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A Temporal Logic with Event Clock Automata
for Timed Hybrid Petri Nets

Sylvie Troncale, Jean-Paul Comet, Gilles bernot

Abstract

The Hybrid Functional Petri Nets (HFPN) formalism has already shown its convenience for
modelling biological systems. This class of models have been fruitfully applied in biology but
the remarkable expressiveness of HFPN often leads to incomplete formal validations. In this
paper, we propose a formal logical framework for Timed Hybrid Petri Nets (THPN), a sub-class
of HFPN. We propose an extension of Event Clock Logic dedicated to THPN and a procedure to
convert a THPN into a real-time automaton. A small biological model shows that our framework
allows us to formally prove properties by a well suited model-checking procedure.





1 Introduction

Systems biology aims to a system-level understanding of thefunctioning of a biological system
like the cell, taking into account not only molecular phenomena but also structuration of the
cells, communication channels and exchanges with the outside space. This global aim is now
conceivable thanks to the recent developments of genomic and postgenomic which enable iden-
tification of numerous genes and proteins. Nevertheless, the precise role of each actor stays hard
to determine experimentally. Then, mathematical modelling is an essential approach to study
complex biological processes. There exist numerous modelling formalisms which allow differ-
ent evaluation techniques: simulation, proof, etc. The Hybrid Functional Petri Nets (HFPN) [5]
formalism offers a maximum of flexibility such that modelling of discrete and continuous pro-
cesses or definition of consumed or produced quantity as a function of marking. This explain
why HFPN are well suited for simulation. Nevertheless, it isalso necessary to verify that the
global system satisfies a behavioral property. This verification step is difficult to perform on a
so expressive formalism since such an expressiveness prevents the application of general formal
or proof methods.

Since usual validation methods turned out to be unsuitable on HFPN, we propose an original
procedure based on works of David and Alla [4] (Petri nets) and of Raskin and Schobbens [10]
(satisfaction of temporal logic formulas). To tackle such avalidation step, we first reduce the
expressiveness of models, we focus on a sub-class of HFPN where functional aspects have been
removed: the Timed Hybrid Petri Nets (THPN).

In this paper, we describe continuous traces of THPN as a particular automaton, an Event
Clock automaton [2], based on a real time logic, the Event Clock logic [10]. This step needs to
define precisely the continuous models, the extended Event Clock logic. THPN models can then
be transcripted via the evolution graph and some manipulations and formulas in terms of Event
Clock automata. We then show how the introduction of such a real time logic can be helpful in
the context of biological modelling. We study a simplified model of amphibian metamorphosis
regulation [6]. After having constructed the associated Event Clock automaton, we show that
classical approaches of verification of Event Clock logic formulas can be applied to prove that
the THPN model satisfies a particular temporal property.

This paper is organized as follows: Section 2 presents syntax and semantics of our logic.
Definitions of a THPN and an evolution graph are sketched in Section 3. In Section 4, conversion
algorithms of an evolution graph into an Event Clock automaton are detailed. Finally, Section 5
sketches out a biological example before we discuss our results in Section 6.

2 Continuous time logic

Syntax and semantics We define an extended syntax and semantics of Event Clock logic [10],
where atoms are extended to handle continuous and discrete time executions. We call it Contin-
uous Time Evolution Logic, CTEL for short. We first define signatures which specify variables
and observable events abstracted by predicates.

Definition 1 A signature for CTEL is a coupleΣ = (V, Pr) whereV andPr are respectively a
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set of variables and a set of predicates.

Definition 2 Given a CTEL signatureΣ = (V, Pr), a continuous-time modelM is defined by
a setπ ⊂ Pr × R

+ and a functionµ : (V ∐ R) × R
+ → R (where∐ stands for the disjoint

union) such that for anyr ∈ R, and for anyt ∈ R
+, µ(r, t) = r. The set of models defined on

the signatureΣ is denoted byMod(Σ).

We distinguish two kinds of atoms: instantaneous atomsα (Definition 3) and atoms (Defini-
tion 6).

Definition 3 An instantaneous atomα is an expression of the form:v ≥ v′, p or their negations,
wherev, v′ ∈ (V ∐ R) andp ∈ Pr.

