INFORMATIQUE, BIOLOGIE INTEGRATIVE ET SYSTEMES COMPLEXES

A Temporal Logic with Event
Clock Automata for Timed
Hybrid Petri Nets

Sylvie Troncale!, Jean-Paul Comet 2, Gilles

2
bernot
liBisc 2 Epigenomics Project
523 place des terrasses de I'Agora 523 place des terrasses de I'Agora
91000 Evry Cedex, France 91000 Evry Cedex, France

— Model-checking —

izﬁ\c

RESEARCH REPORT

NO IBISC-RR-2007-04
April 2007

IBISC, FRE 2873 CNRS - Université d’Evry Val d’Essonne, Geole
Tour Evry 2, 523 place des terrasses de I'’Agora
91000 Evry Cedex, France


logoIBISC.eps

Sylvie Troncale, Jean-Paul Comet, Gilles bernot
A Temporal Logic with Event Clock Automata for Timed Hybrid Petri Nets
18p.

Les rapports de recherche d’IBISC sont disponibles auxdtsriRostScriptet
PDF alURL:
http://ww. ibisc.univ-evry.fr/Viel TR

Research reports from IBISC are available in PostSérgotd PDF formats
at the URL:
http://ww. ibisc.univ-evry.fr/Viel TR

© April 2007 by Sylvie Troncale, Jean-Paul Comet, Gillesrogr


http://www.ibisc.univ-evry.fr/Vie/TR
http://www.ibisc.univ-evry.fr/Vie/TR

A Temporal Logic with Event Clock Automata
for Timed Hybrid Petri Nets

Sylvie Troncale, Jean-Paul Comet, Gilles bernot

Abstract

The Hybrid Functional Petri Nets (HFPN) formalism has alyeahown its convenience for
modelling biological systems. This class of models havanbaétfully applied in biology but
the remarkable expressiveness of HFPN often leads to inetenformal validations. In this
paper, we propose a formal logical framework for Timed Hgtitetri Nets (THPN), a sub-class
of HFPN. We propose an extension of Event Clock Logic dedit& THPN and a procedure to
convert a THPN into a real-time automaton. A small biolobinadel shows that our framework
allows us to formally prove properties by a well suited mectetcking procedure.






1 Introduction

Systems biology aims to a system-level understanding diuhetioning of a biological system
like the cell, taking into account not only molecular phemwora but also structuration of the
cells, communication channels and exchanges with thedsuspace. This global aim is now
conceivable thanks to the recent developments of genomlipastgenomic which enable iden-
tification of numerous genes and proteins. Neverthelesgricise role of each actor stays hard
to determine experimentally. Then, mathematical modgliman essential approach to study
complex biological processes. There exist numerous mnddtbrmalisms which allow differ-
ent evaluation techniques: simulation, proof, etc. TheridlyBunctional Petri Nets (HFPN}]
formalism offers a maximum of flexibility such that modedjiof discrete and continuous pro-
cesses or definition of consumed or produced quantity asaidmnof marking. This explain
why HFPN are well suited for simulation. Nevertheless, ilso necessary to verify that the
global system satisfies a behavioral property. This veti€inastep is difficult to perform on a
so expressive formalism since such an expressivenesspseiie application of general formal
or proof methods.

Since usual validation methods turned out to be unsuitabldfePN, we propose an original
procedure based on works of David and Al (Petri nets) and of Raskin and Schobbeb@] [
(satisfaction of temporal logic formulas). To tackle suchalidation step, we first reduce the
expressiveness of models, we focus on a sub-class of HFPMithectional aspects have been
removed: the Timed Hybrid Petri Nets (THPN).

In this paper, we describe continuous traces of THPN as &plart automaton, an Event
Clock automatond], based on a real time logic, the Event Clock lodi€][ This step needs to
define precisely the continuous models, the extended Evenk@®gic. THPN models can then
be transcripted via the evolution graph and some manipuisitand formulas in terms of Event
Clock automata. We then show how the introduction of suctabtime logic can be helpful in
the context of biological modelling. We study a simplified aebof amphibian metamorphosis
regulation p]. After having constructed the associated Event Clockraaton, we show that
classical approaches of verification of Event Clock logierfalas can be applied to prove that
the THPN model satisfies a particular temporal property.

