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Abstract

The existing methods for alignments are based on edition costs computed additionnally po-
sition by position, according to a fixed substitution matrix : a substitution always has the same
weight regardless of the position. Nevertheless the biologist favours any similitudes according
to his knowledge of structures or functions of the sequences. In the particular case of proteins,
we present a method consisting in making other information, such as patterns of the databank
prosite, operate in the classical dynamic programming algorithm. The method consists in mak-
ing an alignment by dynamic programming taking a decision not only letter by letter as in the
Smith & Waterman algorithm but also by giving a reward when aligning patterns.

keywords: Dynamic programming, Sequence alignment, prosite,
Databank scanning.

Introduction

Sequence comparison has become a central notion in modern molecular biology. It aims at gen-
erating by induction some information by comparing a new sequence to all sequences in anno-
tated databanks. The alignment of two sequences allows to figure out different zones of simi-
larity which are present in both sequences. To evaluate their similarity, a lot of methods are
now available, allowing global alignments [Needleman and Wunsch, 1970] and gapped or ungapped
local alignments[Smith and Waterman, 1981a, Smith and Waterman, 1981b]. The Smith & Wa-
terman algorithm [Smith and Waterman, 1981b] answers exactly to the question of the search of
the alignments with the best score. It finds one among the best local gapped alignments. It leads
to an alignment score that can be used as a basis for determining a possible homology. Most
of other approaches are based on heuristics[Lipman and Pearson, 1985, Karlin and Altschul, 1990,
Altschul et al., 1997].

All these different algorithms use a substitution matrix independent of the position. The edi-
tion cost is additive position by position with a fixed substitution matrix and a fixed function for
gap penalties. But when the biologist makes an alignment without computer, he favours some
similitudes depending on his knowledge on structures and/or functions of sequences. In the case of
proteins he tries to put in correspondence patterns which are known to be pertinent for the consid-
ered sequences. To explore this direction, some extension of the dynamic programming algorithm
of Smith & Waterman have been developped in order to simulate a non-homogeneous substitution
matrix. Wilbur and Lipman [Wilbur and Lipman, 1984] have presented a general frame for evaluat-
ing subsitution depending on the context. The main reason for introducing the context dependence
is that biological mutations appear in a non-uniform way along the sequences [Lewin, 1990]. This
implies a non-uniform distribution of the exact matches in the sequence alignments : there are
regions where exact matches are more concentrated. On the other hand, if we align two random
sequences which are independent and uniformly distributed, one observes that the exact matches
are uniformly distributed [Huang, 1994]. Then an alignment with 5 consecutive exact matches is
more significant than another alignment with 5 non consecutive exact matches. Huang also presents
an algorithm taking into account the context favouring exact match if this one appears in a well
conserved region.

We present here an alignment method which take into account the non-homogeneity of se-
quences. This heterogeneity comes from information not present in primary sequences. This
method implements the dynamic programming which takes into account some information linked
to biological “pattern”. Typically one thinks to protein sequences and functional patterns like these
described in the databank prosite[Hofmann et al., 1999]. One would like to favour the alignment
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of patterns but one cannot impose it because this can outcome to impossibilities : if both sequences
share two different patterns but in different order, the alignment of one pattern makes impossible
the second alignment. This case could result from an inversion process during evolution.

Our method proceeds like the Smith & Waterman algorithm [Smith and Waterman, 1981b] by
dynamic programming letter by letter, attributing a supplementary bonus/reward when patterns
are matched. The first step is to determine the occurrences of databank patterns in both sequences
with a classical “pattern-matching” algorithm. If one or more patterns are shared by both se-
quences, the second step implements a new dynamic algorithm for which the decision space has
been widened : for each couple of position indices (i, j) which corresponds to the end of an align-
ment of two occurrences of the same pattern, one has the possibility of aligning patterns weighting
this new path.

In the first section we show that the Smith & Waterman algorithm does not always align patterns
in the predicted alignment. Several behaviours are observed depending on status of occurrences.
Then the proposed method can improve results of the dynamic programming. The second focuses
on the algorithm called SWP (Smith & Waterman algorithm with patterns). We decompose the
algorithm in two parts : the first one consists in aligning two occurences of the same pattern
respecting the matches in the motif, the second one is the general dynamic programming loop
modified to take into account the possibility of aligning occurrences of patterns. The third section
shows results of our algorithm in large scale environment : the observed distribution of aligned
occurrences respects our expectation. The larger the weight, the more occurrences are aligned.
We tested also our algorithm in databank scanning, and observed that SWP makes clearer some
relationships between sequences. This algorithm has been tested on all patterns from the databank
prosite which are present in the protein databank Swissprot Rel. 35. When both sequences share
several patterns the algorithm allows to bind two similarity zones which are very far from each
other.

1 Smith & Waterman alignments and Prosite patterns

1.1 Prosite patterns

prosite consists of a database of biologically significant sites and patterns formulated in such
a way that with appropriate computational tools it can rapidly and reliably identify to which
known family of protein (if any) the new sequence belongs. The databank prosite is a database
of functionnal patterns determined by regular expression. In this databank there are also other
descriptions of biological function (Matrix, Rules). In the prosite databank one can found 1275
patterns, 56 matrices and 4 rules. But here we will only consider pattern data.

Between all these patterns we eliminated some patterns because they appear very frequently
in the protein databank Swissprot Rel. 35. These non-informative patterns which have been
eliminated are :
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Pattern prosite Occurrence number associated regular expression
in Swissprot

PS00001 141147 N-P-[ST]-P

PS00004 42117 [RK](2)-x-[ST]

PS00005 332212 [ST]-x-[RK]

PS00006 377147 [ST]-x(2)-[DE]

PS00008 372978 G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}
PS00009 23386 x-G-[RK]-[RK]

PS00013 7969 {DERK}(6)-[LIVMFWSTAG](2)-[LIVMFYSTAGCQ]-[AGS]-C

PS00016 4152 R-G-D

PS00029 4007 L-x(6)-L-x(6)-L-x(6)-L

Some of them are very short and often appear without the associated biological function. After
elimination the databank consists of 1266 patterns.