Definition 4 The satisfaction relation|=ti between a continuous-time modelM and an instan-
taneous atomα at a timeti ∈ R

+ is defined as follows:

• M |=ti p iff (p, ti) ∈ π

• M |=ti v ≥ v′ iff µ(v, ti) ≥ µ(v′, ti)

• M |=ti ¬α, iff M 2ti α

An instantaneous atomα can be timed thanks to the use of two clocks, the history clockxα
and the prophecy clockyα [2]. The value of a history clockxα is the time elapsed since the last
occurrence ofα. The value of a prophecy clockyα is the time to wait for the next occurrence of
α. Introduction of the clocksxα andyα allows us to define the set of terms on the signatureΣ,
notedTΣ.

Definition 5 A term on a signatureΣ is either a variablev ∈ V or a constantr ∈ R or an
expression of the formxα (resp.yα) whereα is an instantaneous atom.

Definition 6 Given a signatureΣ = (V, Pr), an atom is an expression of the formr ≥ r′, p or
their negations, wherer, r′ ∈ TΣ andp ∈ Pr, such that ifr (resp. r′) is of the formxα or yα,
the other termr′ (resp.r) is necessarily an integer constant.

Definition 7 The set of well formed formulas onΣ, For(Σ), is defined according to following
syntaxic rules [10]. A well formed formula is composed of atoms, boolean connectives¬, ∨, ∧,
qualitative temporal operators Next (#), Previous (⊖), Until (U ) and Since (S) and of real-time
operators: predicting and history operators (�, �):

ϕ ::= a|¬ϕ|#ϕ| ⊖ ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|
ϕ1Uϕ2|ϕ1Sϕ2| �∼n α| �∼n α,

wherea is an atom,∼∈ {=, <,>,≤,≥}, ϕ, ϕ1, ϕ2 ∈ For(Σ) andn is in N ⊂ R.

Events observed during the execution of a continuous time model can be expressed by a
subset of well formed formulas.
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Definition 8 The set of observations on the signatureΣ is the subsetObs(Σ) ofFor(Σ) defined
as follows : ϕ ::= a|¬ϕ|ϕ1 ∧ϕ2|ϕ1 ∨ϕ2 wherea is an atom,ϕ, ϕ1 andϕ2 are observations.

During a continuous time model execution, observations aremade at different times which
define a time sequence.

Definition 9 A time sequenceh is an infinite succession of timesti which is strictly increasing
and divergent.

We now define a functionevalhM which evaluates each term of a continuous modelM on a
time sequenceh.

Definition 10 Given aΣ-modelM and a time sequenceh, the function which evaluates each
term t in the modelM on the time sequenceh, evalhM : TΣ × |h| → R ∪ {⊥}, where|h| is the
set of times inh is defined as follows :

• evalhM (v, ti) = µ(v, ti) wherev ∈ (V ∐ R) andti ∈ R
+

• evalhM (xα, ti) =





ti − tj if ∃tj, 0 ≤ tj < ti|M |=tj α

and ∀tk, tj < tk < ti, M 2tk α

⊥ otherwise





• evalhM (yα, ti) =





tj − ti if ∃tj, tj > ti|M |=tj α

and ∀tk, ti < tk < tj, M 2tk α

⊥ otherwise





Definition 11 The satisfaction relation|=h
ti
⊂ Mod(Σ) × For(Σ) whereti ∈ |h|, is defined

inductively as follows:

• M |=h
ti
p iff (p, ti) ∈ π

• M |=h
ti
r ≥ r′ iff evalhM (r, ti) ≥ evalhM (r′, ti)

• M |=h
ti
¬ϕ iff M 2

h
ti
ϕ

• M |=h
ti
ϕ1 ∧ ϕ2 iff M |=h

ti
ϕ1 andM |=h

ti
ϕ2

• M |=h
ti

#ϕ iff M |=h
ti+1

ϕ

M |=h
ti
⊖ϕ iff i > 0 andM |=h

ti−1
ϕ

• M |=h
ti
ϕ1Uϕ2 iff ∃tj ≥ ti |M |=h

tj
ϕ2 and∀tk ∈ [ti, tj[, M |=h

tk
ϕ1

M |=h
ti
ϕ1Sϕ2 iff ∃tj ∈ [0, ti] |M |=h

tj
ϕ2 and∀tk ∈]tj, ti], M |=h

tk
ϕ1

• M |=h
ti

�∼nϕ iff ∃tj > ti |M |=h
tj
ϕ and∀tk ∈]ti, tj [,M 2

h
tk
ϕ andti − tj ∼ n

M |=h
ti

�∼nϕ iff ∃tj ∈ [0, ti[ |M |=h
tj
ϕ and∀tk ∈]tj, ti[,M 2

h
tk
ϕ andtj − ti ∼ n
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Discrete timed traces Continuous time models are difficult to represent in an abstract formal-
ism manipulable by a computer. We then focus on discretization of continuous time evolutions.
We first define a satisfaction relation between a continuous time model and a discrete timed
trace.

