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tThe Z-value is an attempt to estimate the statisti
al signi�
an
e of a Smith & Wa-terman dynami
 alignment s
ore (H-s
ore) through the use of a Monte-Carlo pro
edure.In this paper, we give an approximation for the Z-value law dedu
ed from the Pois-son 
lumping heuristi
 developped by Waterman and Vingron (Waterman and Vingron,1994) in the 
ase of i.i.d. sequen
es 
omparison. As for non-gapped alignment s
ores,our approximation is of Gumbel type but with parameters whi
h are sequen
e indepen-dent. This result makes 
lear the related experimental results mentionned by Comet etal. (Comet et al., 1999).Using \quasi-real" sequen
es (i.e. randomly shu�ed sequen
es of the same lengthand amino a
id 
omposition as the real ones) we investigate the revelan
e of our ap-proximation result. Sin
e the Monte-Carlo approa
h we use generates a bias for theGumbel de
ay parameter estimation, a 
orre
tion pro
edure is proposed.Appli
ations to real sequen
es are 
onsidered and we show how our results 
an beused to dete
t the potential biologi
al relationships between real sequen
es.
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Introdu
tionSequen
es 
omparison has be
ome a 
entral notion in modern mole
ular biology. To eval-uate the similarity between two sequen
es, a lot of indi
es are now available, allowingglobal alignments and gapped or ungapped lo
al alignments. The Smith and Watermanalgorithm (Smith and Waterman, 1981) answers exhaustivly to the question of the sear
hof the alignments with the best s
ore. Most of other approa
hes are based on heuristi
s.The Smith and Waterman algorithm �nds the best lo
al gapped alignments between twosequen
es, leading to an alignment s
ore that 
an be used as a basis for determining apossible homology. The statisti
al signi�
an
e of su
h a s
ore, however, is a 
ru
ial prob-lem. In this respe
t, two ways of resear
h have been explored in the last years and maybe brie
y summarized as follows : the �rst one is based on known results 
on
erning non-gapped alignments (Alts
hul et al., 1990), looking for possible extensions that mimi
 theseresults (Waterman and Vingron, 1994) or exhibiting relevant s
ore approximation whoseproperties are related to the ungapped 
ase (Mott and Tribe, 1999); the se
ond one is basedon simulation results, using a shu�ing pro
edure and a parti
ular statisti
s 
alled Z-value(Lipman et al., 1984; Landes et al., 1992; Slonimski and Brouillet, 1993). In a re
ent paperComet et al. (Comet et al., 1999) proposed an experimental study of the Z-value statisti
s.In parti
ular, these authors surmised that the high Z-value distribution di�ers for ran-domly shu�ed sequen
es and for real sequen
es respe
tively. In the �rst 
ase, they showedthat a Gumbel law �ts well the data, but it seems that in the se
ond 
ase, the same law�ts poorly. As a 
onsequen
e the introdu
tion of another extreme value distribution wassuggested leading to a biologi
al interpretation of the asso
iated 
uto� value (see Cometand al. (1999) for details). The aim of the present paper is to pre
ise and to highlightthese experimental results. For i.i.d random sequen
es, using the Waterman and Vingronapproa
h (Waterman and Vingron, 1994), we �rst show that the asymptoti
 distribution ofthe Z-values 
an be approximated by a parti
ular Gumbel law, with �xed parameters. Forrandomly shu�ed sequen
es, we 
hara
terise the bias introdu
ed by the shu�ing methodand we propose a 
orre
tion pro
edure allowing to interpret the asso
iated Z-value on thebasis of the Waterman and Vingron approa
h. We show that the empiri
al data based onshu�ed sequen
es �t well the proposed model.In the 
ase of real sequen
es, the Z-value asymptoti
 distribution appears to be of thesame type as that for shu�ed sequen
es (Gumbel law) but with other parameters. In otherwords, the Poisson 
lumping heuristi
 does not explain 
ompletely the observed distributionof Z-value for real sequen
es.This arti
le is organised as follows. The �rst se
tion de�nes the Z-value variable, fol-lowing Comet et al. (Comet et al., 1999). The se
ond se
tion is devoted to the asymptoti
approximation for the Z-values distribution under the hypothesis of random sequen
es 
om-parison. The third se
tion fo
uses on testing the approximation law for shu�ed sequen
es.A 
orre
tion pro
edure for the parameters estimation is proposed in order to take into a
-
ount the shu�ing indu
ed bias. This pro
edure is then applied to real sequen
es. Se
tionfourth gives an overview of the advantages related to the Z-value approa
h.1 The Z-value statisti
sLet X and Y be two sequen
es and 
onsider the 
orresponding maximum lo
al alignments
ore H(X;Y) based on the Smith and Waterman algorithm (Smith and Waterman, 1981).We suppose here that the penality fun
tion for 
onse
utive gaps has been well 
hosenin order to 
hara
terize aligning subsequen
es whi
h have more similarity than randomsequen
es. Su
h a kind of s
ore is usually refered as s
ore with parameters in the logarithmi
3