This paper is organized as follows: Section 2 presents syartd semantics of our logic.
Definitions of a THPN and an evolution graph are sketched ati@®3. In Section 4, conversion
algorithms of an evolution graph into an Event Clock autamatre detailed. Finally, Section 5
sketches out a biological example before we discuss oultséalSection 6.

2 Continuous time logic

Syntax and semantics We define an extended syntax and semantics of Event Cloak[lodi
where atoms are extended to handle continuous and distnet@xecutions. We call it Contin-
uous Time Evolution Logic, CTEL for short. We first define satures which specify variables
and observable events abstracted by predicates.

Definition 1 A signature for CTEL is a couple = (V, Pr) whereV and Pr are respectively a



set of variables and a set of predicates.

Definition 2 Given a CTEL signatur& = (V, Pr), a continuous-time modél/ is defined by
asetr C Pr x RT and a functioni : (V ITR) x R™ — R (wherell stands for the disjoint
union) such that for any € R, and for anyt € R™, u(r,t) = r. The set of models defined on
the signature: is denoted by od(X).

We distinguish two kinds of atoms: instantaneous aten{®efinition 3) and atoms (Defini-
tion 6).

Definition 3 Aninstantaneous atomis an expression of the formy: > +/, p or their negations,
wherev,v" € (VIIR) andp € Pr.

Definition 4 The satisfaction relatiof=;, between a continuous-time model and an instan-
taneous atona at a timet; € Rt is defined as follows:

* M= piff (p,ti) e
* M ):ti v > iff M(U,ti) > :u(vlvti)
- M ):ti —Q, iff Mﬁtl «

An instantaneous atom can be timed thanks to the use of two clocks, the history cigck
and the prophecy cloci, [2]. The value of a history clock,, is the time elapsed since the last
occurrence ofv. The value of a prophecy clogk, is the time to wait for the next occurrence of
«. Introduction of the clocks:, andy, allows us to define the set of terms on the signakire
noted7s..

Definition 5 A term on a signaturé is either a variablev € V or a constantr € R or an
expression of the form,, (resp.y.) wherea is an instantaneous atom.

Definition 6 Given a signature: = (V, Pr), an atom is an expression of the form> »/, p or
their negations, where, ’ € Ty, andp € Pr, such that ifr (resp. ') is of the formz,, or y,,
the other term’ (resp.r) is necessarily an integer constant.

Definition 7 The set of well formed formulas aiy For(Y), is defined according to following
syntaxic rules 10]. A well formed formula is composed of atoms, boolean caivess-, V, A,
qualitative temporal operators Nextj, Previous ¢©), Until () and Since §) and of real-time
operators: predicting and history operators ( <):

@ == al~p|Op| © plp1 A palp1 V pa|
01U p2|p15¢2| <n @] o o

wherea is an atompq~e {=, <, >, <, >}, ¢, 1, p2 € For(¥) andnisinN C R.

Events observed during the execution of a continuous timdeincan be expressed by a
subset of well formed formulas.



Definition 8 The set of observations on the signatbres the subse®bs(X) of For(X) defined
as follows : ¢ := a|—¢|p1 A p2|p1 V2 Wherea is an atomyp, p1 andg, are observations.

During a continuous time model execution, observationsraade at different times which
define a time sequence.

Definition 9 A time sequencea is an infinite succession of timéswhich is strictly increasing
and divergent.

We now define a functioaval®?, which evaluates each term of a continuous mddebn a
time sequencaé.

Definition 10 Given aX-modelM and a time sequende, the function which evaluates each
termt in the modelM on the time sequendeg eval®, : Ts x || — R U { L}, where|h| is the
set of times irh is defined as follows :

s evall,(v,t;) = p(v,t;) wherev € (V IIR) andt; € R*

ti—t]‘ ifﬂtj,ogtj<ti‘M):thé
. eval%/[(aza,ti) = and Yy, t; <t <t;, MF¥; o
L otherwise

t]’ —t; if Htj, tj > tl'| M ):tj «

. eval%(ya,ti) = and Vi, t; < tp <tj, M ¥, o
1 otherwise

Definition 11 The satisfaction relatiorfz:{}ic Mod(X) x For(X) wheret; € |h|, is defined
inductively as follows:

o M }:Zpiff (p,t;) em

o M EL r > 1iff evall (rt;) > evally (7, t;)

o M E! —piff MEE o

o M E! o1 A iff M ] o1 and M =] oo

- MR Opiff MER o
M E! opiffi >0andM = ¢

« Ml oUpyiff 3t > t; | M} oo and ¥ty € [ti, 8], M =L o1
M R 1Sy iff 3t; € [0,ti] | M @ andVity, €t ti], M =L o1

