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ABSTRACT

Mucoidy and cytotoxicity arise from two independent modifications of the phenotype of the
bacterium Pseudomonas aeruginosa that contribute to the mortality and morbidity of cystic
fibrosis. We show that, even though the transcriptional regulatory networks controlling both
processes are quite different from a molecular or mechanistic point of view, they may be
identical from a dynamic point of view: epigenesis may in both cases be the cause of the
acquisition of these new phenotypes. This was highlighted by the identity of formal graphs
modelling these networks. A mathematical framework based on formal methods from computer
science was defined and implemented with a software environment. It allows an easy and
rigorous validation and certification of these models and of the experimental methods that can
be proposed to falsify or validate the underlying hypothesis.

1. INTRODUCTION

The word epigenesis was first coined by Harvey in 1651, to describe the gradual
formation of the different parts of an embryo. However, this word took on a new
meaning when geneticists developed the notions of genotype and phenotype.
Epigenetic modifications arise and can be transmitted from a cell to its progeny in the
absence of genetic or environmental modifications. They may be triggered by an
environmental signal but remain upon disappearance of this signal. Thus, several
stable phenotypes may arise from the same genome in the same conditions.

This is the biological equivalent of the physicist’s description of multiple steady
states arising in non-linear dynamic systems. It has been shown in several instances
that multistationarity is a good description of biological processes such as epigenesis
(Guespin-Michel et al., 2003), differentiation and memory (Delbriick, 1949;
Demongeot, 1998; Casadesus and D’Ari, 2002). Thomas (1981) conjectured that a
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positive feedback circuit is a necessary condition for the presence of multiple steady
states in a dynamic, non-linear system, and this was formally verified later (Snoussi,
1998; Cinquin and Demongeot, 2000; Soulé, 2003). This means that considering the
presence and the nature of feedback circuits may lead to useful hypotheses concerning
the behaviour of a biological system (Thomas and Thieffry, 1995; Thomas, 1998).
Feedback circuits often involve several levels of molecular interactions (transcription,
translation, metabolic interactions, etc.). However, transcriptional regulatory networks
may display such circuits, generally embedded in larger systems. It is then possible to
extract simple models from these networks, that only take into account the interactions
responsible for feedback (Thomas and Kaufman, 2001; Kaufman and Thomas, 2003).

In a preceding workshop of the SFBT (2000) this led us to propose that the
production of mucus by strains of Pseudomonas aeruginosa isolated from the lungs of
patients suffering from cystic fibrosis may be due to an epigenetic modification. A
model was also proposed to help design experiments to test this proposal (Guespin-
Michel and Kaufman, 2001). Here we show that the very same abstract model can be
proposed for an otherwise quite different regulatory network controlling the
acquisition of cytotoxicity in the same bacterium in similar conditions, highlighting
the possible dynamic similarity between these regulatory networks.

Starting from these biological examples we have created a new software
environment for these abstract regulatory networks, based on the aforementioned
theorem of R. Thomas, which integrates sophisticated algorithms from computer
science (SMbioNet). This software environment provides biologists with a model
validation tool and provides a rigorous basis for the concept of dynamic similarity.

2. MUCOIDY

The opportunistic bacterium, P. aeruginosa, is the major cause of mortality in
cystic fibrosis. In the lungs of cystic fibrosis patients but in no other growth
conditions, P. aeruginosa becomes able to produce a heavy mucus (alginate) that
enhances its antibiotic resistance and increases the respiration deficiency of the patient
(Govan and Harris, 1986). Bacteria isolated from the lungs of such patients can be
cultivated and form more or less stable mucous colonies called mucoid variants. The
regulatory network controlling alginate synthesis has been extensively studied (Schurr
et al., 1994). The main regulator was shown to be a sigma factor, AlgU, which is
necessary for the expression of several operons involved in alginate production and
regulation, including its own operon, the algU mucABCD operon. muc genes encode
proteins that form an anti-AlgU membranous complex (Rowen and Deretic, 2000)
(Figure 1a).