region : for details see (Arratia and Waterman, 1994; Waterman and Vingron, 1994). Inorder to evaluate a p-value for the (X;Y) 
omparison, we 
onsider the 
orresponding Z-value variable : Z(X;Y) = H(X;Y)�E(H(X;Y))�H(X;Y)where E(H(X;Y)) and �H(X;Y) stand respe
tively for the expe
tation and the standarddeviation of H(X;Y).2 Asymptoti
 approximation for the Z-value distributionSuppose that X = X1 : : :Xn and Y = Y1 : : : Ym are two random sequen
es where Xi andYj are independant and identi
ally distributed. Waterman and Vingron (Waterman andVingron, 1994) proposed a pra
ti
al pro
edure to assign statisti
al signi�
an
e for the Xand Y 
omparison based on H , whi
h 
an be summarized as follows : an approximatedp-value for the X and Y 
omparison 
an be a
hieved using 1� e�
mnpH(X;Y) where 
 andp are two parameters to be estimated.The Waterman and Vingron result (Waterman and Vingron, 1994) is based on the approx-imation : P �H(X;Y)< t = lognmj logpj + 
� ' e�
mnpt (1)whi
h extends the Poisson approximation presented by Karlin and Alts
hul for generals
oring s
heme without indels (Karlin and Alts
hul, 1990).The approximation (1) has been obtained as a result of the following two stages :(a) A Poisson approximation for the optimal lo
al s
ore distribution using the Aldous
lumping heuristi
 (Aldous, 1989) : for m and n suÆ
iently largeP �H(X;Y)< t = logmnj logpj + 
� ' e��pt (2)where � � �(X;Y) and p � p(X;Y) are two positive parameters (this 
orrespond tothe assumptions (A1) and (A2) of the Waterman and Vingron approa
h).(b) A normalization related to the di�erent lengths of the sequen
es by setting � = 
mn.Now, from relation (2) we dedu
e that, for m and n suÆ
iently largeP �H(X;Y)� lognmj logpj < 
� ' exp � exp �j log pj 
+ log �mn� �j log pj !!!whi
h states that the distribution of H(X;Y)� lognmj logpj 
an be approximated, for m and nsuÆ
iently large, by a Gumbel distribution with parameters � log �mn� �j log pj and 1j log pj , sayH(X;Y)� lognmj logpj D� G � log �mn� �j log pj ; 1j log pj! :4