Definition 12 A timed trace is of the form{(ϕi, ti)}i∈N, where theϕi are observations and
hτ = (ti)i∈N is a time sequence. The satisfaction relation between a model M and a timed trace
τ is defined by:M |= τ iff ∀i ∈ N, M |=hτ

ti
ϕi.

We now define the satisfaction relation between timed tracesand a CTEL formulaφ, denoted
〈∼.

Definition 13 Given a timed traceτ , a positioni ∈ N and a CTEL formulaφ, τ satisifesφ at
the positioni, noted(τ, i)〈∼ φ iff ∃M |M |= τ andM |=hτ

ti
φ.

3 Formalization of THPN

We first define the THPN models [4], then present how the evolution of such models can be
represented by an evolution graph.

Definition 14 A Timed Hybrid Petri Net is a 7-tuple(P,T , ζ, Pre, Post,m0, T empo) where:

• P andT are disjoint sets of places and transitions,

• ζ : P ∪ T → {D,C} called “hybrid function,” indicates for every node whetherit is a
discrete node or a continuous one.

Let TD (resp. PD) andTC (resp. PC) be the sets of discrete and continous transitions
(resp. places),

• Pre : P×T → R
+∪N is the input incidence application. IfT ∈ TD thenPre(P, T ) ∈ N

elsePre(P, T ) ∈ R
+.

LetT be the set of places preceding the transitionT andP = {T ∈ T |P ∈ T},

• Post : T × P → R
+ ∪ N is the output incidence application. IfT ∈ TD then

Post(T, P ) ∈ N elsePost(T, P ) ∈ R
+.

LetT be the set of places succeeding to the transitionT andP = {T ∈ T |P ∈ T},

• m0 : P → R
+ ∪N is the initial marking. IfP ∈ PD thenm0(P ) ∈ N elsem0(P ) ∈ R

+,

• Tempo is a function from the setT to the set of positive rational numbers. IfT ∈ TD,
Tempo(T ) is a timing associated withT . It is noteddelay(T ). If T ∈ TC , 1

Tempo(T )

represents the maximal firing speed associated withT . In the sequel, it is notedV (T ).
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Semantics intuition A discrete transitionT is enabledif each placePi ∈ T satisfiesm(Pi) ≥
Pre(Pi, T ). If the transitionT stays enabled during the timedelay(T ), it will be fired at the
end of this delay.Pre(Pi, T ) tokens are then removed from each placePi ∈ T andPost(T, Pj)
tokens are added to each transitionPj ∈ T . The marking can be sufficient to allow fewer
simultaneous firings. The number of allowed firings defines the enabling degree. By definition,
T ∈ TD is enabled if its enabling degree is not null.

A continuous transitionT isenabledif each placePi ∈ T satisfies eitherm(Pi) ≥ Pre(Pi, T )
if Pi is a discrete place, orm(Pi) > 0 if Pi is a continuous place. A continuous transition is fired
to its instantaneous firing speedv(T ) such that0 ≤ v(T ) ≤ V (T ). v(T ) corresponds to the
maximal speed a transition can fire according to the current marking. By definition,T ∈ TC

is active if its instantaneous speed is not null. A flow ofPre(Pi, T )× v(T ) tokens are removed
from each placePi ∈ T and a flow ofPost(T, Pj) × v(T ) tokens are added to each transition
Pj ∈ T .

Evolution graph The behavior of a THPN can be represented by an evolution graph, repre-
sented by a Petri net [4]. Each place corresponds to an IB-state (invariant behavior state) and
each transition is associated with an event (change of marking) whose occurrence produces a
change from one IB-state to another. Such a transition can only occur if an event belonging
to one of the following types takes place: the marking of a continuous place becomes zero
(C1-event), a discrete transition fires (D1-event) or the enabling degree of a discrete transition
changes because of the marking of a continuous place (D2-event).

Intuitively, the ith transition of the evolution graph, denotedTGEi is labelled with the set
Evt(TGEi ) of occured events, with time of the event occurrence and withmarking of all con-
tinuous places. IB-states are annoted by marking of all discrete transitions, by the vector of
enabling degrees and by the vector of instantaneous speed.