To manipulate the prosite databank several tools are available. For example ProfileScan
uses the method of Gribskov et al. [Gribskov et al., 1988] to find structural and sequence motifs in
protein sequences. ProSearch [Kolakowski et al., 1992] allows direct searching of regular expressions
on protein sequences, and for that purpose the prosite patterns must be translated into Unix-style
regular expressions. ScanProsite allows to scan a sequence for the occurrence of prosite patterns
from Swissprot or TrEMBL [Bairoch and Apweiler, 1997] - for the occurrence of patterns stored in
the prosite database, and also allows to scan Swissprot and TrEMBL with a particular pattern.

Patterns are a certain characterization of biological properties shared by all sequences in a
protein family. Nevertheless a pattern can appear in a protein without the associated biological
property being expressed. Sequences which share the regular expression but not the biological
property are called false positive, they are indexed in the prosite databank. In the same way
some sequences share the biological property but do not present the regular expression. These
sequences are called false negative, they generally are not indexed in the database.

In the sequel, we will use the UNIX syntax for regular expression and the classical algorithm for
regular expression recognition, regexp. Every character represents one occurence of the character.
The character “.” stands for every character, the logical “or” is written “—”, “[...]” stands for
every charcater present in the bracket and “[ˆ...]” stands for every character not present in the
bracket. “ˆ” and “$” represent the beginning and the end of the sequence. Finally “*”, “+” have
the classical significations.

For example, the regular expression “ˆ[ˆA][BC]A∗B.” describes strings which are at the begin-
ning of the line, of which the first letter is not “A” followed by “B” or “C” and by a certain number
of “A” and ending with a “B” followed by another letter.

1.2 Does Smith & Waterman algorithm align patterns ?

Since we are looking for sequence alignments taking into account the information brought by
prosite pattern, we naturally verify first that the classical Smith & Waterman alignment does
not always match patterns shared by both sequences.

In order to test this fact, one has to separate five types of sequences sharing a particular pattern.
All these five types are annotated in the DR line of each entry of prosite :

1. The true positives (annotated by T) are sequences presenting the regular expression mod-
eling the pattern and which belong also to the biological family associated with the pattern.

2. The false negative (annotated by N) are sequences which belong to the family under con-
sideration, but which have not been picked up by the regular expression.
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Figure 1: Distribution of patterns from prosite Rel. 14.0
(true positives) according to the number of patterns which
are not aligned by dynammic programming. The databank
is Swissprot Rel. 35. For the first coordinate value 0, one
observes 556 patterns. For these 556 motifs, the classical
dynamic programming aligns by default both occurrences of
patterns (both sequences are true positive).

Sequences which do not belong to the set under consideration and do not present the regular
expression, will be called true negatives.

3. The false positives (annotated by F) are sequences sharing the regular expression but which
do not belong to the family.

4. The potential sequences (annotated by P) are the false negatives which do not present the
regular expression because the region(s) that are used as a ’fingerprint’ (pattern or profile) is
not yet available in the data bank (partial sequence).

5. Finally the unknown (annotated by “ ?”) are sequences for which one does not know whether
they belong to the family or not.

For each type which presents the regular expression, we present the statistical behavior of the Smith
& Waterman algorithm.

1.2.1 True Positives

We want to know if the classical dynamic programming algorithm does or does not align true
positives. Figure 1 shows the distribution of patterns from databank prosite Rel. 35 according to
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the number of aligned patterns divided by the total number of possible alignments. In other words
for each pattern of the databank,

• one computes the Smith & Waterman alignment for all pairs of true positives,

• one tests whether the Smith & Waterman alignment put both occurences of the regular
expression in front of each other,

• one computes the number of alignments which do not align both patterns,

• finally the index p is the ratio of this number by the number of computed alignments.

The closer to 0 is the index p, the more numerous are the aligned occurrences of the regular
expression. If p = 0, then for all pairs of true positives, the classical dynamic programming does
align the occurrences of the pattern. At the opposite if p = 1, for all pairs of sequences sharing the
regular expression, the Smith & Waterman algorithm does not align instances of the pattern.

Generally the Smith & Waterman algorithm aligns occurrences of the same pattern when oc-
currences are close to the region of the highest similarity. The algorithm does not align them when
occurrences are not similar or when they are very short and do not belong to the most similar
region.

One can notice that for a lot of patterns the classical dynamic programming allows to highlight a
region including the pattern. There are 556 patterns for which the classical dynamic programming
aligns the pattern in all cases. These patterns are not very informative because the alignment
regroups instinctively these regions. In fact, either the pattern is very restrictive (only one word)
or the occurrence of the pattern appears always in a region of high similarity. In the later case, one
may ask whether the pattern is well defined. Since in all cases the region of high similarity is larger
than the regular expression, it may be possible to extend the definition of the regular expression.

In some other cases the dynamic programming does not align the pattern. However for all
true positives of Swissprot Rel. 35, the dynamic programming does align at least in one case the
occurrences of the regular expression. In other words one cannot find one single pattern for which
the index p is equal to 1. For a value of p close to 1 the histogram of figure 1 has some classes
absolutely empty.

1.2.2 False positives

False positives versus false positives : In the same way, we want to know if the dynamic
programming tends to align the same pattern in the case of two false positives. Generally the
dynamic programming does not align patterns. Figure 2 shows the distribution of patterns.

False positives versus true positives : In that case the results are similar to the case of two
false positives (see figure 2).

In such cases even if the biological function is not shared, the dynamic programming algorithm
does align some patterns (see fig. 2, p = 0). This peak is much higher in the plot concerning
two false positives than in the other concerning one false positive versus a true positive. One
can align two false positive occurrences of the same pattern when they occur in the most similar
zone between sequences. For example for the pattern PS00881 the Smith & Waterman algorithm
aligns false positive occurrences in TIE1 BOVIN, TIE1 HUMAN and TIE1 MOUSE. All these
three sequences belong to the same family and the pattern occurs in the characteristic and similar
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Figure 2: Distribution of patterns from prosite Rel. 14.0
(false positives) according to the number of non aligned
motifs.
Figure A : False positive versus false positive.
Figure B : False positive versus true positive

region of this family. This phenomena does not happen in the case of aligning one false positive
versus a true one. These homologies of two false positives could result from common biological
properties different from the one related to the prosite motif.

2 The Smith & Waterman algorithm with pattern : SWP

Since the Smith & Waterman algorithm does not always align occurrences of the patterns, the
alignment of these motifs can be a guide for an improvement of the sequence alignment. A better
match between the occurrences is sought. This is an intermediate solution between the Smith &
Waterman algorithm and the method used by biologists which consists in forcing the alignment of
occurrences of motifs.