Using well known results related to the Gumbel distribution we 
an dedu
e the two followingapproximations : E(H(X;Y))' K + log�j logpj (3)where K = 0; 57721.. denotes the Euler's 
onstant and�2H(X;Y) ' �26(log p)2 (4)It is then straightforward to obtain an approximation for the law of the Z(X;Y) variable :for m and n suÆ
iently large, and under assumption (a), we have :H(X;Y)�E(H(X;Y))�H(X;Y) D� p6j log pj� G(� Kj logpj ; 1j logpj) (5)whi
h 
an be stated as �p6Z(X;Y) D� G(�K; 1): (6)In other words our approximation is sequen
e independent : in (6), the approximationof the Z-value distribution does not depend on sequen
es length and 
omposition. It iswell known that su
h a property is not veri�ed when dealing with the H-s
ore (Comet,1998, and referen
es therein). While the length dependen
y of alignment s
ores has beenextensively dis
ussed in the literature (Arratia and Waterman, 1989; Arratia et al., 1986;Arratia et al., 1989; Arratia et al., 1990; Arratia and Waterman, 1994; Dembo and Karlin,1991a; Dembo and Karlin, 1991b; Karlin and Alts
hul, 1990; Karlin et al., 1990; Karlin andDembo, 1992; Goldstein and Waterman, 1992; Goldstein and Waterman, 1994; Waterman,1994b; Waterman, 1994a; Waterman and Vingron, 1994), there are no results yet available
on
erning the sequen
e 
omposition dependen
y. Note that the normalization des
ribedabove, eq. (b), whi
h is an attempt to take into a

ount the di�erent lengths of the 
onsid-ered sequen
es, seems to be poorly �tted in most of the pra
ti
al situations (Waterman andVingron, 1994), leading to 
onservative p-values. From these di�erent fa
ts, the Z-value is
learly of interest. But the diÆ
ulty now 
omes from a pra
ti
al point of view : how 
anwe obtain a dire
t evaluation of the Z-values ? The idea is to use a shu�ing pro
edure aspresented in Comet et al. (Comet et al., 1999) whi
h seems to be well adapted to simulaterandom sequen
es with the same amino a
id 
omposition than the initial ones. We 
omputetwo di�erent Z-values 
Z1(X;Y) and 
Z2(X;Y) by shu�ing the �rst and se
ond sequen
esrespe
tively, and therefore 
hoose the minimum to estimate Z(X;Y), whi
h 
orreponds toa 
onservative approa
h.Remember that the basi
 assumption here is that X and Y are both i.i.d. randomsequen
es. The most natural way to test our approximation law would be to generate a lotof i.i.d. random sequen
es in order to work with. Sin
e our approximation is obtained asa parti
ular 
onsequen
e of the well-known Waterman and Vingron result (Waterman andVingron, (1994)), but under the only assumptions (A1) and (A2), it seems reasonable tothink that our result would be validate for i.i.d. sequen
es 
omparison. From a pra
ti
alpoint of view, the i.i.d. assumption is 
learly unrealisti
 (and that is why only very small p-value are 
onsidered to 
hara
terize signi�
antH-s
ore values). But there are no theoriti
alresults allowing to appre
iate how robust is the Waterman and Vingron approa
h or howrobust is our Gumbel approximation with regards to this i.i.d. assumption. Even if we5



know that a deviation from the Gumbel approximation is systemati
 for the Z-value whenworking on real sequen
es, we also may hope that the deviation remains still slight inthe 
ase of sequen
es whi
h do not exhibit parti
ular stru
ture similarity, as for the i.i.d.
ase. A la
k of robustness for our approximation result regarding to the i.i.d. assumptionwould 
learly be a major drawba
k for pra
ti
al appli
ations. In order to appre
iate therobustness of our result we de
ide to test our approximation on shu�ing sequen
es buildfrom real ones. Su
h sequen
es are not i.i.d. but do not exhibit any parti
ular stru
turee�e
t and do not represent any more any biologi
al phenomenon. In a 
ertain sense, su
htype of sequen
es allows to mimi
 properties related to alignment s
ores for i.i.d. sequen
es.For an easy implementation in pra
ti
e, it is fundamental that our approximation remainsstill valid in the 
ase of shu�ing sequen
es 
omparisons be
ause it ensures a possibility tobuild, from our approximation, a dis
rimination test between real sequen
es whi
h presentsigni�
ant similarities from real sequen
es whi
h do not have stronger similarities than i.i.d.ones. That is why we de
ide to test the validity of our approximation law on sequen
esdedu
ed from real ones by shu�ing. Sin
e no biologi
al links are present in these sequen
es,we 
learly hope that our approximation �ts well with the related Z-value observations.In the sequel we 
onsider two sets of sequen
es des
ribed in (Comet et al., 1999): the setof real sequen
es and the set of \quasi-real" sequen
es whi
h designate sequen
es obtainedby shu�ing real ones. Appart from its amino-a
id 
omposition whi
h 
orresponds to a real
ase, no parti
ular stru
ture is introdu
ed in \quasi-real" sequen
es. \Quasi-real" sequen
eswill be shu�ed many times to evaluate the Z-value leading to a set of results for quasi-real sequen
e alignments. We shall see �rst that for su
h a set a dire
t appli
ation of ourapproximation leads to a bad �t. A 
orre
tion pro
edure taking a

