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Abstract : In the field of biological regulation, models extracted from experimental works are usually complex
networks comprising intertwined feedback circuits. R. Thomas and coworkers introduced a qualitative
description of such regulatory networks, then they used the concept of circuit-characteristic states to
identify all steady states and functional circuits. These characteristic states play an essential role for the
dynamics of the system, but they are not represented in the state graph. In this paper we present an
extension of this formalization in which all singular states including characteristic ones are represented.
Consequently, the state graph contains all steady states. We easily demonstrate in our qualitative mode-
ling the previously demonstrated theorems giving the conditions for steadiness of characteristic states.
We also prove that this new modeling is coherent with all the dynamics of the Thomas modeling since
all paths of the Thomas dynamics are represented in the new state graph, which in addition shows the
influence of singular states in the dynamics.
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1 Introduction

It is now becoming clear for a lot of researchers that to elucidate the fundamental principles that govern
how genomic information translates into organismal complexity, one has to overcome the current habit of ad
hoc explanations and instead embrace novel and formal concepts that will involve computer modeling[9]. These
new approaches form the systems biology[30] which tends to deal with functioning of modular circuits, inclu-
ding their robustness, design and manipulation[12, 10, 8]. Computational systems biology addresses questions
fundamental to our understanding of life. For this, we need to establish methods and techniques that enable us
to understand biological systems as systems, which means to understand : the structure of the system, such as
gene/metabolic/signal transduction networks and physical structures, the dynamics of such systems, methods
to control systems, and methods to design and modify systems to generate desired properties[11].

Most modeling approaches deal with simulation of a recreated living system with computer in which are
put as much as possible details. Traditionally, biochemical systems are modeled using kinetics and differential
equations, using the mathematical language of dynamic systems[27], in a quantitative simulator.

Biological regulatory systems often are complex networks comprising several intertwined feedback circuits.
The behavior of such systems is extremely anti-intuitive and cannot be solved without adequate formalization.
They can be accurately described by non-linear ordinary differential equations which, however, cannot be solved
analytically. The discrete approach developed by R. Thomas for describing biological regulatory networks
extracts the essential qualitative features of the dynamics of such systems. But this description does not
consider explicitly all the steady states.

In this paper we provide an extension of R. Thomas modeling which considers also singular states leading
to represent all the steady states. Then we study how the introduction of singular states gives a new light on
the properties of characteristic states of feedback circuits. In section 2 we present the continuous dynamics of
biological regulatory networks based on ordinary differential equations which constitute the common grounds
of our and R. Thomas’ qualitative approaches. Then we introduce our discretization map, different from the R.
Thomas one, which links qualitative descriptions to the continuous one. Section 3 treats of the discretization
of the continuous dynamics leading to the definition of the state graphs. We also define the resources and
the qualitative parameters which allows us to define the qualitative dynamics independently of the continuous
system. In section 4 we define the characteristic states of feedback circuits in a qualitative and formal manner.
They are singular and play a major role since they make a circuit functional when one of them is steady.
We show that the conditions of steadiness of characteristic states, proved by R. Thomas, are similar in our
modeling. After having given some comparisons between both modelings, we prove that the R. Thomas’ state
graph is in a certain sense included in our qualitative state graph. Finally in section 5 perspectives are presented.



2 Qualitative values and qualitative regulatory networks

Interactions between biological entities, often macromolecules or genes, are classically represented by la-
belled graphs, where vertices abstracts biological entities and edges their interactions. If the interaction is an
inhibition (resp. activation), the label is — (resp. +). This static representation is formally defined as following.

Definition 1 (Regulatory network) A regulatory graph is a labelled directed graph G = (V, E) where :
— each vertex v of V, called variable, represents a biological entity,
— each edge (v1 = v2) of E is labelled with a sign of the interaction ay, € {+,—}.

In the sequel we denote, for each vertex v € V, G~ (v) (resp. GT(v)) the set of predecessors (resp. successors)
of v, and #E denotes the cardinal of the set E.

We now present the continuous dynamics of such systems based on ordinary differential equations. This kind
of approaches has been fruitfully applied to different systems [29, 21, 3, 28] and will be the grounds of the
qualitative approach first introduced by Thomas. To each variable v is associated a continuous variable z,, € Rt
which represents its concentration. At a given time, each variable x,, v € V has a unique concentration and
the vector ¢ composed of all variables defines the state of the regulatory network : £ = (x,),cv . The evolution
of the system is thus given by the following system of ordinary differential equation :

dz,
dt

=Sy(z) — AyZy, YveV (1)

where A, > 0 and S, (z) represent respectively the degradation coefficient and the synthesis rate of the variable
v. The synthesis rate S, : Rfv — R, is often defined by :

Sy (x) = Z I (xuaguv) (2)

ueG~ (v)

where the function Z*+ : R} — Ry describes the influence of a regulator u on the synthesis rate of v. ay,
and 6, are respectively the sign and the threshold of the interaction v — v. Indeed for the majority of the
biological interactions, under a certain threshold 6,, of the concentration of u, the interaction u — v has a
quasi null effect on v, and a saturated effect over it. More precisely the function Z*** is near 0 on one side of
the threshold and near the saturation effect k., > 0 on the other, it can be represented by a sigmoid as a Hill
function (see figure 1). In such a case, the threshold is the inflexion point of the Hill function.