This leads to the interlocking of a positive feedback circuit (AlgU is necessary for
its own synthesis) and a negative feedback circuit (AlgU is necessary for the synthesis
of its inhibitors). Therefore, the conditions required for epigenesis are met. However,
since a mutation has been identified in the mucA4 gene of many mucoid strains
(Boucher ef al., 1997), it is generally admitted that this mutation is responsible for the
acquisition of the mucoid phenotype. By contrast, we have proposed that the presence
of bacteria in the patient’s lungs induces an epigenetic modification (synthesis of high
amount of AlgU, leading to the stable production of mucus) (Guespin-Michel and
Kaufman, 2001). In our hypothesis, the antisigma factor, a membrane complex that
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traps AlgU, must be produced, together with AlgU protein itself, at a higher rate than
in the non-mucoid strains, which may constitute a high metabolic burden. The
epigenetic modification to mucoidy might thus, in turn, prompt the selection of
mutants impaired in the membrane complex. We claim that in the patient’s lungs, an
epigenetic modification may precede the selection of mutations.
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This epigenetic hypothesis has been first tested by modelling (Guespin-Michel and
Kaufman, 2001). A very simplified model of the regulatory network has been
constructed as depicted in Figure 1b. The three variables are x = AlgU, y = the AlgU
inhibitors and z = alginate production. The four edges represent: the autoregulation of
variable x (x — x), the transcription of the genes encoding the antisigma factors

(x = ), the transcription of the genes involved in alginate production (x — z), and
finally the inhibition of AlgU by the antisigma factors (y — x). Two feedback circuits

control AlgU, a positive feedback circuit at the transcriptional level, and a negative
feedback circuit involving the activity of the AlgU sigma factor.

This model has been first studied by generalised logical analysis (Snoussi, 1989;
Thomas and D’Ari, 1990). This showed that the epigenetic hypothesis (the possibility
that two stable states may exist depending on the previous history of the system) is
coherent and that biologically consistent values of the parameters in the equation can
lead to properties that mimic those of the system. However, there is more to it. The
model predicts that a pulse of AlgU (provided by placing the algU gene under the
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control of an inducible promoter) will suffice to switch wild type bacteria to a mucoid
state. The model is thus predictive as well as explanatory.

3. CYTOTOXICITY

In order to become mucoid in cystic fibrosis lungs, the bacteria must first multiply
to a rather high density, which should be prevented by the host’s defences. However,
many mucoid bacteria isolated from the patient’s lungs are also cytotoxic and
therefore they are able to lyse the host’s macrophages and thus overcome these
defences (Dacheux et al., 2000, 2001a). Cytotoxic P. aeruginosa, like many other
cytotoxic bacteria synthesise a secretory apparatus (Type III) that enables them to
inject toxins from their cytoplasm into the target cell (or in the medium when the
contact is simulated by laboratory conditions such as Calcium depletion; Feltman et
al., 2001; Franck, 1997). By contrast, most P. aeruginosa strains from the
environment are not able to become cytotoxic in these conditions. Only bacteria
isolated from patients suffering from diseases such as cystic fibrosis have this ability
which they retain more or less stably when plated on agar medium. No mutation
responsible for this ability has been reported; indeed, the nature of the mechanism
which leads to this ability is not generally addressed in the literature. It is therefore
interesting to investigate whether it could be epigenetic.

It must be noted that there is no strict correlation between mucoidy and
cytotoxicity since bacteria isolated from the patient’s lungs can display both
phenotypes or only one of them (Banwart et al., 2002; Dacheux et al., 2001a; Moss et
al., 2001). The regulatory networks responsible for the production and regulation of
the proteins involved in Type III secretion have been studied in several bacterial
pathogens (Hueck, 1998) including recently P. aeruginosa (Franck, 1997).
Cytotoxicity is controlled by a main regulator, ExsA, which positively regulates in
trans the expression of all the operons involved in the process, including its own,
namely the production of the secretory apparatus and toxins (Dacheux ef al., 2001b).
The first gene exsD of one of the operons regulated by ExsA, encodes an inhibitor of
ExsA. (McCaw et al., 2002) (Figure 2a). Two feedback circuits thus control ExsA, a
positive feedback circuit at the transcriptional level and a negative feedback circuit
involving the activity of ExsA. These circuits are interlocked since ExsA is necessary
for both its own synthesis (the positive feedback circuit) and the synthesis of its
inhibitor (the negative feedback circuit). Thus a minimal formal graph can be drawn
that is strictly identical to that for the regulatory network of mucus production
(Figure 2b). The three variables are x = ExsA, y =the ExsA inhibitor ExsD, and
z =type III secretory apparatus and toxin production. The four edges represent: the
autoregulation of variable x (x — x), the transcription of gene exsD (x — y), the
transcription of the genes involved in type III secretory system (x — z), and finally the
inhibition of ExsA by ExsD (y — x). Therefore, the hypothesis of an epigenetic
modification can be proposed for the same reasons as for the mucoid phenotype. Since
the model in Figure 2b is strictly identical to that of Figure 1b and since the hypothesis
to be tested is the same (epigenesis), the results in terms of epigenesis are the same