The aim of this new algorithm is to favor alignments which make two occurrences of the same
pattern facing one another. If there is only one pattern shared by both sequences, or if one seeks
to align only one pattern, it is possible to impose the alignment of the motif and then to extend
the alignment on both sides with the Smith & Waterman algorithm.
However if both sequences share several motifs which appear in two different orders, one can no
more force the alignment of patterns. One would come up to impossibilities. Let us consider that
both sequences share two motifs in a different order :

MOTIF-1

xxxxxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxxxxx

xxxxxxx

xxxxxxx

MOTIF-2

MOTIF-2

MOTIF-1

If a biological relationship between these sequences exists, one faces to an inversion process. Clas-
sical algorithms are not able to align both motifs simultaneously, and one has to use algorithms
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which deal with inversion process [Holloway and Cull, 1994]. Note that our algorithm does not
solve this inversion problem but chooses which pattern will be aligned.

The first stage is to determine all patterns which are shared by both sequences. Different
programs allows to find in a sequence all occurrences of patterns. After having two lists of patterns
present in both sequences, an intersection of the two lists gives the result. Another solution consists
in taking advantage of the list given in prosite of all occurrences of a pattern in the databank
Swissprot.

2.1 Alignment of two instances of the same pattern

The problem comes from the fact that a pattern can present insertions/deletions. For example, if
the regular expression contains the term “x{6, 8}”, there is then at this place a string of which the
length is between 6 and 8. Two instances of this pattern can have two different lengths. In that
case the alignment has to present an insertion/deletion in the zone defined by the term “x{6, 8}”.

On the other hand if the motif has a constant length, the alignment is very simple because there
is no insertion/deletion. For example the pattern named ASP Protease is defined by the following
regular expression :

[LIVMFGAC]-[LIVMTADN]-[LIVFSA]-D-[ST]-G-[STAV]-[STAPDENQ]-x-[LIVMFSTNC]-x-[LIVMFGTA]

The sequences bar1 yeast and tryp astfl share this motif. The pattern has 2 instances in bar1 yeast
at the positions 60 and 284 and one in tryp astfl at the position 194 :

bar1_yeast: (V)(L)(F)D(T)G(S)(A)x(F)x(V)
60: SQSLT V L F D T G S A D F W V MDSSN

(V)(L)(L)D(S)G(T)(S)x(L)x(A)
284 TTKYP V L L D S G T S L L N A PKVIA

tryp_astfl: (A)(A)(S)D(T)G(S)(T)x(L)x(G)
194 SGGPL A A S D T G S T Y L A G IVSWG

Alignment of the first occurrence in bar1 yeast with the instance in tryp astfl will be :

60 V L F D T G S A D F W V
| | | |

194 A A S D T G S T Y L A G

If we decide to align the second instance in bar1 yeast, one will obtain :

284 V L L D S G T S L L N A
| | |

194 A A S D T G S T Y L A G

We define the score of the alignment as the sum of the substitution costs :

Score(MotifA,MotifB) =
long−1∑

k=0

S

(
A[βA + k], A[βB + k]

)

where

- MotifA and MotifB are the occurrences of the same pattern in sequences A and B respectivelly,

- βA and βB are indices of the beginning of occurrences,
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- long is the common length of both instances.

Nevertheless the alignment of occurrences of non constant length patterns is tricky. For example
the Snake Toxin is :

CPx{6,8}(L,I,V,Y,S,T)xCC

This pattern occurs in sequences hcy octdo and nxl2 bunfl with two different lengths :

hcy_octdo : CP x{6} (Y)xCC
468 HGSTL CP SPEEPK Y ACC LHGMP

nxl2_bunfl: CP x{8} (L)xCC
46 GCAAT CPEFTSRYKS L LCC TTDNC

In that sense one cannot simply apply the Needleman & Wunsch algorithm since insertions/deletions
have to occur in a well specified region. The Needleman & Wunsch algorithm does not assure that
the insertion will take place in the right region. At the opposite, the alignment makes sense if one
tries to align first the brackets and braces : (, ), { and }. The idea is to align the sequences

{CP{SPEEPK}(Y)A(CC)}
and

{CP{EFTSRYKS}(L)L(CC)}

on an alphabet composed of 24 letters ( 20 letters for the amino acids and 4 for the brackets and
braces). A new substitution is then built on this new alphabet :

• The values of a substitution of two amino acids do not change.

• the values for substitution
(
“{”,α

)
,
(
“(”,α

)
,
(
“}”,α

)
,
(
“)”,α

)
where α is an amino acid are

arbitrarily high,

• the value for perfect matches
(
“{”, “{”

)
,
(
“}”, “}”

)
,
(
“(” , “(”

)
and

(
“)”, “)”

)
are also

arbitrarily high,

• and values for substitutions
(
“{”,“( ”

)
,

(
“{”,“)”

)
,

(
“{”,“}”

)
,

(
“}”,“(”

)
,

(
“}”,“ )”

)
, and(

“(”,“)”
)

are -∞.

The Needleman & Wunsch algorithm on this alphabet and with this substitution matrix gives
a good alignment of patterns preserving insertion/deletion area. For the previous instances of
Snake Toxin pattern, one has the following alignment :

{CP{--SPEEPK}(Y)A(CC)} CP--SPEEPKYACC
|||| || | ||||| that is || ||
{CP{EFTSRYKS}(L)L(CC)} CPEFTSRYKSLLCC

The score of alignment is the score obtained by the previous method from which one has
substracted the weights due to the alignments of brackets and braces.
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A better solution : During the scanning of sequences for hypothetical pattern matching, one
can seek for possible positions of insertions/deletions. For example if the motif Snake Toxin ap-
pears in the form CPSPEEPKYACC, the possible insertions/deletions during aligning with another
occurence of the same pattern, will take place in the region SPEEPK and only in this zone. When
aligning two instances of the same pattern, there are 2 stages :

1. Research of possible positions of insertions/deletions. Following information is stocked :

• the number of insertion/deletion area

• for each insertion/deletion area, the indices (bi, ei) representing the beginning and the
end.

Two tables are built, one for the sequence A (indices (bA
i , eA

i )) and the other one for sequence
B (indices (bB

i , eB
i )).