With a such non linear description of interactions the system 1 has no analytical solution. The solution can
be numerically approximated but the precision may be misleading[25] because the parameters are most often
unknown. Thomas and Snoussi [17] proposed to estimate the sigmoid function Z*#» by the step function Tows
(figure 1) defined by :

~ 0 if 2y < Oy ~_ kuw  if Ty < Oy
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F1G. 1 — Approximation of sigmoids by step functions and discretization



In such a case the system 1 has an analytic solution on each interval where the synthesis rates are constant
functions. But with this approximation, Z* is undefined when z,, = 6,,. A state in which there is at least one
variable on a threshold is thus called a singular state. To define the system 1 for the singular states Snoussi and
Thomas represent the uncertain influence of u on v when z,, = 6,,,, by an open interval : Z%v (0,4, 0yy) =]0, kuy |-
This interval represents the set of possible influences of v on v strictly included between the case where u acts
on v (zy > Byy) and the case where it does not (z, < 0y,). Then the system has to be seen as a system of
differential inclusions[5] :

v € Sy(2) — Aow,  YWEV, with  Sy(@) = X e (o) 28 (s Ouv) (3)

We now introduce our qualitative approach based on a notion of discretization of this continuous description.
Before defining the discretization map which gives the qualitative concentration of a continuous one, let us
introduce some definitions. In our qualitative approach we modelize the evolution of variables even if the
regulators are on thresholds. We then introduce the qualitative values which can represent the concentration
of variables even if it is on a threshold.

Definition 2 (Qualitative Values)
— A qualitative value, noted |a,b| is a couple of integers (Ja,b| € N* ) where a < b. The set of qualitative
values is noted Q).
— The relations =,<,>,C are defined for 2 qualitative values |a,b| and |c,d| :
- la,b| = |¢,d| if (a =c) and (b= d).
— la,b| < |e,d| if (b<¢) or (b=c and (a <b or ¢ < d))
- |a7b| > |C, d| 1;f|C, d| < |a7b|
la,b| = |c,d| or
- |a,b| Cle,d] if ¢ (a=0b) and (c < a) and (b < d) or
(a < b) and (¢ < a) and (b < d).

The intuition of the qualitative values is the following. On one hand, if @ < b then |a, b| represents the
open interval ]a, b[. On the other hand, if a = b, the qualitative value is similar to the close interval [a, b] which
contains only the value a. Then two open intervals are comparable if they are not overlapping : ]a, b[<]c, d|
if b < ¢ and ]a,b[>]c,d[ if a > d. The relation C is simply the inclusion relation on intervals. The previous
definition leads to two kinds of qualitative values : a qualitative value |a, b| is said regular if a = b, it is said
singular otherwise. The notation |a| denotes the regular qualitative value |a,al.

Let us now introduce for each variable u the set of out-thresholds defined by ©, = {04, : v € GT(u)}.
The thresholds of ©,, are ranked from the smallest to the largest : ©, = {6%,62,...,6%} where 6 is the i-th

u)ur

smallest value of ©,, and b, is the cardinal of ©,. We have 6. < 62 < ... < gb«.

Definition 3 (Discretization map) The discretization map dy, : Ry — Q which associates a qualitative
value to each concentration of variable u, is defined as follows :

if 01 <, <Ot

_ _ lq]
Xy = dy(2u) = { | if )

where 6° = —c0 and 6%t = 400
q—1,q| “ “

Property 1 The function d, : Ry — Q is an incresing function.

The proof is just the application of the definition 2.

To understand why d,, gives the qualitative behavior of u, let us consider a regulatory network in which u

acts positively on v and negatively on w. Let us suppose that 6,, < 0y, (figure 1). x,, = |0| means that u does
not act neither on v nor on w, x,, = |0, 1| means that u does not act on w and acts uncertainly on v, x,, = |1
means that u acts only on v, x,, = |1, 2| means that u acts on v and acts uncertainly on w and finally x,, = |2|
means that u acts on both.
More generally let us suppose that the number of out-thresholds of u (cardinal of ©,) is b,. The qualitative
value x, can have 2b, + 1 different values : b, + 1 regular qualitative values x, = |¢g|,¢ € {0,...,b,} which
indicate that u effectively acts on all targets ¢ for which we have 6,; < 6%, and b, singular qualitative values
Xy = |¢,q+ 1|,q € {0, ..., b, — 1}, which indicate that u effectively acts on the same targets ¢ and that for all
targets t such as 6,; = 271, the regulation is uncertain. In other words when a variable has a concentration
on a threshold (has a singular qualitative value) its influence on the associated target is uncertain.

Definition 4 (Qualitative regulatory network) A qualitative regulatory network, denoted by QR is a re-
gulatory network G = (V, E) in which



Qualitative state space

Continuous state space

Fic. 2 — Qualitative regulatory network (a) and its qualitative state space (b)

— to each vertex u, is associated a bound b, < #G+(u),
— each interaction u — v € E is labelled by a couple (Qyy,quv) € {—, +} X {1,..., by}, such that if qu, > 1
then Jw € Gt (u) such that quuw = quy — 1.
Quv 15 called the threshold rank and the qualitative threshold sy, of the interaction u — v is defined by

Syv = |qu - 17qu|-

Note that for each vertex u there exists a surjective function f, from G*(u) to {1,2,...,b,} such that
fu(v) = quy- In a practical point of view we associate to each variable a bound b,. Then with a surjective
function from the set of all edges going out from u to the set {1,2, ..., b,}, we associate to each edge from v the
threshold rank. The qualitative threshold on an edge is directly deduced from its rank. This construction of
qualitative regulatory networks is then independent of the differential equations. Contrary to the continuous
approach, for a given regulatory network G = (V, E), there is a finite number of qualitative regulatory networks.