© ML Danpiff 3t; >t [M =] andViy, €]t t;[, M ¥ pandt; —t; ~n
M L Qunpiff 3t5 € [0, |M ) ¢ andVty, €]t;,t;[, M ¥} pandt; —t; ~n



Discrete timed traces Continuous time models are difficult to represent in an absformal-
ism manipulable by a computer. We then focus on discretinaif continuous time evolutions.
We first define a satisfaction relation between a continuous model and a discrete timed
trace.

Definition 12 A timed trace is of the formi(y;, t;) }icn, Where thep; are observations and
h: = (t;)ien IS a time sequence. The satisfaction relation between alndddend a timed trace
7 is defined byM |= 7 iff Vi € N, M =7 ;.

We now define the satisfaction relation between timed trandsa CTEL formulap, denoted

&

Definition 13 Given a timed trace, a positioni € N and a CTEL formulap, 7 satisifes¢ at
the positioni, noted(r,i)& ¢ iff IM|M = 7 and M =]" ¢.

3 Formalization of THPN

We first define the THPN modelgl]| then present how the evolution of such models can be
represented by an evolution graph.

Definition 14 A Timed Hybrid Petri Net is a 7-tuplgP, 7, {, Pre, Post, mg, Tempo) where:

» P and7 are disjoint sets of places and transitions,

* (:PUT — {D,C} called “hybrid function,” indicates for every node whethéis a
discrete node or a continuous one.
Let TP (resp. PP) and T¢ (resp. P°) be the sets of discrete and continous transitions
(resp. places),

» Pre: PxT — RTUNisthe inputincidence application. Tf ¢ TP thenPre(P,T) € N
elsePre(P,T) € R.
LetT be the set of places preceding the transitband P = {T' € T|P € T},

e« Post : T x P — Rt UN is the output incidence application. ® < TP then
Post(T, P) € NelsePost(T, P) € RT.
LetT be the set of places succeeding to the transificend P = {T' € T|P € T'},

» mp : P — Rt UNis the initial marking. If? € PP thenmg(P) € N elsemq(P) € R*,

« Tempo is a function from the sef to the set of positive rational numbers.Tife 77,
Tempo(T) is a timing associated witl". It is noteddelay(T). If T € TC, m
represents the maximal firing speed associated Witn the sequel, it is noted (7).



Semantics intuition A discrete transitior?” is enabledif each placeP; € T satisfiesn(F;) >
Pre(P;,T). If the transitionT" stays enabled during the timkelay(T), it will be fired at the
end of this delayPre(P;, T') tokens are then removed from each plates 7' andPost(T', P;)
tokens are added to each transitiBh € 7. The marking can be sufficient to allow fewer
simultaneous firings. The number of allowed firings definestibling degreeBy definition,
T € TP is enabled if its enabling degree is not null.

A continuous transitiofi” is enabledf each placeP; € T satisfies eithem(P;) > Pre(P;,T)
if P; is adiscrete place, on(P;) > 0if P; is a continuous place. A continuous transition is fired
to its instantaneous firing speedT") such thatd < v(7") < V(T'). v(T') corresponds to the
maximal speed a transition can fire according to the curremkimg. By definition, 7’ ¢ T¢
is active if its instantaneous speed is not null. A flondfe(P;, T') x v(T') tokens are removed
from each place?; € T and a flow ofPost(T, P;) x v(T') tokens are added to each transition
PeT.

Evolution graph The behavior of a THPN can be represented by an evolutiorhgrapre-
sented by a Petri net]. Each place corresponds to an IB-state (invariant behataie) and
each transition is associated with an event (change of m@rkihose occurrence produces a
change from one IB-state to another. Such a transition cgnameur if an event belonging
to one of the following types takes place: the marking of atioomous place becomes zero
(C1-event), a discrete transition fires (D1-event) or thabéing degree of a discrete transition
changes because of the marking of a continuous place (D)eve

Intuitively, thei*" transition of the evolution graph, denoté*” is labelled with the set
Evt(TEF) of occured events, with time of the event occurrence and mihking of all con-
tinuous places. IB-states are annoted by marking of allrelisctransitions, by the vector of
enabling degrees and by the vector of instantaneous speed.

