can take n+1 discrete values and that the discrete parameters for a fulfill the
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Fig. 4. (a): Interaction graph. (b): Display of possible arbitrary values of continuous parameters of a.
(c): Possible set of values for discrete parameters of a respecting Snoussi’s constraint.

previous constraints (also known as Snoussi constraints), one can choose the discrete values of the
table in Figure 4c. However, (ka,b + ka,c + ka)/γa is less than (ka,b + ka,d + ka)/γa, so it is impossi-
ble to place the first in an interval above the interval associated with the second. The values of the
discrete parameters must therefore satisfy Ka,bc ≤ Ka,bd contrary to the choice made in the table
of Figure 4c. The following theorem is the generalization of this observation:

Theorem 1. If the discrete model comes from a piecewise linear differential equation model then for all
genes i and for all subsets ω1 and ω2 of the predecessors of gene i, if there exists an injection ι from a
partition P1 of ω1 to a partition P2 of ω2 such that for all ω element of P1, one has either ι(ω) = ω or
Ki,ω < Ki,ι(ω), then we have: Ki,ω1 ≤ Ki,ω2

Proof of Theorem 1: Let us consider two subsets of predecessors (ω1 and ω2) of a gene i such that
there exists an injection ι from a partition P1 of ω1 to a partition P2 of ω2 such that for all ω element
of P1, one has either ι(ω) = ω orKi,ω < Ki,ι(ω). Two cases have to be considered:

1. If for all ω element of P1, we have ι(ω) = ω, we can deduce ω1 ⊂ ω2. Then,

ki
γi

+
∑
j∈ω1

ki,j
γi

<
ki
γi

+
∑

j∈ω2∩ω1

ki,j
γi

+
∑

j∈ω2\ω1

ki,j
γi

which can be expressed in terms of discrete parameters: Ki,ω1 ≤ Ki,ω2 . This is the Snoussi
condition.

2. Let us consider the case where there exists some ω ∈ P1 such that ι(ω) ̸= ω. In such a case,
the partition P1 is split into 2 sets: the set P a

1 which contains only ω such that ι(ω) ̸= ω and
the set P b

1 which contains only ω such that ι(ω) = ω.
Because for each ω element of P a

1 we have Ki,ω < Ki,ι(ω), the two focal values associated
with the previous discrete parameters are in the same order:

ki
γi

+
∑
j∈ω

ki,j
γi

<
ki
γi

+
∑

j∈ι(ω)

ki,j
γi

⇔
∑
j∈ω

ki,j
γi

<
∑

j∈ι(ω)

ki,j
γi



Because for each ω′ element of P b
1 we have Ki,ω = Ki,ι(ω), the two focal values associated

with the previous discrete parameters are the same:

ki
γi

+
∑
j∈ω′

ki,j
γi

=
ki
γi

+
∑

j∈ι(ω′)

ki,j
γi

⇔
∑
j∈ω′

ki,j
γi

=
∑

j∈ι(ω′)

ki,j
γi

Summing the inequalities for all ω of P a
1 ∪ P b

1 :∑
j∈ ∪

ω∈Pa
1

ω

ki,j
γi

+
∑

j∈ ∪
ω′∈P b

1

ω′

ki,j
γi

<
∑

j∈ ∪
ω∈Pa

1

ι(ω)

ki,j
γi

+
∑

j∈ ∪
ω′∈P b

1

ι(ω′)

ki,j
γi

≤
∑

j∈ ∪
ω′∈P2

ω′

ki,j
γi

Because ∪
ω∈Pa

1 ∪P b
1

ω = ω1 and ∪
ω′∈P2

ω′ = ω2, one can deduce:

ki
γi

+
∑
j∈ω1

ki,j
γi

<
ki
γi

+
∑
j∈ω2

ki,j
γi

which can be expressed in terms of discrete parameters: Ki,ω1 ≤ Ki,ω2 .

Because the property is satisfied in both cases, the theorem is proved. □

Discussion

Applying this theorem in practice reduces the number of possible settings to consider. To better
understand to what extent, Table 1 shows the number of possible parameter settings for a single
gene with different numbers of predecessors and different numbers of discrete levels.

Conditions Total Snoussi Theorem 1 % of Snoussi#Predecessors #Levels
2 2 16 6 6 100%
2 3 81 20 20 100%
2 4 256 50 50 100%
2 5 625 105 105 100%
2 6 1296 196 196 100%
3 2 256 20 20 100%
3 3 6561 168 150 89.3%
3 4 65536 887 707 79.7%
3 5 390625 3490 2518 72.1%
3 6 1679616 11196 7416 66.2%
4 2 65536 168 168 100%
4 3 43046721 7581 3863 51.0%

Tab. 1. Number of possible discrete parameter settings of a gene for given conditions and under
different constraints. #Levels denotes the number of discrete states the gene can have, and #Prede-
cessors is the number of its predecessors. The columns Total, Snoussi, and Theorem 1 represent the
total number of parameter settings without constraints, with Snoussi constraints, and with Theorem
1 constraints, respectively. Finally, the column % of Snoussi represents the proportion of parameter
settings selected by the constraints of Theorem 1 out of all parameter settings satisfying the Snoussi
constraints.

This table of the number of parameter settings that satisfy the conditions of the theorem leads to
two observations:

1. When the considered target variable i is binary (2 levels), the newly introduced constraints are
not able to eliminate more parameter settings. This is actually trivial, since for the theorem to



lead to a constraint complementary to Snoussi’s, there must be an ω ∈ P1 such that Ki,ω <

Ki,ι(ω). Since the variable is binary, we haveKi,ω = 0 andKi,ι(ω) = 1. Thus,Ki,ω2 is equal to
1, the conclusion is trivial whetherKi,ω1 is 0 or 1.