Definition 5 (Qualitative state and regular/singular states) Let QR be a qualitative regulatory net-
work built on G = (V, E).
— The set of possible values of x,, is noted Q,, : Q, = {|0,10,1]|, |1].., |g — 1|, |g — 1, 4], 4], ---; |bu|}-
— The qualitative state x of the network is the vector composed by qualitative concentrations x, associated
to each verterv € V : x = (Xy)yev - The qualitative state x belongs to the finite space of qualitative states

QQR = HUEV QU'

— A state is singular if one of its coordinates is singular, otherwise it is regular.

Figure 2 gives an example of a qualitative regulatory network. Its qualitative state space is composed of 9
states, 4 regular states and 5 singular ones. Since the network contains only two variables, the 4 regular states
correspond to the 4 open domains in the continuous space, and the 5 others to 4 segments and one point.

In the modeling of R. Thomas, the qualitative concentration of a variable is an integer given by the following
discretization function d2®7 : Ry — N : df7(z,) = ¢ iff 09 < z, < 091! with 62 = —oco0 and 62! = +00. Thus
the qualitative concentrations of the Thomas model are integers {0, ..., q, ..., by} corresponding to the regular
values of our model {|0|, .., |g|, ---, |by|}- In other words if z,, ¢ O, then d,(z,) = |d®T (x,)|. The singular states
are not represented in the Thomas approach. Yet since they can be stable, they can play an important role
for the dynamics of the networks (see following section).

3 The dynamics of regulatory networks

The discretization map will be able to extract the essential qualitative features of the continuous dynamics.
We first present briefly the analytic solution when the interactions are approximated by step functions. In such
a case the different thresholds define domains in which the synthesis rates are constant. Let us introduce two
functions D, : Q, = P(Ry) and D : Qqr — P(R})#V defined by :

Dv(xv) = {xv eRy : dv(xv) = Xv} and D(X) = (DU(XU))XUEX

where P(€) will denote the set of parts of the set £. These functions give respectively the set of continuous
concentrations and the set of continuous states for which the discretization corresponds to the qualitative value
x, and to the qualitative state x. D, (x,) and D(x) are called the domains of x, and x.



If x is a qualitative regular state, Vx, € Dy(x,) and Yv € Gt (u), T (Tu, Ouv) € {0, kyy} because z,, & O,.
u € V. Thus we can deduce that Vo € D(x) and Vv € V, the synthesis rate S,(z) is constant. Since the
degradation A\,z, of v is linear, the differential equation system 1 has one solution on each domain D(x)
corresponding to each regular state. If the initial state is 2° € D(x), the solution is :

2y (t) = Xp(2°) = (X, (2°) —2l)e ™', WweV

where X, (z) = Sj\(ﬂz) . Thus all continuous states of the domain D(x) tend to the same constant state X (z°) =
(X, (2°))yev that is called the attractor of the domain D(x). If X(2°) € D(x), all states of D(x) will never
go out of the domain D(x) and they will reach (in +o00) the continuous steady state X'(z°). Otherwise if
X (2°) € D(x), then a state x of D(x) will evolve towards X, (z°) up to go out of the domain D(x). Outside
the domain, the solution of the system is not the same and the attractor is modified. In such a case the state
X, (z°) can be never be reached. We define naturally the qualitative attractor of a variable x, according to the

regular qualitative state x as the discretization of the attractor X, (z) :
Xy (x) = dy(Xy(2)), Vz e D). (4)

If x is a qualitative singular state, there is at least one variable u such that for all continuous states x
in z € D(x) we have z,, € ©,. There exists v such that z, = 0y,. Then T (z,,04y) =)0, kyy[ so Xy(z)
is an interval. Thus for generalizing the qualitative attractor of equation 4 to a singular qualitative state we
define the discretization of an interval as follows : dy(]a, b]) = |dy(a), dy(b)|. If a and b are not elements of ©,,
|dy(a),dy (D) is equal to ||g1], |g2|| with ¢1 < g2 because a < b and d, is an increasing function. Identifying
qualitative values |g;| and |gz| to integers ¢; and go (section 2), we pose ||q1], |g2|| = |¢1,¢2|- Thus the attractor
of a uncertainly regulated variable is defined.

The attractor of a qualitative variable x, does not give the value at the next step, but only the tendence. If
X, < X, (x) the variable tends to increase, if x, > X, (x) the variable tends to decrease, and if x, C X,(x) the
variable is steady. Then one considers that a state x is steady if all variables are steady. With this definition
of steadiness we prove the following theorem.

Theorem 1 A qualitative state x is steady iff there is a continuous steady state in D(x).

Proof : Let QR be a qualitative regulatory network built on G = (V, E), let x be a qualitative state and let
x be a continuous one. Using definition of the steadiness given in [19] z is steady if :

Ty = Xy(z) if 2, € O, and Ty € Xy(z) if z, € Oy, YveV

If z € D(x) is steady then x is steady because for all v € V :

1. If z, & ©,, we have z, = X, (x) so dy(z,) = d, (X, (x)) which is equivalent to x, = X, (x).

2. If z, € O,, xy, = dy(zy) is a singular qualitative value and we have z, € X,(z) =]a,b[. Since the
function d, is increasing, d,(a) < dy(z) < dy(b). Then d,(zy) C |dy(a),d, ()| (see definition 2) that is
dy(zy) C dy(Ja, b[) which is equivalent to x, C X, (x).