ount the bias indu
edby the shu�ing approa
h, will be proposed. Having then a good �t for su
h sequen
es
losed to random sequen
es, we will apply the whole pro
edure on the set of real sequen
es.3 Testing the approximation on quasi-real and real data sets3.1 Parameters estimation for the Gumbel lawThe distribution fun
tion of a Gumbel G(�; Æ) variable (say T ) is given by :P (T � x) = exp��exp���x� �Æ ��� ; x 2 RUsually the �rst parameter is 
alled the de
ay parameter and the se
ond one the 
hara
ter-isti
 value.To evaluate the relevan
e of our Gumbel G(�Kp6=�;p6=�) approximation (eq. 6),we 
onsider three di�erents Z-value samples des
ribed below. Parameter estimations willbe performed using the maximum likelihood method (see e.g. Johnson and Kotz, 1970) ondi�erent samples.Data Des
ription : A �rst databank of 16 956 sequen
es is built from �ve 
ompletelysequen
ed genomes (see (Comet et al., 1999) for details). Then we build a \quasi-real"sequen
e databank 
ontaining the shu�ed versions of ea
h of the real sequen
es. We 
om-pute the Z-value between the �rst sequen
e of this databank and the se
ond one, betweenthe se
ond one and the third one and so on. We obtain 16 955 Z-values. But in su
h asample, there are some dependen
ies. To break them we divide this previous sample intotwo smaller samples :� The �rst sequen
e against the se
ond one, the third against the fourth and so on.This sample has 8 478 Z-values. 6



� The se
ond sequen
e against the third, the fourth against the �fth and so on. Thissample has 8 477 Z-values.The table 1 gives the values of the maximum likelihood estimators for these two samples.Another smaller sample is 
onsidered in order to appre
iate the possible e�e
t of the samplesize. This one is built from Sa

haromy
es 
erevisiae : we 
hose 1000 sequen
es at randomand shu�ed ea
h of them. In the same way we 
omputed the Z-values between the �rstsequen
e and the se
ond one, between the third one and the fourth one and so on.Tab. 1 Results : The results seem to be slightly di�erent from those expe
ted, espe
ially for thede
ay parameter �. Apart from the bias resulting from the maximum likelihood estimation,two possible explanations for these somewhat disappointing results may be explored : the�rst one deals with the quality of the Gumbel distribution approximation and the se
ondone 
on
erns the dire
t evaluation of the Z-values, in other words the role of the shu�ingpro
ess.Sin
e the approximation (5) is nothing more than a simple 
onsequen
e of the earlierWaterman and Vingron approa
h (Waterman and Vingron, 1994), there are no parti
ularreasons to 
all it into question. However, the shu�ing method may have a parti
ular e�e
ton the required estimations of E(H(X;Y)) and �2H(X;Y). A detailed study is presentedbelow.3.2 Shu�ing pro
ess and estimation biasThe two parameters � � �(X;Y) and p � p(X;Y) 
onsidered in the Poisson approximation(eq. 1) are of di�erent nature. In the i.i.d. 
ase, the p parameter does depend on the letterpositions in ea
h sequen
e, whi
h is 
learly related to the sequen
e 
ompositions. At theopposite the � parameter seems to be dependent not only on the lengths but also on thestru
ture of the sequen
es. Sin
e the shu�ing pro
edure breaks down the stru
tures butsaves the sequen
e 
ompositions, it seems natural to 
onsider that a possible e�e
t of theshu�ing pro
edure should parti
ularly a�e
t the � parameter. As a 
onsequen
e, if wesuppose that the shu�ing pro
ess is applied to Y, for all 
omparisons (X;Yi)i=1::N , thep(X;Yi) parameters 
an be 
onsidered as a 
onstant p while the role of the �(X;Yi)parameters must be taken into a