2. Alignment of occurrences of the pattern : let (i, j) be the current indices of alignment.

• If (i, j) does not belong to any insertion/deletion area, the letter Ai faces the letter Bj

in the alignment and the indices are set to (i + 1, j + 1).

• If (i, j) belongs to the insersion/deletion area number k, the Needleman & Wunsch
algorithm is used on subsequences A[bA

k , eA
k ] and B[bB

k , eB
k ], and one goes to the indices

(eA
k + 1, eB

k + 1).

This second solution is actually implemented.

2.2 Local alignment with pattern

After having defined an alignment for two occurrences of the same pattern, we present an algorithm
for aligning sequences taking into account the different patterns shared by them. For simplicity we
consider here only linear penalty function for gaps (gap-open penaly and gap-extend penalty are
considered to be equal to δ). In the case of affine penalty function the modifications are strictly
the same.

The Smith & Waterman algorithm consists in computing for each pair of indices (i, j) the
score for aligning the beginnings of sequences A[1..i] and B[1..j]. This is done with the following
recurrence :

M(i, j) = max




M(i− 1, j)− δ,
M(i− 1, j − 1) + S(i, j),

M(i, j − 1)− δ,
0


 .

A first method to favor the alignment of motifs consists in giving an additive reward (bonus)
to the score when motifs match. With this new definition of the score, the dynamic programming
algorithm can be applied but now at each step the decision variable consists in the choice of
substitution, insertion, deletion of letters or in the alignment of a pattern. Let us suppose now that
the sequence A contains a pattern at position (i − long1 + 1, i) and that the sequence B contains
the same pattern at the position (j − long2 + 1, j), where long1 and long2 are lengths of pattern
instances in sequences A and B respectively.
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We consider another path beside the substitution, the insertion and the deletion : this new path
is just the alignment of the pattern. The recurrence is then :

M(i, j) = max




M(i− 1, j)− δ,
M(i− 1, j − 1) + S(i, j),

M(i, j − 1)− δ,
0,

M(i− long1, j − long2) + Score(motif1, motif2) + Bonus




(1)

where

• Score(motif1,motif2) is the score of the pattern alignment,

• Bonus is a positive value rewarding the pattern alignment,

• M(k, l) is the best score obtained when aligning A1A2...Ak and B1B2...Bl.

In this new recurrence the score at the position (i, j) depends on the three neighbors like in the
classical dynamic programming algorithm and also on another cell which can be far away from the
current position : the score at the position corresponding to the beginning of pattern alignment.

M
otif 2

M
otif 1

Motif 1 Motif 2

M

D

V

H

M
D V

H

H

D V

Figure 3: Competition between patterns : If both sequences share
two different patterns which are incompatible, the algorithm
chooses which motif will be aligned according to the weight
of each pattern. Lines with M correspond to the alignment
of motif, lines with H, D, or V to insertion, substitution
and deletion of the last character.

In this method the alignment of motifs is not imperative and incompatible situation as in fig. 3 can
be dealt with.

2.3 The basic recurrence of SWP

The SWP algorithm is a modification of the previous equation 1 taking into account the case when
several patterns end at the current position.
Let A and B be two sequences of length n and m respectively. A couple of subsequences (wordA, wordB)
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will be called a pattern pair if wordA and wordB belong to sequence A and B and if they are two
occurrences of a same pattern.

Both sequences A and B can share several patterns. The same pattern can appear several times
in the same sequence, and a position (i,j) can correspond to the end of several patterns. In that
case the algorithm has to take the maximum among all alignments ending at the current position.

The general recurrence of SWP algorithm is the following :

M(i, j) = max




M(i− 1, j − 1) + S(Ai, Bj),
M(i− 1, j)− δ,
M(i, j − 1)− δ,

0,

max8<
:

m,motif
ending at (i, j)

9
=
;




M(am
1 − 1, bm

1 − 1)+
Score(WordA

m,WordB
m)

×Reward(Motifm)







(2)

where

• Score(WordA
m,WordB

m) is the alignment score of two occurrences of the motif m,

• Reward(Motifm) is a coefficient associated to the motif m weighting alignments of occur-
rences of this motif. Previously we introduced an additive weight (Cf. eq. 1) but here we
present a multiplicative coefficient in order to try to weight according to the similarity of
both instances of the motif. This multiplicative model will then favor the alignment of oc-
currences which are the most similar or the longest, that is which have the highest alignment
score.

In all the sequel one takes into account the multiplicative model but shortcomings of this model
will be discussed later.

2.4 Complexity

Three different stages compose the entire algorithm : searching all patterns shared by both se-
quences, the dynamic programming (see eq. 2) and aligning occurrences of patterns.

For two sequences of length m and n respectively, the complexity of the pattern matching algo-
rithm is linear in O(m+n) because the search has to be done in both sequences. When all patterns
from a databank are taken into account, the complexity of this stage increases proportionnally with
the size of the databank.

The complexity for the dynamic programming stage is quadratic that is in O(m× n) although
a supplementary maximum operation has to be done for some cells.

For the third stage, alignment of the occurrences of a motif, two cases have to be considered.

• If the pattern has a fixed length, the algorithm is linear : the score is simply the sum of
substitution costs corresponding of each position of the alignment.

• On the other hand if the length of the pattern is variable, the computation of the score needs
the knowledge of possible insertion/deletion areas. Then the dynamic programming is used
for each insertion/deletion area. The complexity is :

O

(
Np∑

i=1

(eA
i − bA

i )× (eB
i − bB

i )

)
+ O

(
lmA + lmB

)
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where

– Np is the number of insertion/deletion areas defined by indices (bA
i , eA

i )i∈[1,Np] and
(bB

i , eB
i )i∈[1,Np],

– lmA and lmB are the lengths of occurrences of the pattern m in sequences A and B
respectively.

Table 1 sketches the complexity of the different stages of algorithm SWP.

Complexity
searching shared patterns O((n + m)× t)

motif alignment O

(
lmA + lmB +

∑Np
i=1(e

A
i − bA

i )× (eB
i − bB

i )

)

Dynamic Programming O(m× n)

Table 1: Complexity of the SWP algorithm. t stands for the
motif databank size.

3 Discussion

3.1 Weight influence on alignments

Generally one expects the algorithm SWP to align more patterns than without weighting. Figure 4
shows distributions of patterns according to two different weights and for true positive versus true
positive or for false positive versus false positive. For true positives one observes the concentration
of the distribution nearby 0. The higher the weight, the higher the peak of the distribution. For
false positives the distribution presents also a peak nearby 0 (see figure 4), but the proportion of
non aligned motifs is higher.