For constructing such an evolution graph, two restrictiaresimposed to THPN. First, the
marking of each plac& € P must be bounded. This restriction guarantees the algotitend.
Secondly, since the evolution graph represents a detestigibiehavior, one has to solve conflicts
which occur when the marking of a place is not sufficient tovalthe different transitions to
fire simultaneously. Generally, there are two ways for sg\vionflicts. Sharingproposes to
share resources between transitions according to a givemmsc (general case: stoichiometric
constants are then helpfull for determining sharing schewad priority ranks transitions and
gives limited resources according to the rarkg(catalytic phenomena).

Signature For constructing the Event Clock automaton related to a THEMNs first define
the signaturesign = (V, Pr) of a given THPN:

V is the following set of variablesn(P) represents the marking &f € P, v(T') represents the
instantaneous speed Bf ¢ T anddg(T) represents the enabling degreelbk T2,

Pr is the following set of predicates:

» Enable(T), Act(T): unary predicates associated with respectively enabliig @ 7"
and activation of € T,
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» Fire(T), NulMark(P): unary predicates associated with respectively a D1-euethia
Cl-event,

* Th(P,z): binary predicate associated with a D2-evéfithreshold)

* NoFEwt: predicate associated with the first transition of the eNamfugraph when no event
occurs.

4 Associated Event Clock Automaton
Let us first recall the definition of an Event Clock automatdh [

Definition 15 An Event Clock automaton on the signature sign is a 6-tdpte (L, Ly, At,C, E, F)
where :

» L is a finite set of locations anfly C L is the subset of start locations,

At is a set of atoms,

 Cis a set of history or prophecy clocks,

E is afinite set of edges. An edge is a triglit v, l3) wherel; € L is the source location,
Iy € Lis the target location, andb € Obs(sign) describes the state,

F ={F,..., F,} whereF; C L is a set of sets of accepting locations

Definition 16 A trace T = {(y;,ti)}ien IS recognized by an Event Clock automatdn=

(L, Lo, At,C, E, F) if there exists an infinite accepted computatipn= [ @»ll ¥y ...ln@
where:

e eachl; € L andly € Ly,

o (liy i, lig1) € Eand(7,i)6 ¢; with i, € Cl(p;) where the closur€'l(y;) is the set of
sub-formulas of;,

« for everyF; € F, there exists infinitely many positiopisuch that/; € F;.

Let us now define the satisfaction relation between an automend a timed trace, denoted.

Definition 17 The timed language of an Event Clock automatgrdenoted((A), is the set of
timed traces recognized by, L(A) = {7 | Ak 7}

We now introduce a procedure to transform an evolution gdpuced from a THPN) into
an Event Clock automaton. This procedure is composed ofdtaus, the first and the second
one constructing the set of locations, the third one det@ngithe initial and accepting locations
and the fourth one constructing edges.
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1- From IB-states to locations: Each IB-state of the evolution graph gives a location of the
Event Clock automaton. With each of these locations we #&soan observatiom; (I B;)
describing the THPN state during the whole time of the IBestaumbered. ¢;(IB;) has the
following form, whereval associates with a variable its current value and wHgz" ") !
corresponds to the interval bounded by the value of the woatis marking at the transitions

GE GE
777" and Ty

A (m(P) = val(m(P)))
pepD

N @(T) = val(u(T)))
A TeTc

A (dg(T) = val(dg(T))
TeTP

A (m(P) e [(TF)iH)
pPepPC

$1(1B;)

2- From transitions to locations: Each transition of the evolution graph also gives a locadion
the Event Clock automaton. With each of these locations weciate an observatiap, (77)
describing the THPN state when entering into the IB-statalmered;. @(TiGE) has then the
following form, whereval associates with a variable its current value. Note ihatepresents
the time elapsed since the last event occurs. This last @a@nbe eithetNoFEvt, Fire(T),
NulMark(P) or Th(P, r) andAt is the timing associated with the transitigjy”.