ount.For a parti
ular sequen
e 
omparison (X;Yi), under (5), we then haveH(X;Yi) D� log�(X;Yi)j logpj + �j log pjwhere � is a Gumbel G(0; 1) variable.It follows that j logpj E(H2(X;Y))' K + 1N log NYi=1�(X;Yi)!where H2(X;Y) = 1N PNi=1H(X;Yi).Using (3), we obtainj logpj �E(H(X;Y))� E(H2(X;Y))�' log�(X;Y)� 1N log NYi=1 �(X;Yi)! (7)7



whi
h 
hara
terises the bias estimation for the mean when shu�ing Y.Sin
e p6� j logpj �H(X;Y)�H2(X;Y)� = p6� j log pj (H(X;Y)�E(H(X;Y)))+p6� j log pj �E(H(X;Y))�H2(X;Y)� (8)we dedu
e from (7) that for N large enough
Z2 � Z + p6� log �(X;Y)�QNi=1 �(X;Yi)�1=N � Z + a2 (9)where a2 designates a 
onstant value. Note that if 8i �(X;Yi) � �(X;Y), then a2 = 0.When shu�ing the sequen
e X, the same type of result holds and we �nally have :bZ = min(
Z1;
Z2) � Z + a (10)where a = p6� min�log �(X;Y)�QNi=1 �(X;Yi)�1=N ; log �(X;Y)�QNi=1 �(Xi;Y)�1=N �:Clearly the observed la
k of �t between our Gumbel model and the results of ourapproximation may be simply related to the shu�ing pro
ess. This problem is analyzed inthe following and a bias redu
tion pro
edure is proposed.3.3 Bias redu
tionConsider the probability integral transform:U = exp(�exp(�Z � �0Æ0 )) (11)where �0 = �Kp6=� and Æ0 = p6=�. U is then uniformly distributed on [0; 1℄.Quasi-real sequen
es : From data on \quasi-real" sequen
es the probability integraltransform allows us to estimate the bias on de
ay parameter �0 using a QQ-plot approa
h.Ordering all probability integral transformed points U(1) � U(2) � � � � � U(N), we haveE(U(i)) = i=N + 1. Let us 
onsider the � iN+1 ; U(i)� points. These points should be a
-
umulated 
lose to the �rst bise
ting line. To in
rease the resolution we use the log logtransformation, and we 
onsider �Æ0 log�� log� iN + 1��+ �0; bZ(i)! (12)If our approximation is 
orre
t, all points are expe
ted to be 
lose to the line y = x. Ifthe slope of the QQ-plot is near 1, the inter
ept of linear regression gives an approximationa0 for the bias a. If the slope is far from 1, our approximation (5) should be 
alled intoquestion.We present below the QQ-plot for only the �rst sample 
omposed of 8478 alignments (see�g. 1-A). Similar graphi
s are observed with the se
ond and third samples.8