and the same type of experiment can be proposed to test the hypothesis. This holds
true even though: i) other genes are involved in the cytotoxic regulatory network and
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their precise role is unknown although it does not seem to involve another circuit
(Dacheux ef al., 2002); ii) this description does not take into account the inducing role
of the presence of the target cell (or of calcium depletion in laboratory conditions); iii)
the description of the regulatory network is limited to transcription and does not
contain the regulatory role that is presumably exerted at the level of the secretory
apparatus itself (Miller, 2002).
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4. FORMAL LOGIC TO PROPOSE MODELS AND EXPERIMENTS

Temporal Logic and Model checking

The mathematical treatment of this model has been presented (Guespin-Michel and
Kaufman, 2001) but a formal treatment can also be performed on a computer provided
that the properties are formally defined. The objective of such a formalisation of the
mathematical models is to make it possible to exhaustively study all the sensible
models; this in turn facilitates the design of experiments to validate or invalidate them
(Bernot et al., 2002, 2003a). Behavioural properties where time plays a central role
have to be formalised, thus we use temporal logics (Huth and Ryan, 2000).

For a given formal graph, there is a large number of dynamic models depending on
the values of thresholds and parameters. Each one defines a specific temporal
behaviour. Experimental knowledge can be expressed using several temporal logic
formulae. Each temporal logic formula expresses a property which can be used to split
the set of possible dynamic models into two parts: those which satisfy the property and
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those which do not. The splitting can be computed automatically using the Model
Checking algorithm. Consequently, formalising biological knowledge into temporal
formulae allows us to automatically extract the sensible models (Pérés and Comet,
2003).

Our software environment SmbioNet allows the user to draw the regulatory
network as in Figures 1b and 2b, and generate all the compatible models. It then
permits the user to enter temporal logic formulae and to keep only the models which
satisfy them (Richard ef al., 2000). Entered in SMbioNet the two graphs generate 648
dynamic models, each one with its own behaviour, corresponding to different
thresholds and parameters.

a) Figure 3. A Model satisfying
the epigenetic hypothesis. a)
Formal graph. The threshold of
the regulation of x on itself is
inferior to that of the regulation
of x on y. Since z is not a
regulator, it does not have any
influence on the dynamic and
thus it is not represented. b)

b) Parameter table. The two first
Kx Ky columns define the states of the
Kx{y} =0 Ky{} =0 network and the two others the
Kx{}=0 Ky} =0 parameters. A parameter Kx,w
Kxfx =2 Kyf{l=0 gives the expression level

towards which X tends to evolve
Kxfx} =1 Kyi}=0 when w represents all the
Kxixy} =2 Kyix}=1 positive regulatory effects that
Kx{x} =1 Ky{x} =1 are active on X (including the
lack of active negative effects).
c) For the given example, w reflects
e the effects of x, if it’s value is
’ r higher than the activity
thresholds indicated in the graph,
and the effects of y, if its value is
| | T lower than the activity threshold.
v L ‘ c) State transition graph. The
0.0 10 — dynamics of the model is directly
A ’ deduced from the values of the
x parameters (see Bernot et al.

(2003b, 2004) for details).

NN == OO =
e l=A e = = 5]

0.1 [ (1,1 «— (2,1

Consistency of the epigenetic hypothesis

The epigenetic hypothesis means that even in the presence of the inhibitor (y) it is
possible to have a recurrent state in which mucus production (or cytotoxicity) (z) is
activated. The epigenetic hypothesis is consistent if and only if there exists at least one
model with the (y — x) inhibition such that the behaviour can reach a state from which
z is activated in a recurrent way. This amounts to verifying if there is a model such
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that, if at a given time the bacterium has acquired the new phenotype (mucoidy or
cytotoxicity), then later it will be again in the same state. This is formally expressed
according to temporal logic as:

(z=1 — Fs(z=1)), where Fs means “in a strict future”.

Since the non-mucoidy (resp. non-cytotoxicity) phenotype is stable in the wild
bacterium, the models to be considered for consistency must also have a behaviour
where a non-mucoid bacterium (resp. cytotoxic) cannot become mucoid (resp.
cytotoxic) later on. This is formally expressed as:

(z=0) — always (z=0).