3.1.1 Sequences sharing only one pattern

When there is only one pattern shared by sequences, the behavior of the SWP algorithm is simple.
If the motif is not aligned by the classical dynamic programming, then increasing weight for the
pattern leads to favor all paths aligning also the occurrences of pattern. Exception occurs when
both occurrences are not similar (see further).

Figure 5 gives an example where the occurrences of the motif do not belong to the most similar
region. When the weight is set to 2, the similarity area has changed, the algorithm retains only the
similarity region containing the pattern.

Generally increasing weight for pattern can make appear an alignment with 2 similarity zones.
The reward can balance the gap cost necessary to connect the two distant similarity regions. For
the previous example (see fig. 5) the gap cost is so important that the pattern weight cannot balance
it to connect both similarity regions.

When there are several occurrences of the same pattern in both sequences, each corresponding
to a distinct similarity region, tuning weight can allow to align simultaneously these similarity zones
in the same alignment. The maximum number of aligned patterns is also equal to the minimum
between the two numbers of patterns occurrences in each sequence A and B.
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Figure 4: Distribution of patterns from prosite Rel. 14.0
(true positive and false positive) according to the
number of not aligned motifs.
Figure A (true positive) : value for pattern weight = 2.
Figure B (true positive) : value for pattern weight = 3.
Figure C (false positive) : value for pattern weight = 2.
Figure D (false positive) : value for pattern weight = 3.
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Motif PS00841 : [VI][KRE]P.[FYIL]VFDG.\{2\}[PIL].[LVC]K

Weight = 1

125 VTPEMAWKLIIALREHGIESIVAPYEADAQLVYLEKENIIDGIITEDSDM

|| | | || |||| || || | | || |||

797 VTGQMCLESQELLQLFGIPYIVAPMEAEAQCAILDLTDQTSGTITDDSDI

175 LVFGAQTVLFKMDGFGNCITIRRNDIANAQDLNLRLPIEKLRHMAIFSGC

||| | | | | | | || | |

847 WLFGARHV-YK-NFFSQNKHVEYYQYADIHN-QLGLDRSKLINLAYLLGS

225 DYTDGVAGMGLKTALRYLQKYP

||| | | | | |

894 DYTEGIPTVGYVSAMEILNEFP

{

Score : 141

}

Weight : 2

1 GIKGLLGLLKPMQKSSHVEEFSGKTLGVDGYVWLHKAVFTCAHELAFNKE

| || || || | || || || | |

1 GVQGLWKLLECSGRPINPGTLEGKILAVDISIWLNQAVKG-ARDRQGNAI

51 TDKYLKYAIHQALMLQYYGVKPLIVFDGGPLPCKASTEQKRKERRQEAFE

| | | | |||| | | || | |

50 QNAHLLTLFHRLCKLLFFRIRPIFVFDGEAPLLKRQTLAKRRQRTDKASN

101 LGKK

|

100 DARK

{

Score : 150

SW Score : 119

Motif alignment Score : 31

}

Figure 5: Weight influence on alignments. For sequences
XPG XENLA and EXO1 SCHPO, the Smith & Waterman
algorithm does not align the motif PS00841. Weighting the
path corresponding to the pattern alignments allows to high-
light another similarity region with SW score (119=150-31)
slightly lower than the SW score. The frame corresponds to
the only aligned occurrences of pattern PS00841.
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3.1.2 Sequences sharing several patterns

As noticed before the region containing an occurrence of pattern can appear far away from a high
similar region. Let us suppose that there are two similarity zones very distant from each other. In
other words a very long insertion/deletion is needed to vizualize in the same alignment these two
regions. If a pattern is present in each of these regions, SWP algorithm allows to connect these
regions in the same alignment.

Let us choose a motif from prosite for which the proportion of non aligned occurrences among
true positives is far from 1. The motif PS01288 has 4 true positives in Swissprot Rel. 35 :
RTCB ECOLI, Y682 METJA, YQ01 MYCTU and YT6J CAEEL. Six alignments are possibles.
the Smith & Waterman algorithm does not align pattern for 3 possible pairs (for example align-
ment between RTCB ECOLI and Y682 METJA). The index p is then equal to 0.5. The sequences
RTCB ECOLI and Y682 METJA share also other patterns :

NAME prosite ID Regular Expression
PKC PHOSPHO SITE PS00005 [ST]-x-[RK]
CK2 PHOSPHO SITE PS00006 [ST]-x(2)-[DE]
MYRISTYL PS00008 G-EDRKHPFYW-x(2)-[STAGCN]-P
UPF0027 PS01288 Q-[LIVM]-x-N-x-A-x-[LIVM]-P-x-I-x(6)-

[LIVM]-P-D-x-H-x-G-x-G-x(2)-[IV]-G

Alignment without weight does not align pattern UPF0027 since the more similar region is far
away from occurrences of this pattern. This region contains two patterns PS00006 and PS00008.
The Smith & Waterman alignment is given in figure 6. Weighting pattern alignment leads to an
alignment which contains clearly two similar zones separated by a long gap. The weight has been
sufficient to balance the penalty due to the long gap.

Higher the weight, greater the number of aligned motifs (see figure 7). But how many oc-
currences can be aligned ? Figure 7 shows that the maximum number of pattern alignments we
can observe is 12. This number is maybe not the maximum number of occurrences which can be
aligned, but due to non adapted weights.

Computing the maximum number of aligned motifs. The following table shows the number
of occurrences of all patterns present in both sequences RTCB ECOLI and Y682 METJA.

RTCB ECOLI Y682 METJA Symbol
PKC PHOSPHO SITE 8 11 P
CK2 PHOSPHO SITE 2 6 C
MYRISTYL 11 13 M
UPF0027 1 1 V
Total 22 31

Some of these occurrences overlap each other and the SWP algorithm is not able to align simulta-
neously such occurrences. On the other side one has to consider also the order of patterns. If two
motifs occur in both sequences in different orders, it is impossible to align them.

The following procedure gives a method to know the maximum number of aligned motifs.