If x is steady there is one continuous steady state in D(x) because for all v in V :

1. if x,, has a regular value x, = |g| then x, = X,(x) <= d,(z,) = d,(X,(z)) for all =, € D,(x,) and

z € D(x). As z,, & O, and X, (z) € D,(x,), if z, = X, (), z, is steady.

2. if x, has a singular value x, = |¢ — 1, g| then

Xy CXy(x) <= |g—1,q| Cla,b| with X,(x) = |a, b
= la[<lg—1,q/ <0
= dy(a) < dy(wy) < dy(B) With z, = 6] and V(e B) € Dy(lal) x Dy(|])

Soa <z, <f <= z, €a,f]| = z, € Xy(z) with z € D(x). Thus z, is steady.

O

Since the function X, : Qqr — Q gives the attractor of a qualitative variable x, according to the qualitative

state x, it would be more suitable to express X, as a function of the qualitative state x independently of the

continuous state z € D(x). In this perspective let us define the regular/singular resources and the qualitative
parameters.



Definition 6 (Regular/singular resources) Let QR be a qualitative regulatory network built on G = (V, E)
andv €V.
— The set of regular resources Ry (x) of v according to the state x is the set of predecessors of v which acts
positively on v (effective activators or non effective inhibitors) :

Ry(x) = {u € G (V) : (Xy > Supy and Qyy = +) 0or (Xy < Supy ond Qyy = —)}

— The set of singular resources S,(x) of v according to the state x is the set of predecessors of v which acts
uncertainty on v :

Su(x) = {u € G™(v) : Xy = Suv}
Note that u € R, (x) if and only if Touv (T, 0uw) = kup and u € S, (x) if and only if Touv (v, Ouv) =10, kuyl-

Definition 7 (Qualitative parameters) Let QR be a qualitative regulatory network built on G = (V, E)
and v € V. The qualitative parameters K = {K, ., } is a family of integers indexed by couples (v,w) such that :
— v belongs to V and w is a subset of G~ (v)
- Kyw=0ifw=0and K, ., € {0,...,b,} otherwise.
-wC w' = Kv,w < Kv,w’

The definition 7 allows us to set down |Ky .| = dy(3_,c, k/\“v” ), because

L. if w = 0 then dy(}_,,c., k;ﬂ“) = dy(0) = [0] else dy(D_,c., '“/\L:) € {|0], 1], ..., |by|} under the hypothesis
that (3¢, 52) ¢ ©,.

2. if w C w' then (3, k):‘v”)
dU(ZuEw’ k)::})'

Then it is possible to define the function X, : Qqr — Q as a function of regular/singular resources and of the
qualitative parameters {Ky o }wca—(v)-

IN

(X uew =), and since d, is an increasing function, dy(3 ¢, 5=) <

Theorem 2 Setting |Ky,,| = dy (> k/\“v”) the function X, is given by X, (x) = |KU,R1,(X),K,U’Ru(x)usu(x)|

ucw

Proof :  Using equations 2 and 4, we have X,(z) = Z“EG_(”)ijw(“’ow). The contribution of all prede-
cessors which are not resources (regular or singular), is null. So we can write : Xy(z) = (3 ,cr, (x) Fuv/Av) +
> ues. (x) 10> ku[/ Ay with the convention 35, pa = 0. If S,(x) is empty, then X, () = 3, cg, () 5= Thus
Xy (X) =d, (ZuERv(x) k)\L:) = |Kv,w| = |Kv,RU (x);Kv,Rq,(x)USv(x)l-

On the other hand, if S,(x) is not empty, X, (z) = (3 ,cr, ) kuv/A0) + ]O’Euesu(x) kuw [ Av [ This can be

written as X, (z) = ]EuERv(X) k/\%,”, 2 wER, (x)USs (%) ’f\"u“ [ Thus

Xo(x) = dy (] PueR () 525 LueR, (us.(x) X D
Xo(x) = |dy (ZueRu (x) k%) , o (Euem (x)US. (%) kx")‘
Xo®) = |Koroeob Korous,moll

Xo(x) = |KuRo () KosRo(x)us. ()]

O

With this theorem the qualitative regulatory network is sufficient to define the attractor of each state of the

networks. We deduce from these attractors the tendency of each variable that allows us to define the dynamics
of the network expressed with the following state graph.

Definition 8 (Asynchronous state graph associated to a qualitative model) Let QR be a qualitative
regulatory network built on G = (V, E). The asynchronous state graph (or state graph for short) SG associated
to a model of QR, is a directed graph SG = (S, T) where S is the set of qualitative states of QR, and T is the
set of transitions between qualitative states such that :

1. x* = x* € T if x* is steady.

b
2.x* = x"eTif EIvEVsuchthat{i}j and xb =x2VueV)\{v}

u

7



where A} and Ay are the evolution operators defined as following :

+ 1] if x, = |q| _ lg —1,q| if x, = |q|
At (x :{ |q,q_ v and AT (x,) = L v
T = gl i xy = g — L] OO = gl i x, = g + 1

To explain this definition we have to notice that the attractor defines the state towards which the system tends
to evolve. We consider that two variables cannot evolve simultaneously, that is why the state graph is said
asynchronous. When several variables tend to evolve at a given state, additional information is needed to select
which one first changes. In fact it is the knowledge of time delays associated to each variation of variables,
which defines which one effectively evolve first[25]. As we have no information about time delays, all possible
variations are considered since all of them could occur first. As a consequence a state for which n variables
tend to evolve, has n successors.