For constructing such an evolution graph, two restrictionsare imposed to THPN. First, the
marking of each placeP ∈ P must be bounded. This restriction guarantees the algorithmto end.
Secondly, since the evolution graph represents a deterministic behavior, one has to solve conflicts
which occur when the marking of a place is not sufficient to allow the different transitions to
fire simultaneously. Generally, there are two ways for solving conflicts. Sharingproposes to
share resources between transitions according to a given schema (general case: stoichiometric
constants are then helpfull for determining sharing schema). And priority ranks transitions and
gives limited resources according to the ranks (e.g.catalytic phenomena).

Signature For constructing the Event Clock automaton related to a THPN, let us first define
the signaturesign = (V, Pr) of a given THPN:

V is the following set of variables.m(P ) represents the marking ofP ∈ P, v(T ) represents the
instantaneous speed ofT ∈ TC anddg(T ) represents the enabling degree ofT ∈ TD,

Pr is the following set of predicates:

• Enable(T ), Act(T ): unary predicates associated with respectively enabling of T ∈ TD

and activation ofT ∈ TC ,
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• Fire(T ),NulMark(P ): unary predicates associated with respectively a D1-eventand a
C1-event,

• Th(P, x): binary predicate associated with a D2-event,(Threshold)

• NoEvt: predicate associated with the first transition of the evolution graph when no event
occurs.

4 Associated Event Clock Automaton

Let us first recall the definition of an Event Clock automaton [2].

Definition 15 An Event Clock automaton on the signature sign is a 6-tupleA = (L,L0, At, C, E,F)
where :

• L is a finite set of locations andL0 ⊆ L is the subset of start locations,

• At is a set of atoms,

• C is a set of history or prophecy clocks,

• E is a finite set of edges. An edge is a triplet(l1, ψ, l2) wherel1 ∈ L is the source location,
l2 ∈ L is the target location, andψ ∈ Obs(sign) describes the state,

• F = {F1, ..., Fn} whereFi ⊆ L is a set of sets of accepting locations

Definition 16 A trace τ = {(ϕi, ti)}i∈N is recognized by an Event Clock automatonA =

(L,L0, At, C, E,F) if there exists an infinite accepted computationγ = l0
ψ0
→ l1

ψ1
→ ...ln

ψn
→ ...

where:

• eachli ∈ L and l0 ∈ L0,

• (li, ψi, li+1) ∈ E and(τ, i)〈∼ ψi with ψi ∈ Cl(ϕi) where the closureCl(ϕi) is the set of
sub-formulas ofϕi,

• for everyFi ∈ F , there exists infinitely many positionsj such thatlj ∈ Fi.

Let us now define the satisfaction relation between an automaton and a timed traceτ , denoted|≈.

Definition 17 The timed language of an Event Clock automatonA, denotedL(A), is the set of
timed traces recognized byA, L(A) = {τ | A|≈ τ}

We now introduce a procedure to transform an evolution graph(deduced from a THPN) into
an Event Clock automaton. This procedure is composed of foursteps, the first and the second
one constructing the set of locations, the third one determining the initial and accepting locations
and the fourth one constructing edges.
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1- From IB-states to locations: Each IB-state of the evolution graph gives a location of the
Event Clock automaton. With each of these locations we associate an observationφ1(IBi)
describing the THPN state during the whole time of the IB-state numberedi. φ1(IBi) has the
following form, whereval associates with a variable its current value and whereI(TGE)i+1

i

corresponds to the interval bounded by the value of the continuous marking at the transitions
TGEi andTGEi+1 .

φ1(IBi) ≡ ∧

























∧

P∈PD

(m(P ) = val(m(P )))

∧

T∈TC

(v(T ) = val(v(T )))

∧

T∈TD

(dg(T ) = val(dg(T ))

∧

P∈PC

(m(P ) ∈ I(TGE)i+1
i )

























2- From transitions to locations: Each transition of the evolution graph also gives a locationof
the Event Clock automaton. With each of these locations we associate an observationφ2(T

GE
i )

describing the THPN state when entering into the IB-state numberedi. φ2(T
GE
i ) has then the

following form, whereval associates with a variable its current value. Note thatxle represents
the time elapsed since the last event occurs. This last eventcan be eitherNoEvt, Fire(T ),
NulMark(P ) or Th(P, x) and∆t is the timing associated with the transitionTGEi .