N\ aUB)
IB;eTFF

N e

# (TGE) _ A ecEvt(T)

2V =AA (m(P) = val(m(P)))

pepC
At=evt time

/\ (xle = At)

lecEvt(T)

3- Start and accepting locations:The start location is the location corresponding to the first
transition7*¥. The accepting locations are determined according if tiotuéien graph ends.

In case of deadlock, the accepting location is the locat@nesponding to the last IB-state. In
case of loopback (cycle), each location which correspomdsransition %) or to an IB-state
involved in the loopback is an accepting location.

4- Edges:There is an edge between two locations if there is an arc leetwes corresponding
IB-states or transitions in the evolution graph. Moreogach location obtained from an IB-state
loops to model the time of the IB-state. Finally, an edge oumg from a locatior is labelled
by the formula of the locatioh
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t=0 HEM (9.0;4.0;0.0)

Ty m(c)ﬂ 3.0 m (T4, D2, T3)

T4 D2

At =2l (3.0,4.0;6.0)
3 m(T3)=6
6 1(1)| 3.0 v(To)
T dg(Ty)

z!
At =1 g (0.0;4.0;3.0)
c T, m(T4)=0.0
2 (0)| 0.0

THPN Evolution graph
@ : continuous place Q : discrete place
Il discrete transition [ : continuous transition

Figure 1: The THPN of cellular cycle activation in amphibiaetamorphosis and its evolution
graph.

5 Biological illustration

Hindlimb growth during amphibian metamorphosis is indubgdriggering regulations respon-
sible for cellular cycle activation. Such regulations avatcolled by thyroid hormones]. The
active form of thyroid hormone (TH), denoted T3 is producemihf the inactive form T4 by the
enzymatic action of the deiodinase of type 2, denoted3p2/p2 + T4 — T3 + D2.

THPN model and evolution graph Each thyroid hormone (T3 and T4) as well as the enzyme
D2 are modelled by a continuous place representing theieecatdr concentrations (left part of
Figurel). Since the enzymatic reaction is a continuous phenomeherrgaction allowing D2
to transform T4 into T3 is modelled by the continuous traositl;. Since this reaction does
not consume D2, a test arc (dotted arc) is used. Parameteestimated from known kinetics
of T3, T4 [9] and D2 B].

The hindlimb growth is abstracted by the number of cellsolig represented by a discrete
place (C). Initially, there is a unique cell. The discretngition7) simulates cellular prolifera-
tion which occurs after mitosis time (deldayon 17).

The dynamic of the previous THPN model can be extracted bgtoacting the evolution
graph (right part of Figurd). Only two sets of events occur: at the tiche= 2 (At = 2) of
the THPN execution, the continuous place T3 reaches thshble of6.0 enabling the discrete
transition7; to fire and one time unit latetAt = 1), two events simultaneously occur: the
discrete transitiorT; fires and the continuous place T4 becomes empty, leadingdadatk of
the system.

Automaton construction The Event Clock automataoA,, is presented in Figur2. It is easy
to observe that traces df; correspond to the execution of the THPN.
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©1 A NoEvtA m(C) =
v(Ta) = 3A w(Ty) = 3/\
dg(T1) =0 dg(T1) =0
lo ll
Pl
@2 A Th(T3,6)A
T NoEvt = 2 Av(Th) =3
Adg(Ty) =1

@3 A NulMark(T4)
AFire(T1)A
TTh(T3,6) = 1N dg(Ty1) = 1A

dg(Ty) = OA v(T2) = 3A
v(Tg) = 0 m(C) =1
m(C) = 2A
v(T2) =0 A dg(Ty) =0

Figure 2. Event Clock automaton of the THPN model, denafigd.
(m(T4) = 9) A (m(D2) = 4) A (m(T3) = 0), 2 = (m(C) = 1) A (m(T4)
4) A (m(T3) = 6) andps = (m(C) =2) A (m(T4) = 0) A (m(D2) = 4) A (m(T3) = 3)

I
L~
>
=

)
B

Proof of a property Amound different kinds of properties, we focus here on dyiearof the
cellular cycle. In this section, we consider the followingerty: at a moment, a minimum
of three time units is necessary before the enzymatic mastiops. This biological property
enables biologists to estimate time of the metamorphogls krcan be translated into a CTEL
formula¢:

6= 0bss (v(Tz) =0) = ~0->23 (v(T2) = 0)

wherec means eventually and means always. The Event Clock automaton associated with
the negation of the studied property,.;, is then constructed by using the procedure detailed
in [10], see Figure3. Traces ofA_4 represent the set of timed traces which satisfy

The product automatod,, = Ay x A-4 is drawn in Figuret where only accepted compu-
tations and relevant labels are indicated on edges.