Practically to built a state graph associated to a qualitative regulatory network built on G = (V, E),
we have to instantiate the qualitative parameters K = {K, ., : v € V,w C G~ (v)}. The data composed of a
qualitative regulatory network and an instantiation of its parameters is called a model. Note that there is a finite
number of models associated to a qualitative regulatory network, since the number of possible instantiations
of parameters is itself finite. Thus, the qualitative approach allows with a finite number of models to study
the qualitative features of the infinity of continuous dynamics associated to a regulatory network.

In the Thomas’ approach, the logical parameters is defined in the same way. Thus the models associated
to a qualitative regulatory network are the same in both approaches (in particular there is the same number
of models), but the state graphs deducing from these models are different. Indeed, the attractor of a variable
xy of R. Thomas can be written with our notation by X' (x) = K, g, (x) Where x is a state of R. Thomas (a
vector of integers) and where x' is the qualitative regular state identifiable to x (x, = |x,| for all v € V). Thus
the attractors of the states of Thomas’ approach are the attractors of our regular states : X, (x') = |XF(x)|.
Then the R. Thomas’ state graph contains only transitions between regular states such that x* — x® is a
transition if x® is steady and x® — x? is a transition if :

x? = x0 + 1if x2 < XBT(x2)
b

b _ a
X = xt — 1 if xi > XRT (xa) and x, =xVu€eV\{v}

J v € V such that {

Let us consider the model corresponding to the qualitative regulatory network of figure 3, it corresponds

to the modeling of the mucus production of Pseudomonas aeriginosa[14]. The variable u acts positively on

v and on itself, and v acts negatively on u. For each possible qualitative state, one can deduce the symbolic

attractor expressed as the vector of the qualitative values X, (x) = |Kv,RU(X), K, R, (x)USu(x)| ,v € V. Then the

attractor is explicitly computed for the following instanciation of qualitative parameters : K, g = 0, Ky, = 2,

Kuuw =2, Kyu =2, Ky =0and K, ,, = 1. Finally the definition 8 allows us to construct the asynchronous

state graph. It is compared to the R. Thomas’ state graph obtained with the same parameters. One can notice

that our state graph contains 2 more steady states than the R. Thomas’ state graph which are thus steady
qualitative singular states.

4 Functionality of feedback circuits

Most often, there is a huge number of models associated to a regulatory network. Indeed, for each v € V, the
number of possible instantiations of all parameters K, ,, is exponential according to the number of parameters
K, ,. Moreover the number of parameters K, ., associated to v is also an exponential function of the number of
its predecessors. Then, the major issue of the modeling activity is to select the suitable set of parameters which
give a qualitative behavior coherent with the experimental knowledge on the system. Three different kinds of
dynamic properties are often used to aid the selection of suitable models : steady states, multistationarity and
homeostasis. The selection of models which presents a given set of steady states remains a simple application of
definition of steady states (see section 3). On the other hand the two other dynamic properties are not directly
expressed in term of parameters, and their detection in a given model is not trivial. Hopefully the feedback
circuits theory [26] allows us to link dynamic properties (multistationarity and homeostasis) to parameters
and to select appropriate models.

In a feedback circuit, each variable has an influence on its target but also an indirect effect on all following
elements including itself. A feedback circuit is said positive (resp. negative) if each variable has a positive (resp.
negative) influence on itself. The sign of the circuit is determined by the number of negative interactions : the
circuit is negative if the number of negative interactions is odd, otherwise it is positive. It has been shown
that it is possible to associate to a feedback circuit a typical dynamic behavior : in a negative circuit, a
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R. Thomas’ state graphe Asynchronous state graph
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| M f ! !

0[10,1] = [0,1] [0,1]  [1][0,1]  [1,2[[0,1]  [2[[0,1]

| f !

00——=10—>20 (O] 10] —= 10, 1] [0] —= [1] [0] —= [1,2] [0] — [2[ 0]
F1G. 3 — An example of regulatory state graph (see text).

high concentration of a variable tends to make decrease itself (and reversely). Thus the circuit makes the
concentration of each variable to tend to (or oscillate around) an equilibrium concentration. It then generates
homeostasis. In a positive circuit, a high (resp. low) concentration of a variable tends to make it increase
(resp. decrease). Thus each variable can stay at a low or high concentration and the positive circuit generates
multistationnarity. A feedback circuit, which presents a typical dynamic behavior is said ’functional’. Several
other properties on the behabior of feedback circuits have been proved : at least one positive regulatory circuit
is necessary to generate multistationarity whereas at least one negative circuit is necessary to generate a stable
oscillatory behavior[26, 23, 15, 6, 18, 20]. Thus the positive feedback circuit can generate differentiation[22].
One can then demonstrate that m functional disjointed positive feedback circuits generate 3™ steady states of
which 2™ are regular.

In the sequel we first introduce the notion of characteristic states of a feedback circuit which play a
fundamental role : the steadiness of one of them leads to the functionality of the circuit. We then give the
conditions for the steadiness of a singular state : it has to be characteristic and some constraints on parameters
have to be verified. The proof of these conditions by Snoussi and Thomas is quite technical in their modeling
because they do not explicitly take into account the singular states in the state graph. This leads us to compare
the two states graphs for a model which verifies the condition of functionality of some circuits and to give a
theorem which shows how the dynamics of Thomas are present in our modeling.

4.1 Characteristic states

A circuit can be described by the finite set of edges which compose it. A characteristic state of a circuit[19]
is defined as a state in which u is a singular resource of v iff (u — v) is an edge of the circuit. This notion
of characteristic state can be extended to the union of circuits. Two cases are to be considered : a disjointed
union of circuits is a union in which all couple of circuits have no vertex in common, otherwise the union is
said jointed.