2. Again, when the number of predecessors is 2 (p1 and p2), the constraints expressed by the
theorem don’t seem to reduce the number of possible parameter settings. We can prove this
remark:
— The choice of ω1 = ω2 is not pertinent because the conclusion of the theorem provides the

inequalityKi,ω1 ≤ Ki,ω2 which is trivial.
— Let us consider ω1 ̸= ω2.

— If ω1 = {p1} and ω2 = {p1, p2}, we obtain either a triviality (Ki,p1 < Ki,p1p2 implies
Ki,p1 ≤ Ki,p1p2 ) or Snoussi’s constraints (Ki,p1 < Ki,p2 impliesKi,p1 ≤ Ki,p1p2 ).

— If ω1 = {p1, p2} and ω2 = {p1}, we obtain a triviality (Ki,p1p2 < Ki,p1 impliesKi,p1p2 ≤
Ki,p1 ).

— Other cases are handled by symmetry.

Thus, for the theorem to be more restrictive than the Snoussi constraints, it is necessary to have
more than two predecessors and more than two levels.

Finally, we can observe that the greater the number of predecessors and the number of levels, the
more restrictive the new constraints of the theorem. For example, if a gene is under the control of
three regulators and has four qualitative levels, the new constraints of Theorem 1 eliminate almost
half of the parameter settings that satisfy the Snoussi constraints.

More importantly, the gain is more significant when considering a global model rather than a sin-
gle entity. To evaluate the gain, we consider an abstract model of the cell cycle, inspired by the
work of Boyenval [16] who was interested in formalizing the notion of checkpoints. This model
aims to highlight the progression through the cell cycle, which is driven by 2 types of genetic en-
tities [17]: complexes of Cyclins/Cyclin-dependent kinases (Cyc/Cdks) and their inhibitors, known as en-
nemies. The 5 variables of the graph, (see Fig. 5a) represent these entities: sk is the abstraction of the
two complexes CycE/Cdk2 and CycH/Cdk7, known as initiation kinases. a and b respectively repre-
sent CycA/Cdk1 and CycB/Cdk1, respectively. en is the abstraction of themain Cyc/Cdks enemies: the
anaphase-promoting complex APC/Cdh1, cyclin-kinase inhibitors p21 and p27, and theWee1 protein.
The variable ep is the anaphase-promoting complex APC/Cdc20, which is a Cyc/Cdks enemy involved
in mitosis exit and is called exit protein. Regulations between the variables are described in [13].
Note that the cooperation between several entities on their common targets presented in [16] has
been introduced to reduce the possible set of parameter settings. Here, we consider the interactions
without these cooperations.

As explained above, we can see in the table of Figure 5b that entities with a number of predeces-
sors (or levels) less than or equal to 2 do not provide a constraint more specific than the Snoussi
constraint. Nevertheless, even if the gain due to a particular entity is not miraculous, the global gain
is important. This is due to the fact that the total number of parameter settings is obtained by mul-
tiplying the number of possible parameter settings for each variable. Taking the table of Figure 5b,
we can see that the genes ep and en each have 2 levels, therefore Theorem 1 does not provide any
supplementary constraints. sk, a and b each have 4 predecessors and 3 levels, therefore they re-
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Fig. 5. (a) An influence graph of the cell cycle. (b) Enumeration of possible parameterizations.

duce the number of compatible parameter settings by a factor of around 2. As the total number of
possible parameter settings is obtained by multiplying the number of possible parameter settings
for each variable, the total number of parameter settings satisfying the constraints of theorem 1 is
about 13,2% of the number of parameter settings satisfying the Snoussi constraints (0.513 = 0.132).
In this cell cycle example, applying theorem 1 reduces the total number of parameter setting by a
factor of 7.5.

Conclusion

This paper proves that Snoussi’s conditions for a R. Thomas’ model to be coherent with the underly-
ing piecewise linear differential equation system, are not sufficient and proposes new constraints on
discrete parameters. These constraints are necessary to ensure the consistency between both for-
malisms and appear when both the number of levels and the number of predecessors are greater
than 2. Now that modeling support tools are available, the community is interested in models of
reasonable size but is constrained by parameter identification. As we show on the cell cycle network,
these new constraints can be very useful, as they can drastically reduce the number of parameter
settings to consider.

If these constraints are unsatisfied by a possible discrete parameter setting of a discrete model,
then, we can deduce that there does not exist any underlying piecewise differential equation systems
consistent with the given parameter setting of the discretemodel. This is particularly useful when the
modeling process starts with the construction of a discrete model and then transforms the discrete
model into a continuous one. In such a configuration, a rapid test for knowingwhether the introduced
constraints are satisfied or not can prune a lot of Snoussi-compliant parameter settings, which cannot
be transformed into a continuous model.

The effects of imposing extended constraints on realistic biological models vary widely, and the in-
tegration of these constraints always improves our understanding of the biological systems under
study, such as the cell cycle model with its intricate checkpoints [17] or abstract regulatory models of
metabolism [16]. This can manifest itself in several key ways: (i) Enhanced Simplicity and Clarity: By
simplifying the model and reducing the degrees of freedom, the interactions between system com-



ponents become more transparent and comprehensible. (ii) Sharper Component Roles: With fewer
parameterizations, the roles of individual components are more sharply defined, aiding in decipher-
ing their contributions to the system’s behavior. (iii) Reduced Overfitting Risk: Imposing constraints
mitigates the risk of overfitting parameters to training data, as they must adhere to the predefined
constraints, enhancing the model’s generalizability. (iv) Highlighting Fundamental Mechanisms: The
imposed constraints guide themodel towards fewer potential dynamics, thereby spotlighting under-
lying fundamental mechanisms governing the system. These factors collectively contribute to amore
profound understanding of the biological system under investigation.
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