Fig. 1 In order to test our G(�0; Æ0) we then 
onsider the eZ-value de�ned by a 
orre
tion onthe shu�ing estimations : eZ = bZ � a0. As shown in �gure 1-B, the Gumbel distributionG(�0; Æ0) seems graphi
ally to be a good approximation of the law of the Z-value.Table 2 gives the maximum likelihood estimation results when using the 
orre
ted Z-value estimations.Tab. 2 The results now obtained are 
lose to the expe
ted values, whi
h supports the validityof our asymptoti
 approximation.Real sequen
es : The Gumbel approximation 
on
erns the 
omparisons between i.i.d.random sequen
es, that is, without an intrinsi
 stru
ture. As already noted when 
onsider-ing real sequen
es, this underlying hypothesis will never be stri
tly satis�ed, and in pra
ti
alsituations, deviations from the Gumbel law may be observed even for real sequen
es thathave no biologi
al relationships. As a 
onsequen
e the same approa
h as the one used forquasi-real sequen
es should be irrelevant.� A �rst way is to 
onsider that the bias value a0 obtained from quasi-real sequen
es
an be used for real sequen
es 
omparisons. In su
h a 
ase there are two possibilities :one 
an use an "universal" value for a estimated on a very large set of quasi-realsequen
es or one 
an implement for the real sequen
es under 
onsideration the wholepro
edure whi
h �rst build the asso
iated quasi-real databank on whi
h a0 will be
omputed. In both 
ases the variable will be : eZ = bZ � a0.� A se
ond way may be to 
onsider that the bias value a 
annot be 
orre
tly estimated :the only information we have is given by the bZ-values. But if the shu�ing number islarge enough, we have a0 � 0. The reason is that the �(X;Y)-fun
tion de
reases asa fun
tion of the X and Y similarity : under the null hypothesis of iid sequen
es, the
loser X and Y are, the lower is the P-value. Using Poisson approximation (2) oneexpe
ts that �(X;Yi) � �(X;Y) for ea
h i. In su
h a 
ase our approximation leadsto 
onservative 
on
lusions.In the sequel we will 
onsider that the bias a is well approximated and we will 
omputeeZ with the value a = a0.Databank s
anning : Several new 
hallenges arise when a query sequen
e is used to s
ana databank. All general databanks are build up of sequen
es that are widely di�erent inlength. These databanks in
lude some sequen
es of the same family, and even dupli
atedsequen
es. Certainly, the iid model for real sequen
es fails. To remove the e�e
ts of dupli
a-tion of sequen
es we 
onstru
ted a protein database whi
h in
luded only one representativesequen
e from ea
h protein family. The input data were taken from the databank des
ribedin Park and Tei
hman (Park and Tei
hmann, 1998)1 retaining only one sequen
e from ea
h
luster built from E. Coli. This bank 
ontains 618 non-redondant sequen
es.We 
hoose now one of these sequen
es (EC1003) and 
ompare it against all other se-quen
es 
omputing all eZ-values. The QQ-plot of these data is shown in �gure 2. The model�ts well with the empiri
al data on real sequen
es although the eZ-values for a databanks
anning does not 
onstitute a sample sin
e the query sequen
e is shared by all alignments.This sequen
e represents the link between ea
h alignment.Fig. 2 1http://www.mr
-lmb.
am.a
.uk:80/genomes/ 9



Global genome analysis : Now that many 
omplete genomes have been sequen
ed, oneextensive resear
h domain deals with the 
lassi�
ation of sequen
es from the same or fromdi�erent genomes.In su
h 
ases we are looking for biologi
al links whi
h are due to the dupli
ation phe-nomenom. The hypothesis of independent sequen
es 
annot be veri�ed. To build 
lustersof sequen
es the �rst stage is to 
ompute all the pairewise 
omparison indi
es, and to in-du
e a dissimilarity matrix. Sin
e the number of sequen
es is too large to simply apply
lassi
al 
lassi�
ation methods, one often separate sequen
es in a �rst level of 
lusters bysingle linkage 
lustering. In ea
h 
luster a hierar
hi
al analysis 
an be performed.For su
h a goal the most important point is to have a global index whi
h does not dependon individual sequen
es, espe
ially on individual sequen
e length. In this problemati
s theZ-value 
an be useful.From the 
omplete genome from Sa