Definition 9 (Characteristic state of an union of circuits) Let QR be a qualitative regulatory network
built on G = (V, E) and let C an union of circuits. The state x is characteristic of the union of circuits if we
have : u is a singular resource of v iff u = v is an edge of the union of circuits, that is C = |, cy{u = v,u €

Sy(x)}.



Note that a characteristic state is singular and that when an union of circuits does not contain all variables
of the network, several characteristic states are associated to the union. Some examples of circuits with their
characteristic states are given in Figure 4. E. H. Snoussi and R. Thomas proved for their formalism that

..... N2 s A -S>
a) 16%._1.. vior o U v e BN 17%\*1/1} 2

1 l/l 1 l/l 1 //1 1 1

w w w w

C1 ={u —u} Cy = {v— v} Cs ={u = v,v— u} Cy ={u = v,v = w,w — u}
b) a s CLUCs CsUCy

Xu Xy Xw Xu Xy Xw Xu Xy Xw Xu Xy Xw

0,1 {0 0] o] [1,2] 0] 0,1] [1,2] 0| 11,2] 10,1 0,1]

0,1 {0] [1] o] 1,2 [ 0,1] 1,2 [1

0,1 [1] 0] 11,2 0]

0,1 1] [1] 11 [1,2[ 1]

0,1 {2 0]

0, 1] 2} 1]

F1G. 4 — Sets of circuits (a) and all possible characteristics states (b) of a regulatory network. The interactions
are not labelled by any sign because they do not play a role in the notion of characteristic states. Note that
there is no characteristic state for Cs or for Cy separately since if v is a singular resource of u, then it is also
a singular resource of w (both interactions have the same threshold).

a singular state can be steady only if it characterizes a feedback circuit. This property is preserved in our
qualitative modeling.

Property 2 Among singular states, only characteristic states can be steady.

Proof : Let QR be a qualitative regulatory network built on G = (V, E) and let x a non characteristic
singular state. Then there is an edge v — w such that v is a singular resource of w and such that all resources
of v are regular. Then x, is a singular value and it can be deduced that the attractor of x, is a regular
qualitative value X, (x) = |K, r,(x)|- Since a singular value cannot be contained in a regular qualitative value,
xy € X, (x), and x cannot be steady. O

4.2 Constraints for functionality of feedback circuits

To select suitable models, one has to translate functionality of feedback circuits in terms of constraints on
parameters. It has been proved with the formalism of Thomas that the functionality of feedback circuits is
directly linked to the stationnarity of characteristic states.

Theorem 3 [19] All circuits of a disjointed union are functional if one characteristic state of the union is
steady.

Intuitively a characteristic state of a negative circuit acts as an attractor since for all variables implicated
in the circuit, if the concentration is above (resp. below) the out-threshold in the circuit, the negative effect on
itself tends to make it decrease (resp. increase). On the other hand, a characteristic state of a positive circuit
is unstable, because for each variable of the circuit the slightest departure from the threshold is sufficient to
make topple down the variable under or over its threshold.

With the previous theorem 3, the constraints for functionality are equivalent to the constraints for steadiness
of characteristic states. In our modeling these constraints are expressed trivially : let x a characteristic state
of an union C of circuits. It is steady iff for each variable v, x, C X, (x).

— For each variable u not implicated in C, S,(x) = 0 and x, C Xyu(x) <= x, = Xu(x) <= x, =

|Ku,Ru (x)|
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— For each variable u implicated in C, we have S, (x) # 0 and x, = Syy = |quv — 1, Guv| Where u —» v € C,
then
Xu g XU(X) — |quv - ]-5 quv| g |I<u,Ru (x)> Ku,Ru (x)US. (x)l
— Ku,Ru(x) < Quo — 1 and Guv < Ku,Ru(x)USu(x)

— Ku,Ru(x) < Qup < Ku,Ru(x)USu(x)

Snoussi and Thomas deduced also constraints on parameters from functionality of circuits which are expressed
in the following theorem.

Theorem 4 [19] For a given model, there exists a steady characteristic state associated to a circuit C if there
exist two regular qualitative states (in the Thomas model) x* and x— such that :

~ for each variable u not implicated in C, x; = x} and XET(x¢) = x¢, with ¢ € {+, -}

— for each variable u implicated in C' whose the successor in C is v,

. xf = Quu
if Qe = + then Xﬁ B 1

wZh T and XET(x0) < que < XET(xY)
if Qyy = — then u = u

Xy = Quv

where qyu, is the integer labelling the interaction u — v. The states xT and x~ are called the adjacent regular
states of the characteristic state of the functional circuit which give respectively the minimal and mazximal
attractors.

The notion of resources permits us to develop the constraints of the previous theorem in terms of parameters.
We assimilate both x* and x~ of the modeling of Thomas to the corresponding qualitative regular states in our
modeling. The steady characteristic state x which has x* and x~ for adjacent states, is the only characteristic
state of C which verifies x,, = x;; = x; for all u not implicated in the circuit. By definition, the resources of
each variable of the circuit at the state x~ are not in the circuit. Since x,, = x for all u not implicated in the
circuit, we have for all u, R, (x™) = Ry (x). In contrast, by definition of the state x™ each variable implicated
in the circuit is a resource of its successor in the circuit. So we have for all u, R, (x*) = Ry (%) U S, (x) (with
S.(x) # 0 if u is implicated in the circuit and S, (x) = @ otherwise). Thus :
— for each variable u not implicated in C, we have S,(x) = ) and

X,Z = XgT(Xe) < XZ = |Ku,Ru(x€)| = Xy = |Ku,Ru(x)| with € € {+, —}
— for each variable u implicated in C' whose the successor in C' is v, we have S, (x) #  and
XfT(X_) < Guy < XfT(X+) <~ Ku,Ru(x_) < Quy < Ku,Ru(x+) <~ Ku,Ru(x) < Guv < Ku,Ru(x)USu(x)
Thus the constraints elaborated for the Thomas model from which the proof is technical is equivalent to the

constraints expressed in our modeling.