By giving these formulae to SMbioNet we can automatically know how many
models (and which ones) satisfy the formulae. Since z =1 requires that x =2, the
epigenetic hypothesis means that the relative forces of the two circuits are such that it
is possible to make recurrent x =2. Consequently the previous formulae are
equivalent to [(x =2 — Fs (x=2)) and (x=0 — always (x <2))] as well as to

[x=2 — Fs(z=1))and (x=0 — always (z=0))]. SMBioNet has shown that eight

models satisfy these formulae (Richard ez al., 2000; Bernot et al., 2003b, 2004), two of
which ensure that all the regulations of the network are active (these two models
cannot be deduced from simplest networks). Figure 3 gives one of these two models:
when (x = 0) then we always have (x = 0), thus it is not possible to evolve towards a
state where (x = 2). When (x = 2) the state of the network is in a cycle from which one
cannot exit and in which (x = 2) periodically.

Experimental proof design

The consistency of the epigenetic hypothesis being established, the next step is to
propose experiments which prove it in vivo. The second formula is obviously satisfied
in vivo. Thus only the first formula has to be tested. As we can see in Table 1, when
the left part of the formula (x=2 — Fs(z=1)), is false, the formula is always true

regardless the value of the right part. So the only relevant experiments start by
assigning (artificially if necessary) x to 2 and the whole formula is true if and only if
Fs (z=1) is true, that is if and only if after a lapse of time z is equal to 1. The scenario
of experiments is thus the following:

1. Start by pulsing x to saturation with an external signal until it imposes that
(x = 2) and then stop the pulse.

2. Wait a lapse of time to allow the system to settle down and observe the
phenotype. The length of this “lapse of time” must be determined experimentally; here
it stands for “as many subsequent generations as possible.” If the bacterium has not
changed its phenotype, then the experiment a priori fails. If the bacterium has
acquired a new phenotype (mucous or cytotoxic), that lasts at least several generations
after the external signal has been removed, then, epigenesis is proven.

Of course, this is only useful if this prediction is amenable to experimentation, (it
is “operable”), and if the results of the experiments are “observable”. In other words,
is it possible to use some device to raise x to 2, then remove this device, and then
observe the modification of the phenotype at different times?
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In the case of P. aeruginosa the first requirement involves the possibility of
increasing x temporarily without introducing the bacteria into the lungs of a cystic
fibrosis patient. Several methods can be used of which a pulse of protein “x” from a
genetically engineered construction is a standard method.

Table 1. Truth table of the logical connector p — ¢

p — q istrue: p \ g |true false
1. When p is false, the implication true true true
is true whether ¢ is false or true. false false true

2. When p is true AND g is true;

Observing the results of this experiment may be less straightforward. We have
considered z as being the output of the model and have designated it as “the
phenotype”. However, the model is largely confined to the transcriptional level, so
strictly speaking, z represents the expression of the genes leading to the phenotype, i.e.
genes of the alginate synthesis operon, or genes of Type III apparatus and toxins
respectively. It may be that gene expression is indeed an epigenetic mechanism
whereas the phenotype itself is not, due to another level of regulation.

Limits of the approach

The grounding of the model in the transcriptional network alone highlights one of
the limits of this approach. Other limits are illustrated by the two chosen cases. In both
cases the formal graph on which the models are based is actually only a subgraph of a
more general graph showing the regulatory network (Figures la and 2a, are simplified
with regard to present knowledge but they are more complicated than the part
represented in Figures 1b and 2b). What would be the consequences of considering all
the interactions? Having neglected the outgoing edges of the graph, (Figure 1a) does
not have any consequence since we are only interested in the subsystem involving the
production of mucus. On the other hand, our neglecting the edges entering this
subsystem (Figure 2a) might have an important impact. By construction of the graph,
some situations can be eliminated.

1) By construction, we call z the “response” of the regulatory network, and gather
into one edge, all the edges that correspond to the effect of AlgU (resp. ExsA), directly
or indirectly on the production of mucus (resp. exotoxins).

2) At the present state of our knowledge, all genes which are not included in our
model and have a direct influence on x or y do not participate in a functional feedback
circuit. According to Snoussi (1989) this results in the number of steady states not
being affected. Thus multistationarity is preserved.