The language of the product automatdp can be proved to be empty by constructing its
region automaton as irLp, 1]. Intuitivelly, the language of the product automaton ispéyn
if one of its traces passes through an edge labelle@wb¥,) = 0) after three time units. In
fact, the history clocks oyt andzry,(13,6) (dashed box on Figur) count elapsed time. The
time constraints related to these clocks indicate thatttinee units elapse when the edge label
(v(Ty) = 0) is recognized by the automaton. It proves thatMhdanguage is empty. The Petri
net then satisfies the propextyi.e. at a moment of the biological process, more than three time
units will be required to observe the end of the enzymatictrea.

6 Discussion

Hybrid Functional Petri Nets5] constitute a powerfull framework to define formal models of
complex biological systems. Many rather large and compjatesns have already been mod-
elled using HFPN12]. Unfortunately,functions(the “F” of HFPN) offer such an expressive
power that they are the main obstacle to perféonmal proofson models defined using HFPN.
Other more restricted logical frameworks without funci@nd generally without explicit quan-
titative time [L1] are dedicated to precise aspects of biological systenth (@s genetic regula-
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tory networks). This kind of formalism offers automatedgfrprocedures. Unfortunately, when
defining formal models of biological systems, we often negalieit quantitative time and some

functions in order to fully address the biological problendaxpress the biological questions
in logical formulas.

Our (long term) motivation is consequently to offer autogagproof procedures for a signif-
icant sub-framework of HFPN. Transitions and functions iR being often continuous and
quantitative, the model checking procedure 1| [based on Event Clock Logic and products of
automata is promisingv.r.t our motivation. So, the work described in this article is atfgtep
toward our aim: it introduces a small extension of Event €lbogic and a compatible transla-
tion of THPN models into automata, which makes it possiblpedorm automated reasonings
on THPN models.

Future works in this vein include the development of a comepteodel checking procedure,
extended and exhaustive definition of the set of biologica#insible strategies to translate a
THPN into an automaton, and introduction of functions. Famteof these three points, the main
difficulties are the following.

To develop a complete model checking procedure compatilite aur extension of Event
Clock logic, it is necessary to accept product transitiaeled by different formulas provided
that the intersection of their domain is not empty.

The construction of evolution graph depends on the resmubf conflicts as mentioned
in section 3. Theoretically, this could lead to an infinité sededuced automata, except that
biologically, when a particular conflict is solved using &agi rule, this rule is deduced from
biochemical knowledge and has to be reused at each occeroétiais conflict.

Introduction of functions is the truly hard question. Fio$tall, functions may hide inter-
actions which are not shown in the graph, and this shouldlgéejuence the construction of
the automaton. Moreover, HFPN allow any form of mathembfigactions and obviously, to
maintain formal verification capabilities, the form of mathatical functions has to be carefully
restricted.

Our approach based on Event Clock logic gives an intereattegnative to hybrid extension
of classical model-checking] 7]. Event Clock logic seems to be well suited to add to THPN
more and more sophisticated functions.
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INFORMATIQUE, BIOLOGIE INTEGRATIVE ET SYSTEMES COMPLEXES

A Temporal Logic with Event Clock
Automata for Timed Hybrid Petri Nets

Sylvie Troncale, Jean-Paul Comet, Gilles bernot

Abstract

The Hybrid Functional Petri Nets (HFPN) formalism has algeahown its convenience for
modelling biological systems. This class of models havanlfaétfully applied in biology but
the remarkable expressiveness of HFPN often leads to inedenformal validations. In this
paper, we propose a formal logical framework for Timed Hgti®etri Nets (THPN), a sub-class
of HFPN. We propose an extension of Event Clock Logic dedat& THPN and a procedure to
convert a THPN into a real-time automaton. A small biolobinadel shows that our framework
allows us to formally prove properties by a well suited mectetcking procedure.
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