4.3 Examples and comparison with R. Thomas modeling

In the previous subsections, we highlight that characteristic states play a central role in the circuit func-
tionality and we show that the conditions for functionality are the same in the R. Thomas modeling and in
our one. Now we compare the dynamics of models for which some circuits are functional in both modelings.
Let us start with a first example which contains a unique vertex which acts on itself positively or negatively :

L_: vQ—,l Ly : UQ+,1

We deduce from these two loops the following symbolic attractors :

Lo x| Xe(x) Li: x| Xy(x)
0] Koo |0 Kool

[0,1] | |Ky,9, Kyv,0| < characteristic state — [0,1] | |Ky g, Ky,»]
ol [Ky,p] It Kool

The two loops are functional, if the associated characteristic state |0, 1| is steady. In terms of parameters we

have :
|071| g XU(|071|) <~ |071| g |Kv,(DJKU,1)| <~ KU,(Z) S 0 a‘nd KT),U Z ]‘
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Thus, K, p = 0 and K,, = 1 is the only one possible instantiation of parameters for which the loops are
functional. The attractors and the tendencies of each state for both models are :

L_: Xy | Xu(x) | Tendencies Ly: xy | Xo(x) | Tendencies
0| 11 / 0| 0] ~
[0,1] | [0,1] ~ + steady characteristic state — |0,1| | |0,1] ~
1 |0 N 1 1 ~

One then deduces the four state graphs :

R. Thomas with singular states
. )
L_: 0 1 0] —=10,1] =— [1]
N~

Ly Co 13 C\OI IE?T \HD

In the 4 state graphs, homeostasis or multistationarity induced by the loop functionality is present. The greatest
difference of representation between both modelings concerns the negative circuit :

1. The paths of the Thomas’ state graph do not correspond to paths between regular states in our state
graph. When a characteristic state of a negative loop v — v is steady, then the Thomas’ state graph is
not “contained” in the state graph with singular states (see the property 3 for details).

2. The state graph reflects an softened oscillation towards the characteristic state in our modeling and an
infinite oscillation for Thomas modeling.

In the Thomas modeling it is not possible to represent the softening generated by the functionality of negative
circuits. That can infer a confusion about the interpretation of the circuit functionality. Let us consider now
the qualitative regulatory network of figure 3 containing 2 variables with a negative circuit of length 2 and a
positive loop. The following table gives for each characteristic states the constraints for steadiness.

characteristic states Symbolic attractors Contraints for
Xy Xy Xu(x) Xy (x) the functionnality
Circuit - | |0,1] |0, 1] Koo, Kupw|  [Ky,0, Koul Kyv>1 Kyu>1
Circuit + | |1, 2] ] K0, Koo Ky vl Kuov <1L,Kyuw >2 Kypu=0
Circuit + | |1, 2] 1] 1K o,0, Ku,ul Kyl Kyu > 2 Kyu=1

The necessary conditions for functionality of both circuits are compatible in the case of steadiness of the second
characteristic state of the positive circuits. For example the following instantiation of qualitative parameters
Kuo =0, Kup =2, Ky =2, Ko = 2, K, 9 = 0 and K, , = 1 makes functional both circuits and the
associated state graphs are depicted in figure 3. Then a multistationarity is predicted (functional positive
loop). But in the Thomas’ state graph there is only one steady state (the two others are singular) and from
each state it is possible to go to it. Then the state graph does not illustrate the predicted multistationarity.

In both state graphs, the paths between regular states are coherent. Indeed, each transition x! — x2 of the
Thomas’ state graph corresponds to a path x® — x®* — x® where x® and x° are identifiable to x' and x? and
where x° is a singular state. Note that the network does not contain negative loop (circuit of length 1) then
for all models deduced from this network the R. Thomas’ state graph is “contained” in our one. This results
from the following property.

Property 3 Let QR be a qualitative requlatory network built on G = (V, E). Letx* — x? (with x* distinct from
x?) be a transition of a state graph of R. Thomas deducing from a given possible instantiation of parameters
and let x,, be the only one variable which evolves during the transition x' — x? (xL # x2). Let us define

— x® and x°, the qualitative reqular states identifiable to x' and x* (x% = |x}| and xt = |x2| for allv in V)

— x° the qualitative singular state between x® and x° (x5 = x2 = x° for all v # u and x5, = |x.,x2| if
1 2 8 — [x2 1 ;
x, < x. and x5, = |x.,,x,,| otherwise).

Then the qualitative state graph contains the path x® — x® — x® if x, is not steady (x% is steady imposes that
x°® is a characteristic state of the negative loops u — u).