haromy
es 
erevisiae we randomly 
hose 1000sequen
es. This database has been shu�ed to build a quasi-real sequen
es databank. Onboth sets of sequen
es (quasi-real and real) all pairewise 
omparisons have been performedand all pairewise bZ-values 
omputed and 
orre
ted. Figure 3 shows the probability integraltransform for both sets of non independent eZ-values.Fig. 3 Despite the dependen
y between the H(X;Y) s
ores, the Gumbel distribution �ts wellin the 
ase of quasi-real sequen
e 
omparisons. In the 
ase of real sequen
es one noti
e atotally di�erent behavior : the observed eZ-values signi�
atively deviate from the Gumbellaw as earlier noti
ed in (Comet et al., 1999). For smaller values the Gumbel model seemsto be valid. The 
ut-o� value v may be related to the 0:9999 quantile of the G��Kp6� ; p6� �distribution whi
h is about 6:7. Note that this threshold supports the empiri
al thresholdused by biologists : in pra
ti
e the value 8 allows them to determine if an alignment isbiologi
ally signi�
ant or not.4 Con
lusionThis arti
le gives a frame to justify the use of simulations to evaluate the signi�
an
e ofgapped alignments. It is well known that the Smith-Waterman s
ore law depends on lengthand amino a
id 
omposition of sequen
es. This study shows that the asymptoti
 law ofthe Z-value is sequen
e independent, whi
h is fundamental parti
ularly when analyzing
omplete genomes.In pra
ti
al appli
ations, one 
an observe a deviation of the Z-values from the initialGumbel distribution. This divergen
e from the asymptoti
 approximation law highlightsthe biologi
al links : if an empiri
al Z-value is greater than a 
uto� 2, the null hypothesisof random sequen
es is reje
ted, whi
h means that we may 
on
lude to the existen
e of abiologi
al link.In other words all 
on
lusions based on simulations are interpretable, sin
e the asymptoti
law of Z-value is independent of sequen
es. Only the shu�ing pro
ess 
an introdu
e a bias,whi
h is evaluated by the exposed method. This frame gives a new view on the 20 yearsold method for a
hieving the signi�
an
e of gapped alignment.2For details, see (Comet et al., 1999) 10



Referen
esAldous, D. (1989). Probability Approximations via the Poisson Clumping Heuristi
.Springer, New York.Alts
hul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basi
 lo
alalignment sear
h tool. J. Mol. Biol., 215:403{410.Arratia, R., Gordon, L., and Goldstein, L. (1989). Two moments suÆ
e for Poisson ap-proximations : the Chen-Stein method. Ann. Prob., 17:9{25.Arratia, R., Gordon, L., and Waterman, M. S. (1986). An extreme value theory for sequen
emat
hing. Ann. Stat., 14:971{993.Arratia, R., Gordon, L., and Waterman, M. S. (1990). The Erdos-Renyi law in distributionfor 
oin tossing and sequen
e mat
hing. Ann. Stat., 18:539{570.Arratia, R. and Waterman, M. S. (1989). The Erdos-Renyi strong law for pattern mat
hingwith a given proportion of mismat
hes. Ann. Prob, 17:1152{1169.Arratia, R. and Waterman, M. S. (1994). A phase transition for the s
ore in mat
hingrandom sequen
es allowing deletions. Ann. appl. Prob., 4:200{225.Comet, J.-P. (1998). Programmation dynamique et alignements de s�equen
es biologiques.PhD thesis, Universit�e de Compi�egne, Fran
e.Comet, J.-P., Aude, J.-C., Gl�emet, E., Risler, J.-L., H�enaut, A., Slonimski, P., and J.-J.,Codani (1999). Signi�
an
e of Z-value statisti
 of Smith-Waterman s
ores for proteinalignments. Comput. Chem., 23:317{331.Dembo, A. and Karlin, S. (1991a). Strong limit laws of empiri
al fun
tionals for largeexeeden
es of partial sums of i. i.d. variables. Ann. Prob., 19:1737{1755.Dembo, A. and Karlin, S. (1991b). Strong limit theorems of empiri
al distributions for largesegmental ex
eedan
es of partial sums of Markov variables. Ann. Prob., 19:1756{1767.Goldstein, L. and Waterman, M. S. (1992). Poisson, 
ompound Poisson and pro
ess ap-proximations for testing statisti
al signi�
an
e in sequen
e 
omparisons. Bull. Math.Biol., 54(5):785{812.Goldstein, L. and Waterman, M. S. (1994). Approximations to pro�le s
ore distributions.J. Comput. Biol., 1(2):93{104.Johnson, N. L. and Kotz, S. (1970). Distribution in statisti
s : Continuous univariatedistributions - 1. The Houghton Mi�in Series in statisti
s.Karlin, S. and Alts
hul, S. F. (1990). Methods for assessing the statisti
al signi�
an
e ofmole
ular sequen
e features by using general s
oring s
hemes. Pro
. Natl. A
ad. S
i.USA, 87:2264{2268.Karlin, S. and Dembo, A. (1992). Limit distributions of maximal segmental s
ore amongMarkov-dependent partial sums. Ann. Appl. Prob., 24:113{140.Karlin, S., Dembo, A., and Kawabata, T. (1990). Statisti
al 
omposition of high-s
oringsegments from mole
ular sequen
es. Ann. Stat., 18:571{581.11