1. An alphabet with as many letters as different patterns shared by sequences is created. In the
last example the alphabet is A = {P,C, M, V } (Cf. previous table).
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78 GMNALGTALTAEDLPENLAELRQAIETAVPHGRTT-GRCKRDKGAWENPP

| | || | || || | | | |

586 GVRLIRTNLTKEEVQSKIKELIKTLFKNVPSGLGSKGILKFSKSVMDDVL

127 VNVDAKWAELEAGYQWLT------------QKYPRFLNTNNYKH----LG

|| || | ||

636 E-EGVRWAVK-EGYGWKEDLEFIEEHGCLKDADASYVSDKAKERGRVQLG

161 TLGTGNHFIEICL-----DESD---------QVWIMLHSGSRGIGNAIGT

|| |||| | || || | |||| | | |

684 SLGSGNHFLEVQYVEKVFDEEAAEIYGIEENQVVVLVHTGSRGLGHQICT

197 YFIDLAQKEMQETLETLPSRDLAYFMEGTEYFDDYLKAVAWAQLFASLNR

| || | || | | || | ||

734 DYLRIMEKAAKNYGIKLPDRQLACAPFESEEGQSYFKAMCCGANYAWANR

247 DAMMENVVTALQSITQKTVRQPQTLAMEEINC-HHNYVQKEQHFGEEI--

| | | || || |

784 QMITHWVRESFEEVFKIHA---EDLEMNIVYDVAHNIAKKEEHIIDGRKV

294 --YVTRKGAVSARA-------------GQYGIIPGSMGAKSFIVRGLG--

| |||| | || |||| || | ||

831 KVIVHRKGATRAFPPKHEAIPKEYWSVGQPVIIPGDMGTASYLMRGTEIA

327 NEESFCSCSHGAGRVMSRTKAKKLFSVEDQIRATAHVE--CRKDAEVID-

| | | ||||| || || || | | |

881 MKETFGSTAHGAGRKLSRAKALKLWKGKEIQRRLAEMGIVAMSDSKAVMA

375 -EIPMAYKDIDAV

| | ||| | |

931 EEAPEAYKSVDLV

22 EADARQQLINTAKMPFIFKHIAVMPDVHLGKGSTIGSVIPTK---GAIIP

| | | | | | | ||||| | | || | | | |

39 EPEVLEQIANVACLPGIYKYSIAMPDVHYGYGFAIGGVAAFDQREGVISP

69 AAV-----------------------------------------------

|

89 GGVGFDINCLTSNSKILTDDGYYIKLEKLKEKLDLHIKIYNTEEGEKSSN

. . .

74 --------------------------------------------GVDIGC

| ||

289 ASRIYSRKREVEIRNAYGDEYTSLCEDNSIKITSKAFALFMHKLGMPIGK

78 GMN-----------------------------------------------

339 KTEQIYKIPEWIKKAPKWVKRNFLAGLFGADGSRAVFKNYTPLPINLTMS

. . .

81 ALGTALTAEDLPENLAELRQAIETAVPHGRTT-GRCKRDKGAWENPPVNV

| || | || || | | | |

589 LIRTNLTKEEVQSKIKELIKTLFKNVPSGLGSKGILKFSKSVMDDVLEE-

130 DAKWAELEAGYQWL--------------------TQKYPRFLNTNNYKHL

|| | || | | |

638 GVRWAVKE-GYGWKEDLEFIEEHGCLKDADASYVSDKAKE----RGRVQL

160 GTLGTGNHFIEICL-----DESD---------QVWIMLHSGSRGIGNAIG

| || |||| | || || | |||| | |

683 GSLGSGNHFLEVQYVEKVFDEEAAEIYGIEENQVVVLVHTGSRGLGHQIC

196 TYFIDLAQKEMQETLETLPSRDLAYFMEGTEYFDDYLKAVAWAQLFASLN

| | || | || | | || | |

733 TDYLRIMEKAAKNYGIKLPDRQLACAPFESEEGQSYFKAMCCGANYAWAN

246 RDAMMENVVTALQSITQKTVRQPQTLAMEEINCHHNYVQKEQHFGEEIY-

| | | || |

783 RQMITHWVRESFEEVFKIHAEDLEMNIVYDVAH--NIAKKEEHIIDGRKV

295 ---VTRKGAVSARA-------------GQYGIIPGSMGAKSFIVRGLGNE

| |||| | || |||| || | | | |

831 KVIVHRKGATRAFPPKHEAIPKEYWSVGQPVIIPGDMGTASYLMR--GTE

329 ESFCSCS----HGAGRVMSRTKAKKLFSVEDQIRATAHVECR--KDAEVI

||||| || || || | | |

879 IAMKETFGSTAHGAGRKLSRAKALKLWKGKEIQRRLAEMGIVAMSDSKAV

373 D--EIPMAYKDIDAVMAAQSDLVEVIYTLR

| | ||| | | |

929 MAEEAPEAYKSVDLVADTC---HKAGISLK

Coefficients

Below 1.0

Right 8.0

Figure 6: Weight influence on alignments (sequences
RTCB ECOLI and Y682 METJA). Increasing pattern
weight allows to introduce long gaps to connect distant
similarity regions. Frames correspond to the pattern
alignments.
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Figure 7: Weight influence on the number of aligned occur-
rences of patterns (sequences RTCB ECOLI and
Y682 METJA). Higher the weight, greater the number
of aligned patterns. The saturation point seems to occur for
12 aligned motifs.

2. For each sequence one builds the series of letters corresponding to the orders of occurrences
of different patterns. There can be several series of letters in case of overlap. In such a case
only one pattern can be aligned. For the sequence Y682 METJA, one has two sequences :

V P P M P C P P M M C P P M P P M C C M P M M M C M M P

M P P M P C P P M M C P P M P P M C C M P M M M C M M P

since motifs V and M overlap at the beginning of the sequence.

3. For each pair of sequences (Ai, Bj) where all Ai belong to the first databank and all Bj belong
to the second, the longest subsequence is computed. The result can be achieved by the Smith
& Waterman algorithm with the folowing parameters :

• the substitution matrix is the identity matrix

• gap-open and gap-extend penalties are set to 0.