Let us remark that the formal dynamics of the system, which is submitted to the
model checker, only consider the influence of the variables explicitly mentioned in the
regulatory network. Thus, it models in a certain sense a “closed system” where
variations of the environment are not taken into account. In practice, it means that
genes or external signals, which can vary in time although they are not involved in a
feedback circuit, are ignored. Consequently our work remains valid a priori only if
neglected genes have a constant influence on the variables. We believe that such
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artificially simplified situations nevertheless give valuable information but it stands to
reason that only in vivo experiments can tell us if the choice of the genes considered as
relevant for the model is sensible. This is for example the case of the cytotoxic
phenotype, where calcium depletion variations may have a non constant influence on x
(the molecular mechanism is yet under scrutiny). The study presented here makes
these influences artificially negligible by taking into account only a situation of
constant calcium depletion.

5. CONCLUSION

The availability of high throughput data has made it possible to compare and
classify large amounts of data. Transcriptional regulatory networks constitute one
important way of ordering these data so as to understand the functioning of living
organisms, providing one does not underestimate the fact that different levels of
regulation often intermingle (Alm and Arkin, 2003). A few methods are available for
studying transcriptional regulatory networks. Looking for homologies in gene or
protein data bases is the most common one and can give useful hints about functions.
One can also look for the operation of similar mechanisms such as the role of sigma
factors, upstream regulators, and the supercoiling or bending of the promoter and
upstream regions in bacteria.

A new method has been proposed that extracts the most frequent minimal patterns
which are small subgraphs of a regulatory network (Milo ef al., 2002). The authors
also try to identify the “elementary functions” to which they correspond. We suggest
that this method could be extended to minimal feedback circuits. In this case, the
method is based on the search for minimal active feedback circuits which determine
the dynamic behaviour of a system, and we propose to call it the search for “dynamic
similarities”. The first step is to find the feedback circuits in the network and
determine the relationships within them and between them by extracting minimal
graphs from the network. This step, similar to that proposed by Milo et al. (2002), is
relatively easy in bacterial transcriptional networks but may require computer
assistance for eukarya (Delaplace, 2003). However, feedback circuits are necessary
but not sufficient for the existence of “non-trivial” dynamic behaviours such as
multistationarity (arising from positive feedback circuits) or homeostasis with or
without oscillations (arising from negative feedback circuits).

The second step is to ensure by modelling that the predicted possible behaviour is
internally coherent; and this, as we show with the P. aeruginosa example, is greatly
facilitated by the use of a new software, SMBioNet. This method is based on a theory,
temporal logic, usually employed for the logical analysis of the discrete dynamic
systems in computer science.

The final, and most time-consuming step is to perform experimental verifications
of the hypothesis. This step is fundamental and cannot be dispensed from for several
reasons. Not only the existence of feedback circuits in a network does not prove that
the corresponding dynamic behaviour actually occurs, but the many simplifications
that have lead to the hypothesis are always liable to lead to underestimating the
importance of factors externals to the graph. For instance, positive loops can turn
negative or vice versa depending upon covalent modification or the interacting partner
of one element of these loops. This is why it is so important that experiments to
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validate or refute the epigenetic hypothesis can be designed in a computer-aided
manner. This step is necessary to ascertain dynamic similarity from a recognised
motif.

Here we have focussed on two potentially “dynamically similar” networks
controlling two phenotypes acquired by the same bacterium in the same conditions.
Surprisingly, it turns out that the same motif, of an interlocking positive loop and
negative circuit, is extremely frequent in quite different networks (Demongeot ef al.,
2000). But the presence of such a motif is only a hint of dynamic similarity, unless the
relevant experimental proof is provided.

As explained previously (Guespin-Michel and Kaufman, 2001), if a pathogenic
phenotype were to arise through an epigenetic modification instead of a mutation, it
would have important implications for therapy since it would make sense to search for
drugs that influence the epigenetic switch instead of using antibiotics to which bacteria
become resistant (Norris et al., 1999). A systematic search for dynamic “non-trivial”
behaviours in bacteria (Guespin-Michel, 2001; Guespin-Michel et al., 2003) may help
create a new field of knowledge with new applications. The same holds true for the
Eukarya (Demongeot, 1998). Weinstein (2000) wrote that even if the development of
microarray methods and proteomics expands our ability to assess complex profiles of
gene expression in cancer cells, these methods do not provide the dynamic view of the
actual circuitry of these cells. Recently, however, direct experimental evidence of an
epigenetic mechanism has been reported: the MYC oncogene is frequently over-
expressed in cancer cells and its brief inactivation in an osteogenic sarcoma cell line
appeared to cause epigenetic changes that rendered the cells insensitive to MYC-
induced tumorigenesis (Jain et al., 2002).
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