φ2(T
GE
i ) ≡ ∧





























∧

IBi∈T
GE
i

φ1(IBi)

∧

e∈Evt(T )

e

∧

P∈PC

(m(P ) = val(m(P )))

∆t=evt time
∧

le∈Evt(T )

(xle = ∆t)





























3- Start and accepting locations:The start location is the location corresponding to the first
transitionTGE0 . The accepting locations are determined according if the evolution graph ends.
In case of deadlock, the accepting location is the location corresponding to the last IB-state. In
case of loopback (cycle), each location which corresponds to a transition (TGE) or to an IB-state
involved in the loopback is an accepting location.

4- Edges:There is an edge between two locations if there is an arc between the corresponding
IB-states or transitions in the evolution graph. Moreover,each location obtained from an IB-state
loops to model the time of the IB-state. Finally, an edge outgoing from a locationl is labelled
by the formula of the locationl.
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1

: continuous place : discrete place

9.0 4.0

0.0 T3

6

2

C

T4 D2

t=0

0.0

1 (1)

1 (0)

2 (0)

m(T3)=6

3.0

3.0

m(T4)=0.0

THPN Evolution graph

: discrete transition : continuous transition

v(T2) = 3.0

T2

T1

(0.0; 4.0; 3.0)

(3.0; 4.0; 6.0)

(9.0; 4.0; 0.0)

∆t = 2

∆t = 1

T1

v(T2)

m(T4, D2, T3)
m(C)

dg(T1)

Figure 1: The THPN of cellular cycle activation in amphibianmetamorphosis and its evolution
graph.

5 Biological illustration

Hindlimb growth during amphibian metamorphosis is inducedby triggering regulations respon-
sible for cellular cycle activation. Such regulations are controlled by thyroid hormones [6]. The
active form of thyroid hormone (TH), denoted T3 is produced from the inactive form T4 by the
enzymatic action of the deiodinase of type 2, denoted D2 [3]: D2 + T4 → T3 +D2.

THPN model and evolution graph Each thyroid hormone (T3 and T4) as well as the enzyme
D2 are modelled by a continuous place representing their molecular concentrations (left part of
Figure1). Since the enzymatic reaction is a continuous phenomenon,the reaction allowing D2
to transform T4 into T3 is modelled by the continuous transition T2. Since this reaction does
not consume D2, a test arc (dotted arc) is used. Parameters are estimated from known kinetics
of T3, T4 [9] and D2 [3].

The hindlimb growth is abstracted by the number of cells, which is represented by a discrete
place (C). Initially, there is a unique cell. The discrete transitionT1 simulates cellular prolifera-
tion which occurs after mitosis time (delay1 onT1).

The dynamic of the previous THPN model can be extracted by constructing the evolution
graph (right part of Figure1). Only two sets of events occur: at the timet = 2 (∆t = 2) of
the THPN execution, the continuous place T3 reaches the threshold of6.0 enabling the discrete
transitionT1 to fire and one time unit later (∆t = 1), two events simultaneously occur: the
discrete transitionT1 fires and the continuous place T4 becomes empty, leading to a deadlock of
the system.

Automaton construction The Event Clock automatonAM is presented in Figure2. It is easy
to observe that traces ofAM correspond to the execution of the THPN.

petri2.pstex
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l0 l1 l2

l5 l4 l3
xT h(T3,6) = 1∧

dg(T1) = 0∧

v(T2) = 0

dg(T1) = 1∧

v(T2) = 3∧

m(C) = 1

∧F ire(T1)∧

ϕ3 ∧ NulMark(T4)

m(C) = 2∧

v(T2) = 0 ∧ dg(T1) = 0

m(C) = 1∧

v(T2) = 3∧

dg(T1) = 0

ϕ2 ∧ Th(T 3, 6)∧

∧dg(T1) = 1

dg(T1) = 0

v(T2) = 3∧

ϕ1 ∧ NoEvt∧

xNoEvt = 2 ∧ v(T2) = 3

Figure 2: Event Clock automaton of the THPN model, denotedAM . ϕ1 ≡ (m(C) = 1) ∧
(m(T 4) = 9) ∧ (m(D2) = 4) ∧ (m(T 3) = 0), ϕ2 ≡ (m(C) = 1) ∧ (m(T 4) = 3) ∧ (m(D2) =
4) ∧ (m(T 3) = 6) andϕ3 ≡ (m(C) = 2) ∧ (m(T 4) = 0) ∧ (m(D2) = 4) ∧ (m(T 3) = 3)