4. The maximum score of all possible pairwise comparisons gives the maximum number of motifs
which can be aligned. For the previous example there are 12 × 2 = 24 possible pairwise
comparisons for which the maximum score is 15. Several alignments have this maximum
score :
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1 VPPMPCPPMMCPPMPPMCCMPMMMCMMP 3 PMPCPPMMCPPMPPMCCMPMMMCMMP

| | ||||| || | | | | | | S=15 || ||||| || || ||| | S=15

1 V--M-CPPMM-PP-P-M--M-M--C--P 1 PM-CPPMM-PP-PP------MMC--P

1 VPPMPCPPMMCPPMPPMCCMPMMMCMMP 1 MPPMPCPPMMCPPMPPMCCMPMMMCMMP

| | ||||| || | | ||| | S=15 | | ||||| || | | | | | | S=15

1 V--M-CPPMM-PP-P-----P-MMC--P 1 M--M-CPPMM-PP-P-M--M-M--C--P

3 PMPCPPMMCPPMPPMCCMPMMMCMMP 1 MPPMPCPPMMCPPMPPMCCMPMMMCMMP

|| ||||| | | ||||| | S=15 | | ||||| || | | ||| | S=15

1 PM-CPPMM-P--P-----PMMMC--P 1 M--M-CPPMM-PP-P-----P-MMC--P

We noticed before that the maximum number of pattern alignments is 12 for sequences RTCB ECOLI
and Y682 METJA. The order of the aligned motifs is given by the following sequence :

VPPMPPPMMMCP

The three missing pattern alignments could not to be aligned because of the multiplicative way of
weighting.

3.2 Shortcomings of the multiplicative model

When regular expression are somewhat slack, the alignment of two occurrences of the motif can
have a negative score. In such a case the multiplicative weight will never favor the alignment of
occurrences. For example the pattern PS00011 is defined by the following regular expression :

.{12}E.{3}E.C.{6}[DEN].[LIVMFY].{9}[FYW]

The beginning of the pattern is defined by the presence of 12 non defined letters. Biologically that
means that the useful pattern “E.{3}E.C.{6}[DEN].[LIVMFY].{9}[FYW]” cannot occur at less
than 12 positions from the beginning of the sequence. Let us consider occurrences of the pattern
PS00011 in OSTC MACFA and FA10 BOVIN :

OSTC_MACFA : WLGAPAPYPDPLEPKREVCELNPDCDELADHIGFQEAY
FA10_BOVIN : FLEEVKQGNLERECLEEACSLEEAREVFEDAEQTDEFW

The pattern alignment is :

.{12} E .{3} E.C .{6} [E].[F] .{9} [W]
43 FLEEVKQGNLER E CLE EAC SLEEAR E V F EDAEQTDEF W

| | | | | | |
4 WLGAPAPYPDPL E PKR EVC ELNPDC D E L ADHIGFQEA Y

.{12} E .{3} E.C .{6} [E].[L] .{9} [Y]

and the alignment score is−1. This final score is the sum of prefixe alignment score (“FLEEVKQGN-
LER” and “WLGAPAPYPDPL”) and of the alignment score of the useful pattern. The first one is
−14 and the second is +13. The prefixes are at the origin of the negative score of the alignment :
the prefixes do not bring any information to the motif. To favor this alignment one could implement
an additive reward. But the additive model does not favor similar occurrences any more than non
similar ones.
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3.3 Data-Bank scanning with SWP

The problem consists in finding all known sequences from a databank which are similar to a query
sequence. The different algorithms give a score which allows to rank sequences from the most
similar to the most distant. Is the SWP algorithm able to improve ranking of sequences ? Is the
information brought by the pattern alignment sufficient to improve this databank ranking ?

Since SWP algorithm differs from Smith & Waterman algorithm only for pairs of sequences
which share at least one pattern, we present results of databank scanning with a query sequence
with a maximum number of patterns. If query sequence does not contain any pattern, the SWP
scores are strictly the same than the Smith & Waterman score. Table 2 gives the distribution of
prosite patterns in Swissprot.

Number of prosite Number of sequences
patterns (n) from Swissprot Rel. 35 with n patterns

1 24176
2 7610
3 2605
4 563
5 173
6 140
7 38
8 4

Table 2: Distribution of prosite patterns in sequences from
Swissprot.

For example we choose the sequence FA12 HUMAN which has 7 different motifs. we compare
then all sequences from Swissprot which share at least one pattern with FA12 HUMAN : PS00021,
PS00022, PS00023, PS00134, PS00135, PS01186 and PS01253. Table 3 shows for each pattern
present in FA12 HUMAN, the number of sequences from Swissprot which share these patterns and
also the total number of occurrences.

prosite pattern Number of sequences Pattern occurrence
with pattern number

PS00021 44 135
PS00022 321 1045
PS00023 29 55
PS00134 288 288
PS00135 287 287
PS01186 337 1071
PS01253 21 69

Table 3: Number of pattern occurrences present in
FA12 HUMAN.

The patterns PS00022 and PS01186 have been moved apart for complexity reason since the
number of occurrences was too large. Pattern PS00134 has not been retained because it was
not so informative : [LIVM]-[ST]-A-[STAG]-H-C. Only patterns PS00021, PS00023, PS00135, and
PS01253 have been retained. The databank of sequences sharing at least one of these 4 patterns
has been created and contains 321 sequences.
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Coefficient = 1 (SW) Coefficient = 2 Coefficient = 3

sequences scores (1) sequences scores (1) sequences scores (1)