Proof : Let us set down x2 = |g|. Since x! — x? is a transition of the state graph of R. Thomas and since
x! # X27 X’:}L # XﬁT(xl) — XZ # |Ku,Ru(xa)| — |q| 7é |Ku,Ru(X“)|'
o If |q| < |Ky R, (x| then x5 = |g,q + 1|, x, = |g + 1], so x® — x* is a transition of our state graph, and
|q + 1| < |Ku,Ru(xa)|-
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o If x° is not a characteristic state then the variable u does not regulate itself or the threshold of the
auto-regulation is not equal to xj, = |g,¢ + 1|. So Sy (x*) = 0 and X, (x*) = |[Ky R, (x*)| = [Ku,Ru(x2)[-
So x§ = |¢,q+ 1| < |[Kyr,(xe)| and x* — x" is a transition of our state graph.

o If x® is a characteristic state (u — u € E and sy, = |¢,q + 1|) then S, (x°) = {u}.

o If ayy = + then Xy (x°) = Ky R, (x*) KuRo (x2)Ufu} ] = KuRu (x0) KuRu (xe)ugu} |- SO x5, = |g,¢+1] <
|Ku,Ro (x2) Ku,Ro (xe)u{u} | and x* — x® is a transition of our state graph.

o If iy = — then X, (x%) = Ky g, (x), KuRo (x)Uful | = KuRu(xe)\{u}> Ku,Ra (xa)]- S0, if X3, is not
steady we have x = |¢,q + 1| € |Kyr,x)\{u}Re(x) = € < Kypoxep\fu} <= ¢+1<
Ky R (x)\{u}- S0 1¢,q + 1| < [Ky Ry xo)\{u}s Ku,Ro(x2)| and x* — x¥ is a transition of our state
graph.

o If |q| > |Ky R, (xo)| then x5 = |g — 1,¢|, x5 = |¢ — 1], so x* — x° is a transition of our state graph, and
|q - 1| > |Ku,Ru(x“)|'

o If x° is not a characteristic state then the demonstration is identical.

o If x® is a characteristic state (u = u € E and sy, = |¢ — 1,¢|) then S,(x*) = u.

o If oy, = + then Xu(Xs) = |Ku,Ru(xs)7Ku,Ru(x3)U{u}| = |Ku,Ru(x“)\{u}7Ku,Ru(x“)|' So X,Z = |q—].,q| >
K R (xo)\{u}> KuRo (xe)| @nd x* — x? is a transition of our state graph.

o If Ay = — then Xu(XS) = |Ku,Ru(x5)7Ku,Ru(x")U{u}| = |Ku,Ru(xa)7Ku,Ru(x“)U{u}|- SO, if X,'Z is not
steady we have x, = [¢ — 1,q| Z |Ky R, (x*)s KuRu(xa)ufu}] = ¢ > KyRy(xo)uquy &= ¢—12>
Ku,Ra(x*)ufu}- S0 10 — 1,4| > |Ky Ry (x*)s KuRo (x*)ufu}| and x* — x" is a transition of our state
graph.

d
This approach has been successfully applied to the mucus production in Pseudomonas aeruginosa. This
bacteria is commonly present in the environment and secretes mucus only in lungs affected by cystic fibrosis. As
it increases the respiratory deficiency of the patient, it is the major cause of mortality. The regulatory network
of the mucus production has been widely studied[13, 7] and can be sketched by the system presented in the
figure 3. The instantiation of parameters of the figure makes both circuits functional. The multistationarity
due to the functionality of the positive loop is clearly represented in the qualitative state graph. It is then
possible to associate particular behaviors concerning the mucus production to some steady states.

5 Conclusion and perspectives

In this paper we present a new qualitative modeling based on the R. Thomas works which allows us
to represent the singular states in the dynamics. In both cases the models are built as a dicretization of of
piecewise-linear differential equations system but our modeling, taking into account the singular states, permits
us to represent all the steady states of the continuous dynamics. Moreover, the introduction of singular states
leads to some other remarks : the increase in the number of states does not imply an increase in the number
of models associated to a networks, the state graph reflects the softening of the negative functional circuits
and it does not contradict the dynamics of R. Thomas. Finally, the theorems of the functionality of feedback
circuits in the modeling of R. Thomas have been extended to our modeling : the introduction of singular states
and of singular/regular resources make the demonstration more straightforward.

The R. Thomas modeling supposes that all interactions of a regulator on its targets have different thresholds.
This constraint has been relaxed. Thus it leads to define the characteristic states of jointed union of circuits,
of which the functionality is still to be defined.

Now that the all steady states are present in the state graph, we will take advantage of the corpus of
formal methods to confront the models to biological knowledge. Indeed we want to select models which are
coherent not only with the static conditions (functionality of feedback circuits) but also with some known
dynamic properties extracted from biological experiments or hypothesis. We have already implemented a
software, SMBioNet|[2, 16] (Selection of Models of Biological Networks), which allows one to select models
of given regulatory networks according to their temporal properties. The software takes as input qualitative
regulatory network (with a graphical interface), some temporal properties expressed as a CTL formulae and a
set, of functional loops. Then it generates all the R. Thomas models and gives as output those which satisfy the
specified temporal properties (using the NuSMV model checker[4]). A short-term perspective is to introduce
in SMBioNet the new modeling with singular states.

More generally the formal methods can be applied in the field of biological regulatory networks in order
to explicit some behaviors or to model some other biological knowledge. Let us mention for example that the
introduction of transitions in the regulatory graph could help to specify how the different regulators cooperate
for inducing or repressing their common target [1]. One can also separate inhibitors from regulators to increase
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the readability of the approach, or take into account time delays[24] between the beginning of the activation
order and the synthesis of the product and conversely for the turn-off delays. These constitute ongoing or
future works of our genopole® and G® research groups.
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