Proof of a property Amound different kinds of properties, we focus here on dynamics of the
cellular cycle. In this section, we consider the following property: at a moment, a minimum
of three time units is necessary before the enzymatic reaction stops. This biological property
enables biologists to estimate time of the metamorphosis end. It can be translated into a CTEL
formulaφ:

φ ≡ ⋄ �≥3 (v(T2) = 0) ≡ ¬2¬ �≥3 (v(T2) = 0)

where⋄ means eventually and2 means always. The Event Clock automaton associated with
the negation of the studied property,A¬φ, is then constructed by using the procedure detailed
in [10], see Figure3. Traces ofA¬φ represent the set of timed traces which satisfy¬φ.

The product automatonAp = AM ×A¬φ is drawn in Figure4 where only accepted compu-
tations and relevant labels are indicated on edges.

The language of the product automatonAp can be proved to be empty by constructing its
region automaton as in [10, 1]. Intuitivelly, the language of the product automaton is empty
if one of its traces passes through an edge labelled by(v(T2) = 0) after three time units. In
fact, the history clocksxNoEvt andxTh(T3,6) (dashed box on Figure4) count elapsed time. The
time constraints related to these clocks indicate that three time units elapse when the edge label
(v(T2) = 0) is recognized by the automaton. It proves that theAp language is empty. The Petri
net then satisfies the propertyφ, i.e. at a moment of the biological process, more than three time
units will be required to observe the end of the enzymatic reaction.

6 Discussion

Hybrid Functional Petri Nets [5] constitute a powerfull framework to define formal models of
complex biological systems. Many rather large and complex systems have already been mod-
elled using HFPN [12]. Unfortunately,functions(the “F” of HFPN) offer such an expressive
power that they are the main obstacle to performformal proofson models defined using HFPN.
Other more restricted logical frameworks without functions and generally without explicit quan-
titative time [11] are dedicated to precise aspects of biological systems (such as genetic regula-

am2.pstex
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tory networks). This kind of formalism offers automated proof procedures. Unfortunately, when
defining formal models of biological systems, we often need explicit quantitative time and some
functions in order to fully address the biological problem and express the biological questions
in logical formulas.

Our (long term) motivation is consequently to offer automated proof procedures for a signif-
icant sub-framework of HFPN. Transitions and functions in HFPN being often continuous and
quantitative, the model checking procedure of [10] based on Event Clock Logic and products of
automata is promisingw.r.t our motivation. So, the work described in this article is a first step
toward our aim: it introduces a small extension of Event Clock Logic and a compatible transla-
tion of THPN models into automata, which makes it possible toperform automated reasonings
on THPN models.

Future works in this vein include the development of a complete model checking procedure,
extended and exhaustive definition of the set of biologically sensible strategies to translate a
THPN into an automaton, and introduction of functions. For each of these three points, the main
difficulties are the following.

To develop a complete model checking procedure compatible with our extension of Event
Clock logic, it is necessary to accept product transitions labeled by different formulas provided
that the intersection of their domain is not empty.

The construction of evolution graph depends on the resolution of conflicts as mentioned
in section 3. Theoretically, this could lead to an infinite set of deduced automata, except that
biologically, when a particular conflict is solved using a given rule, this rule is deduced from
biochemical knowledge and has to be reused at each occurrence of this conflict.

Introduction of functions is the truly hard question. Firstof all, functions may hide inter-
actions which are not shown in the graph, and this should deeply influence the construction of
the automaton. Moreover, HFPN allow any form of mathematical functions and obviously, to
maintain formal verification capabilities, the form of mathematical functions has to be carefully
restricted.

Our approach based on Event Clock logic gives an interestingalternative to hybrid extension
of classical model-checking [8, 7]. Event Clock logic seems to be well suited to add to THPN
more and more sophisticated functions.
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A Temporal Logic with Event Clock
Automata for Timed Hybrid Petri Nets
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Abstract

The Hybrid Functional Petri Nets (HFPN) formalism has already shown its convenience for
modelling biological systems. This class of models have been fruitfully applied in biology but
the remarkable expressiveness of HFPN often leads to incomplete formal validations. In this
paper, we propose a formal logical framework for Timed Hybrid Petri Nets (THPN), a sub-class
of HFPN. We propose an extension of Event Clock Logic dedicated to THPN and a procedure to
convert a THPN into a real-time automaton. A small biological model shows that our framework
allows us to formally prove properties by a well suited model-checking procedure.
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