1 FA12 CAVPO 2507 4 FA12 CAVPO 3019 4 FA12 CAVPO 3531 4

2 FA12 BOVIN 2425 4 FA12 BOVIN 2935 4 FA12 BOVIN 3445 4

3 HGFA HUMAN 1193 4 HGFA HUMAN 1485 4 HGFA HUMAN 1777 4

4 UROT HUMAN 712 3 URT2 DESRO 852 3 URT2 DESRO 997 3

5 URT1 DESRO 708 2 URT1 DESRO 850 3 URT1 DESRO 993 3

6 URT2 DESRO 707 3 UROT HUMAN 849 3 UROT HUMAN 986 3

7 UROT RAT 694 3 UROT RAT 832 3 UROT RAT 970 3

8 UROT BOVIN 687 3 UROT BOVIN 826 3 UROT BOVIN 965 3

9 UROT MOUSE 675 3 UROT MOUSE 808 3 UROT MOUSE 941 3

10 URTB DESRO 666 2 URTB DESRO 769 2 URTB DESRO 872 2

11 UROK BOVIN 663 2 UROK BOVIN 763 2 UROK BOVIN 863 2

12 UROK RAT 656 2 UROK HUMAN 754 2 UROK HUMAN 854 2

13 UROK HUMAN 654 2 UROK RAT 750 2 UROK RAT 844 2

14 UROK PIG 639 2 UROK PIG 739 2 UROK PIG 839 2

15 UROK PAPCY 628 2 UROK PAPCY 728 2 UROK PAPCY 828 2

16 UROK MOUSE 623 2 UROK MOUSE 718 2 UROK MOUSE 813 2

17 PLMN PIG 587 2 PLMN PIG 687 2 PLMN PIG 787 2

18 PLMN BOVIN 582 2 PLMN BOVIN 682 2 PLMN BOVIN 782 2

19 PLMN HUMAN 582 2 PLMN HUMAN 682 2 PLMN HUMAN 782 2

20 URTG DESRO 571 2 URTG DESRO 674 2 URTG DESRO 777 2

87 CFAD RAT 347 1 ENTK MOUSE 412 1 FINC HUMAN 475 2

88 TRY2 ANOGA 345 1 TRY2 ANOGA 412 1 FINC RAT 474 2

100 EL2 BOVIN 334 1 TRYA HUMAN 397 1 FINC BOVIN 462 2

218 COGS UCAPU 247 1 FINC HUMAN 304 2 CTRB GADMO 379 1

219 SNAK DROME 247 1 FINC RAT 301 2 TRYZ DROME 377 1

224 NKP1 RAT 237 1 FINC BOVIN 295 2 EL3B HUMAN 372 1

273 FINC HUMAN 147 1 TRYP CHOFU 243 1 GRAB MOUSE 305 1

274 FINC BOVIN 147 1 MPRI MOUSE 240 1 MCP1 PAPHA 303 1

279 FINC RAT 142 1 GRL2 RAT 229 1 MCP2 MERUN 285 1

Table 4: Databank scanning with SWP (Extract). Sequence
FA12 HUMAN has been compared with all sequences from
Swissprot Rel. 35 which do share at least one of the following
patterns : PS00021, PS00023, PS00135 and PS01253. When
the coefficient is 1, the SWP conincides with SW algorithm.
Columns (1) give the number of aligned patterns.
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Table 4 gives the 20 greatest scores when comparing sequence FA12 HUMAN against one of
the 321 considered sequences. Several coefficients for weighting have been tested. Globally one
observed a stability of the order in which sequences appear. But some sequences have been catched
up when weight is greater than 1 (see sequences FINC HUMAN, FINC BOVIN, FINC RAT, and
EL3B HUMAN).

For example the sequence FINC HUMAN occurs at the rank 273 with pattern weight equal to
1 and is ranked at the position 87 with coefficient equal to 3. Increasing weight has allowed to
connect two similarity regions (see figure 8).

The advantage of the SWP algorithm resides not only in ranking sequences but also in alignment
itself. It allows in a large measure to correct the lack of sensibility of Smith & Waterman algorithm,
allowing creation of long insertions/deletions.

Weight : 1

394 DQKYSFCTDHTVLVQTQGGNSNGALCHFPFLYNNHNYTDCTSEGRRDNMK

|| ||| | ||||| | | || ||

27 EHKYKAE-EHTVVLTVTG-----EPCHFPFQYHRQLYHKCTHKGRPGPQP

444 WCGTTQNYDADQKFGFC

|| || | | || | |

71 WCATTPNFDQDQRWGYC

Motif 1 :

C.\{2\}PF.[FYWI].\{7\}C.\{8,10\}WC.\{4\}[DNSR][FYW]

.\{3,5\}[FYW].[FYWI]C

Motif 2 :

C.\{6,8\}[LFY].\{5\}[FYW].[RK].\{8,10\}C.C.\{6,9\}C

Score : 147

Weight : 3

394 DQKYSFCTDHTVLVQTQGGNSNGALCHFPFLYNNHNYTDCTSEGRRDNMK

|| ||| | ||||| | | || ||

27 EHKYKAE-EHTVVLTVTG-----EPCHFPFQYHRQLYHKCTHKGRPGPQP

444 WCGTTQNYDADQKFGFCPMAAHEEICTTNEGVMYRIGDQWDKQHDMGHMM

|| || | | || | | | | |

71 WCATTPNFDQDQRWGYCLE------------------PKKVKDHCSKHSP

494 RCTCVGNGRGEWTCIAYSQLRDQCIVDDITYNVNDTFHKRHEEGHMLNCT

| | || |

103 ---CQKGG----TCVNM----------------PSGPHCL----------

544 CFGQGRGRWKCDPVDQCQDSETGTFYQIGDSWEKYVHGVRYQCYCYGRGI

| | | | | | | | |

120 CPQHLTGNH-CQKEK-CFEPQLLRFFHKNEIWYRTEQAAVARCQCKGPDA

594 GEWHCQPLQTYPSSSGP

||| | |

168 ---HCQRLASQACRTNP

Score : 475

SW score : 133

pattern alignment scores : 34 and 137

Figure 8: Alignment of sequences FA12 HUMAN and
FINC HUMAN with two different weights.

3.4 Weighting problem

The main recurrence 2 uses coefficients to favor the pattern alignment. The Reward(Motifm) has
to depend on aligned pattern since the information brought by a pattern depends on its length and
on its grammar. It remains hard to assign some numerical values for each pattern of the prosite
databank.

The weight has to depend on the information level of the pattern. The more informative the
pattern, the greater the associated weight. The information brought by a pattern is inversely pro-
portionnal to the probability of observing an occurrence of the pattern in a random sequence. The
information theory says that the information of the event is equal to−log2(p) [McEliece, 1977] where
p is the probability of the event. One has to compute or estimate the probability law of observing
a pattern in a random sequence. Nicodème and all [Nicodème et al., 1999, Nicodème et al., ] pre-
sented a complete analysis of the statistics of number of pattern occurrences in a random text. The

22



characteristics of the distribution of the number of pattern occurrences are effectively computable,
both exactly and asymptotically. The probability of pattern occurrences depends also on the string
length.

Conclusion

We proposed a new dynamic programming algorithm called SWP which is a modification of the
SW algorithm. It incoporates more biological information coming from the occurrences of prosite
motifs. In databank scanning SWP can reveal similarities between sequences which otherwise would
be hidden. Furthermore the method allows alignments with large insertion/deletion areas. The
rewarding method remains one possibility among others and further works are needed to give it
statistical and theoretical basis.
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