Landes, C., H�enaut, A., and Risler, J.-L. (1992). A 
omparaison of several similarity indi
esbused in the 
lassi�
ation of protein sequen
es: a multivariate analysis. Nu
l. A
idsRes., 20(14):3631{3637.Lipman, D. J., Wilbur, W. J., Smith, T. F., and Waterman, M. S. (1984). On the statisti
alsigni�an
e of nu
lei
 a
id similarities. Nu
l. A
ids Res., 12:215{226.Mott, R. and Tribe, R. (1999). Approximate Statisti
s of Gapped Alignment. J. Comput.Biol., 6(1):91{112.Park, J. and Tei
hmann, S. A. (1998). Div
lus: an automati
 method in the geanfammerpa
kage that �nds homologous domains in single- and multi-domain proteins. Bioin-formati
s, 14:144{150.Slonimski, P. P. and Brouillet, S. (1993). A database of 
hromosome III of sa

haromy
es
erevisiae. Yeast, 9:941{1029.Smith, T. F. and Waterman, M. S. (1981). Identi�
ation of 
ommon mole
ular subse-quen
es. J. Mol. Biol., 147:195{197.Waterman, M. S. (1994a). Estimating statisti
al signi�
an
e of sequen
e alignments. Phil.Trans. R. So
. Lond. B, 344:383{390.Waterman, M. S. (1994b). The statisti
al signi�
an
e of lo
al alignement s
ore. Te
hni
alreport, University of Southern California, USA.Waterman, M. S. and Vingron, M. (1994). Sequen
e 
omparison signi�
an
e and Poissonapproximation. Stat. S
i., 9(3):367{381.

12



� Æ8478 Z-values �0:549 0:7896778477 Z-values �0:527 0:789987500 Z-values �0:535 0:796190Gumbel model �Kp6=� = �0:45 p6=� = 0:7797Table 1: Gumbel maximum likelihood estimations. � and Æ are the de
ay pa-rameter and the 
hara
teristi
 value of the Gumbel law.� Æ8478 Z-values �0:454 0:7896688477 Z-values �0:432 0:789974500 Z-values �0:441 0:796196Gumbel model �Kp6=� = �0:45 p6=� = 0:7797Table 2: Gumbel maximum likelihood estimations - 
orre
ted bZ-values. � andÆ are the de
ay parameter and the 
hara
teristi
 value of the Gumbel law.
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Figure 1: QQ-plot on quasi-real sequen
es (�rst sample : 8478 alignments) :Figure A : QQ-plot of bZ-valuesFigure B : QQ-plot of the 
orre
ted bZ-values : eZ = bZ � a0The graphi
 A allows to approximate the 
orre
tion a0 indu
ed by the shu�ingpro
edure (see text). 14
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~Figure 3: QQ-plot on two sets built on Yeast genome (�gure B is a zoom of�gure A).Real sequen
es : 1000 real sequen
es have been 
hoosen at random in the
omplete genome of Sa

haromy
es 
erevisiae. All pairewise Z-values havebeen 
omputed (499500 Z-values).Quasi real sequen
es : 1000 quasi real sequen
es have been built byshu�ing the above real sequen
es. The 499500 Z-values have been 
omputed.For real sequen
es we observed a behavior di�erent from that for quasi-realones. For real sequen
es 94 Z-values are greater than 50.16


